|
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from sageattn import sageattn_blackwell
|
|
from torch.nn.attention import SDPBackend, sdpa_kernel
|
|
|
|
|
|
def get_rtol_atol(actual, expect):
|
|
actual = actual.float()
|
|
expect = expect.float()
|
|
diff = (actual - expect).abs()
|
|
eps = torch.tensor(
|
|
torch.finfo(actual.dtype).eps, device=actual.device, dtype=actual.dtype
|
|
)
|
|
rdiff = diff / torch.maximum(torch.maximum(actual.abs(), expect.abs()), eps)
|
|
return (
|
|
f"mean_rtol={rdiff.mean().item():.3g} "
|
|
f"max_rtol={rdiff.max().item():.3g} "
|
|
f"mean_atol={diff.max().item():.3g} "
|
|
f"max_atol={diff.max().item():.3g}"
|
|
)
|
|
|
|
|
|
def main():
|
|
batch_size = 4
|
|
head_num = 32
|
|
seq_len = 64
|
|
head_dim = 128
|
|
dtype = torch.float16
|
|
|
|
q = torch.randn(batch_size, head_num, seq_len, head_dim, device="cuda", dtype=dtype)
|
|
k = torch.randn_like(q)
|
|
v = torch.randn_like(q)
|
|
print("q", tuple(q.shape), q.device, q.dtype)
|
|
|
|
|
|
torch.backends.cuda.enable_math_sdp(True)
|
|
with sdpa_kernel(SDPBackend.MATH):
|
|
out_math = F.scaled_dot_product_attention(q, k, v)
|
|
|
|
out_sage = sageattn_blackwell(q, k, v, is_causal=False)
|
|
print("sage vs math:", get_rtol_atol(out_sage, out_math))
|
|
print("The above (except max_rtol) should be < 0.05 (on RTX 20xx/30xx) or < 0.1 (on RTX 40xx/50xx)")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |