File size: 27,114 Bytes
b482253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:36728
- loss:BinaryCrossEntropyLoss
base_model: cross-encoder/ms-marco-MiniLM-L6-v2
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- pearson
- spearman
- map
- mrr@10
- ndcg@10
model-index:
- name: ms-marco-MiniLM-L-6-v2 Finetuned on PV211 HomeWork
  results:
  - task:
      type: cross-encoder-correlation
      name: Cross Encoder Correlation
    dataset:
      name: sts dev
      type: sts_dev
    metrics:
    - type: pearson
      value: 0.8857946136871967
      name: Pearson
    - type: spearman
      value: 0.8182465826410324
      name: Spearman
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoMSMARCO R100
      type: NanoMSMARCO_R100
    metrics:
    - type: map
      value: 0.6048
      name: Map
    - type: mrr@10
      value: 0.5974
      name: Mrr@10
    - type: ndcg@10
      value: 0.6644
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNFCorpus R100
      type: NanoNFCorpus_R100
    metrics:
    - type: map
      value: 0.3633
      name: Map
    - type: mrr@10
      value: 0.5961
      name: Mrr@10
    - type: ndcg@10
      value: 0.4082
      name: Ndcg@10
  - task:
      type: cross-encoder-reranking
      name: Cross Encoder Reranking
    dataset:
      name: NanoNQ R100
      type: NanoNQ_R100
    metrics:
    - type: map
      value: 0.6871
      name: Map
    - type: mrr@10
      value: 0.7117
      name: Mrr@10
    - type: ndcg@10
      value: 0.7413
      name: Ndcg@10
  - task:
      type: cross-encoder-nano-beir
      name: Cross Encoder Nano BEIR
    dataset:
      name: NanoBEIR R100 mean
      type: NanoBEIR_R100_mean
    metrics:
    - type: map
      value: 0.5517
      name: Map
    - type: mrr@10
      value: 0.635
      name: Mrr@10
    - type: ndcg@10
      value: 0.6046
      name: Ndcg@10
---

# ms-marco-MiniLM-L-6-v2 Finetuned on PV211 HomeWork

This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [cross-encoder/ms-marco-MiniLM-L6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2) using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.

## Model Details

### Model Description
- **Model Type:** Cross Encoder
- **Base model:** [cross-encoder/ms-marco-MiniLM-L6-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L6-v2) <!-- at revision ce0834f22110de6d9222af7a7a03628121708969 -->
- **Maximum Sequence Length:** 512 tokens
- **Number of Output Labels:** 1 label
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import CrossEncoder

# Download from the 🤗 Hub
model = CrossEncoder("maennyn/pv211_beir_cqadupstack_crossencoder2")
# Get scores for pairs of texts
pairs = [
    ['Increase the X length of a tikzpicture', "In recent years I've developed a habit of formatting SQL `SELECT` queries like so:               SELECT         fieldNames     FROM         sources         JOIN tableSource ON col1 = col2         JOIN (             SELECT                 fieldNames             FROM                 otherSources          ) AS subQuery ON subQuery.foo = col2     WHERE         someField = somePredicate      So you see my pattern: each keyword is on its own line and that keyword's fields are indented by 1 tab-stop and the pattern is used recursively for sub- queries. This works well for all of my `SELECT` queries, as it maximizes readability though at the cost of vertical space; but it doesn't work for things like `INSERT` and `UPDATE` which have radically different syntax.               INSERT INTO tableName            (  col1,   col2,   col3,   col4,   col5,   col6,   col7,   col8  )     VALUES ( 'col1', 'col2', 'col3', 'col4', 'col5', 'col6', 'col7', 'col8' ),     VALUES ( 'col1', 'col2', 'col3', 'col4', 'col5', 'col6', 'col7', 'col8' )          UPDATE tableName     SET         col1 = 'col1',         col2 = 'col2',         col3 = 'col3',         // etc     WHERE         someField = somePredicate      As you can see, they aren't as pretty, and when you're dealing with tables with a lot of columns they quickly become unweildly. Is there a better way to format `INSERT` and `UPDATE`? And what about `CREATE` statements and other operations?"],
    ['Fillable form: checkbox linked to hide/unhide sections; pushbutton to add/delete rows', "I'd like to create a LaTeX document that when rendered into PDF, has forms that can be filled out using Adobe Reader or other such programs. Then I'd like to be able to extract the data. I deliberately would like to avoid using Acrobat for all the usual reasons (non-free, need different versions for different platforms etc). Can this be done ?"],
    ['Is there any way to get something like pmatrix with customizable grid lines between cells?', "> **Possible Duplicate:**   >  Highlight elements in the matrix i have a matrix:               \\begin{equation}      \\begin{bmatrix}         1 & 5 & 4 & 2 & 1 \\\\         1 & 5 & 4 & 2 & 1 \\\\         1 & 5 & 4 & 2 & 1 \\\\     \\end{bmatrix}     \\label{e:crop1}     \\end{equation}      and i would like to draw a box around a few of the values to highlight a selection & label it, how would i go about this? I've looked at nodes but havent got a clue. thanks"],
    ["Difference between 'all' and 'all the'", 'I am not confident about my judgement as to whether or not "the" is required if a relative clause is used in a sentence.   For example, > The data can be collected on all the computers on which the software is > installed. I think it must be "all the computers " and not be "all computers" because "computers" is specified by "on which the software is installed". Please help me confirm that I am right.'],
    ['Understanding the exclamation mark (!) in bash', "I'm following through a tutorial and it mentions to run this command:               sudo chmod 700 !$      I'm not familiar with `!$`. What does it mean?"],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)

# Or rank different texts based on similarity to a single text
ranks = model.rank(
    'Increase the X length of a tikzpicture',
    [
        "In recent years I've developed a habit of formatting SQL `SELECT` queries like so:               SELECT         fieldNames     FROM         sources         JOIN tableSource ON col1 = col2         JOIN (             SELECT                 fieldNames             FROM                 otherSources          ) AS subQuery ON subQuery.foo = col2     WHERE         someField = somePredicate      So you see my pattern: each keyword is on its own line and that keyword's fields are indented by 1 tab-stop and the pattern is used recursively for sub- queries. This works well for all of my `SELECT` queries, as it maximizes readability though at the cost of vertical space; but it doesn't work for things like `INSERT` and `UPDATE` which have radically different syntax.               INSERT INTO tableName            (  col1,   col2,   col3,   col4,   col5,   col6,   col7,   col8  )     VALUES ( 'col1', 'col2', 'col3', 'col4', 'col5', 'col6', 'col7', 'col8' ),     VALUES ( 'col1', 'col2', 'col3', 'col4', 'col5', 'col6', 'col7', 'col8' )          UPDATE tableName     SET         col1 = 'col1',         col2 = 'col2',         col3 = 'col3',         // etc     WHERE         someField = somePredicate      As you can see, they aren't as pretty, and when you're dealing with tables with a lot of columns they quickly become unweildly. Is there a better way to format `INSERT` and `UPDATE`? And what about `CREATE` statements and other operations?",
        "I'd like to create a LaTeX document that when rendered into PDF, has forms that can be filled out using Adobe Reader or other such programs. Then I'd like to be able to extract the data. I deliberately would like to avoid using Acrobat for all the usual reasons (non-free, need different versions for different platforms etc). Can this be done ?",
        "> **Possible Duplicate:**   >  Highlight elements in the matrix i have a matrix:               \\begin{equation}      \\begin{bmatrix}         1 & 5 & 4 & 2 & 1 \\\\         1 & 5 & 4 & 2 & 1 \\\\         1 & 5 & 4 & 2 & 1 \\\\     \\end{bmatrix}     \\label{e:crop1}     \\end{equation}      and i would like to draw a box around a few of the values to highlight a selection & label it, how would i go about this? I've looked at nodes but havent got a clue. thanks",
        'I am not confident about my judgement as to whether or not "the" is required if a relative clause is used in a sentence.   For example, > The data can be collected on all the computers on which the software is > installed. I think it must be "all the computers " and not be "all computers" because "computers" is specified by "on which the software is installed". Please help me confirm that I am right.',
        "I'm following through a tutorial and it mentions to run this command:               sudo chmod 700 !$      I'm not familiar with `!$`. What does it mean?",
    ]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Cross Encoder Correlation

* Dataset: `sts_dev`
* Evaluated with [<code>CrossEncoderCorrelationEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderCorrelationEvaluator)

| Metric       | Value      |
|:-------------|:-----------|
| pearson      | 0.8858     |
| **spearman** | **0.8182** |

#### Cross Encoder Reranking

* Datasets: `NanoMSMARCO_R100`, `NanoNFCorpus_R100` and `NanoNQ_R100`
* Evaluated with [<code>CrossEncoderRerankingEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderRerankingEvaluator) with these parameters:
  ```json
  {
      "at_k": 10,
      "always_rerank_positives": true
  }
  ```

| Metric      | NanoMSMARCO_R100     | NanoNFCorpus_R100    | NanoNQ_R100          |
|:------------|:---------------------|:---------------------|:---------------------|
| map         | 0.6048 (+0.1152)     | 0.3633 (+0.1023)     | 0.6871 (+0.2674)     |
| mrr@10      | 0.5974 (+0.1199)     | 0.5961 (+0.0962)     | 0.7117 (+0.2850)     |
| **ndcg@10** | **0.6644 (+0.1240)** | **0.4082 (+0.0832)** | **0.7413 (+0.2407)** |

#### Cross Encoder Nano BEIR

* Dataset: `NanoBEIR_R100_mean`
* Evaluated with [<code>CrossEncoderNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CrossEncoderNanoBEIREvaluator) with these parameters:
  ```json
  {
      "dataset_names": [
          "msmarco",
          "nfcorpus",
          "nq"
      ],
      "rerank_k": 100,
      "at_k": 10,
      "always_rerank_positives": true
  }
  ```

| Metric      | Value                |
|:------------|:---------------------|
| map         | 0.5517 (+0.1616)     |
| mrr@10      | 0.6350 (+0.1670)     |
| **ndcg@10** | **0.6046 (+0.1493)** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

* Size: 36,728 training samples
* Columns: <code>query</code>, <code>document</code>, and <code>label</code>
* Approximate statistics based on the first 1000 samples:
  |         | query                                                                                           | document                                                                                          | label                                           |
  |:--------|:------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:------------------------------------------------|
  | type    | string                                                                                          | string                                                                                            | int                                             |
  | details | <ul><li>min: 15 characters</li><li>mean: 49.89 characters</li><li>max: 128 characters</li></ul> | <ul><li>min: 36 characters</li><li>mean: 718.8 characters</li><li>max: 17541 characters</li></ul> | <ul><li>0: ~48.90%</li><li>1: ~51.10%</li></ul> |
* Samples:
  | query                                                                                                   | document                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | label          |
  |:--------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------|
  | <code>Increase the X length of a tikzpicture</code>                                                     | <code>In recent years I've developed a habit of formatting SQL `SELECT` queries like so:               SELECT         fieldNames     FROM         sources         JOIN tableSource ON col1 = col2         JOIN (             SELECT                 fieldNames             FROM                 otherSources          ) AS subQuery ON subQuery.foo = col2     WHERE         someField = somePredicate      So you see my pattern: each keyword is on its own line and that keyword's fields are indented by 1 tab-stop and the pattern is used recursively for sub- queries. This works well for all of my `SELECT` queries, as it maximizes readability though at the cost of vertical space; but it doesn't work for things like `INSERT` and `UPDATE` which have radically different syntax.               INSERT INTO tableName            (  col1,   col2,   col3,   col4,   col5,   col6,   col7,   col8  )     VALUES ( 'col1', 'col2', 'col3', 'col4', 'col5', 'col6', 'col7', 'col8' ),     VALUES ( 'col1', 'col2', 'col3', 'col4',...</code> | <code>0</code> |
  | <code>Fillable form: checkbox linked to hide/unhide sections; pushbutton to add/delete rows</code>      | <code>I'd like to create a LaTeX document that when rendered into PDF, has forms that can be filled out using Adobe Reader or other such programs. Then I'd like to be able to extract the data. I deliberately would like to avoid using Acrobat for all the usual reasons (non-free, need different versions for different platforms etc). Can this be done ?</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <code>1</code> |
  | <code>Is there any way to get something like pmatrix with customizable grid lines between cells?</code> | <code>> **Possible Duplicate:**   >  Highlight elements in the matrix i have a matrix:               \begin{equation}      \begin{bmatrix}         1 & 5 & 4 & 2 & 1 \\         1 & 5 & 4 & 2 & 1 \\         1 & 5 & 4 & 2 & 1 \\     \end{bmatrix}     \label{e:crop1}     \end{equation}      and i would like to draw a box around a few of the values to highlight a selection & label it, how would i go about this? I've looked at nodes but havent got a clue. thanks</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <code>1</code> |
* Loss: [<code>BinaryCrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#binarycrossentropyloss) with these parameters:
  ```json
  {
      "activation_fn": "torch.nn.modules.linear.Identity",
      "pos_weight": null
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `warmup_ratio`: 0.1
- `save_only_model`: True
- `fp16`: True
- `load_best_model_at_end`: True

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 3
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: True
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch   | Step     | Training Loss | sts_dev_spearman | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10  | NanoBEIR_R100_mean_ndcg@10 |
|:-------:|:--------:|:-------------:|:----------------:|:------------------------:|:-------------------------:|:--------------------:|:--------------------------:|
| -1      | -1       | -             | 0.7222           | 0.6686 (+0.1282)         | 0.3930 (+0.0680)          | 0.7599 (+0.2592)     | 0.6072 (+0.1518)           |
| 0.4355  | 1000     | 0.4163        | -                | -                        | -                         | -                    | -                          |
| 0.8711  | 2000     | 0.1632        | -                | -                        | -                         | -                    | -                          |
| **1.0** | **2296** | **-**         | **0.8182**       | **0.6644 (+0.1240)**     | **0.4082 (+0.0832)**      | **0.7413 (+0.2407)** | **0.6046 (+0.1493)**       |
| 1.3066  | 3000     | 0.1227        | -                | -                        | -                         | -                    | -                          |
| 1.7422  | 4000     | 0.1157        | -                | -                        | -                         | -                    | -                          |
| 2.0     | 4592     | -             | 0.8201           | 0.6266 (+0.0862)         | 0.4096 (+0.0846)          | 0.7032 (+0.2026)     | 0.5798 (+0.1244)           |
| 2.1777  | 5000     | 0.0964        | -                | -                        | -                         | -                    | -                          |
| 2.6132  | 6000     | 0.081         | -                | -                        | -                         | -                    | -                          |
| 3.0     | 6888     | -             | 0.8203           | 0.6241 (+0.0837)         | 0.4068 (+0.0817)          | 0.6931 (+0.1924)     | 0.5747 (+0.1193)           |
| -1      | -1       | -             | 0.8182           | 0.6644 (+0.1240)         | 0.4082 (+0.0832)          | 0.7413 (+0.2407)     | 0.6046 (+0.1493)           |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.8.0.dev20250319+cu128
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->