Commit
·
06af896
1
Parent(s):
aca4fba
Update README (#1)
Browse files- README update (83210a8491ead1f03bea014081d0db9dd9b25f81)
Co-authored-by: Will Berman <[email protected]>
- README.md +19 -324
- controlnet_utils.py +0 -40
- images/bag.png +0 -0
- images/bag_scribble.png +0 -0
- images/bag_scribble_out.png +0 -0
- images/bird.png +0 -3
- images/bird_canny.png +0 -0
- images/bird_canny_out.png +0 -0
- images/chef_pose_out.png +0 -0
- images/house.png +0 -0
- images/house_seg.png +0 -0
- images/house_seg_out.png +0 -0
- images/man.png +0 -0
- images/man_hed.png +0 -0
- images/man_hed_out.png +0 -0
- images/openpose.png +0 -0
- images/pose.png +0 -0
- images/room.png +0 -0
- images/room_mlsd.png +0 -0
- images/room_mlsd_out.png +0 -0
- images/stormtrooper_depth_out.png +0 -0
- images/toy.png +0 -0
- images/toy_normal.png +0 -0
- images/toy_normal_out.png +0 -0
README.md
CHANGED
|
@@ -18,201 +18,21 @@ Controlnet's auxiliary models are trained with stable diffusion 1.5. Experimenta
|
|
| 18 |
The auxiliary conditioning is passed directly to the diffusers pipeline. If you want to process an image to create the auxiliary conditioning, external dependencies are required.
|
| 19 |
|
| 20 |
Some of the additional conditionings can be extracted from images via additional models. We extracted these
|
| 21 |
-
additional models from the original controlnet repo into a separate package that can be found on [github](https://github.com/patrickvonplaten/
|
| 22 |
-
|
| 23 |
-
## Canny edge detection
|
| 24 |
-
|
| 25 |
-
Install opencv
|
| 26 |
-
|
| 27 |
-
```sh
|
| 28 |
-
$ pip install opencv-contrib-python
|
| 29 |
-
```
|
| 30 |
-
|
| 31 |
-
```python
|
| 32 |
-
import cv2
|
| 33 |
-
from PIL import Image
|
| 34 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 35 |
-
import torch
|
| 36 |
-
import numpy as np
|
| 37 |
-
|
| 38 |
-
image = Image.open('images/bird.png')
|
| 39 |
-
image = np.array(image)
|
| 40 |
-
|
| 41 |
-
low_threshold = 100
|
| 42 |
-
high_threshold = 200
|
| 43 |
-
|
| 44 |
-
image = cv2.Canny(image, low_threshold, high_threshold)
|
| 45 |
-
image = image[:, :, None]
|
| 46 |
-
image = np.concatenate([image, image, image], axis=2)
|
| 47 |
-
image = Image.fromarray(image)
|
| 48 |
-
|
| 49 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 50 |
-
"fusing/stable-diffusion-v1-5-controlnet-canny",
|
| 51 |
-
)
|
| 52 |
-
|
| 53 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 54 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
| 55 |
-
)
|
| 56 |
-
pipe.to('cuda')
|
| 57 |
-
|
| 58 |
-
image = pipe("bird", image).images[0]
|
| 59 |
-
|
| 60 |
-
image.save('images/bird_canny_out.png')
|
| 61 |
-
```
|
| 62 |
-
|
| 63 |
-

|
| 64 |
-
|
| 65 |
-

|
| 66 |
-
|
| 67 |
-

|
| 68 |
-
|
| 69 |
-
## M-LSD Straight line detection
|
| 70 |
-
|
| 71 |
-
Install the additional controlnet models package.
|
| 72 |
-
|
| 73 |
-
```sh
|
| 74 |
-
$ pip install git+https://github.com/patrickvonplaten/human_pose.git
|
| 75 |
-
```
|
| 76 |
-
|
| 77 |
-
```py
|
| 78 |
-
from PIL import Image
|
| 79 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 80 |
-
import torch
|
| 81 |
-
from human_pose import MLSDdetector
|
| 82 |
-
|
| 83 |
-
mlsd = MLSDdetector.from_pretrained('lllyasviel/ControlNet')
|
| 84 |
-
|
| 85 |
-
image = Image.open('images/room.png')
|
| 86 |
-
|
| 87 |
-
image = mlsd(image)
|
| 88 |
-
|
| 89 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 90 |
-
"fusing/stable-diffusion-v1-5-controlnet-mlsd",
|
| 91 |
-
)
|
| 92 |
-
|
| 93 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 94 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
| 95 |
-
)
|
| 96 |
-
pipe.to('cuda')
|
| 97 |
-
|
| 98 |
-
image = pipe("room", image).images[0]
|
| 99 |
-
|
| 100 |
-
image.save('images/room_mlsd_out.png')
|
| 101 |
-
```
|
| 102 |
-
|
| 103 |
-

|
| 104 |
-
|
| 105 |
-

|
| 106 |
-
|
| 107 |
-

|
| 108 |
-
|
| 109 |
-
## Pose estimation
|
| 110 |
-
|
| 111 |
-
Install the additional controlnet models package.
|
| 112 |
-
|
| 113 |
-
```sh
|
| 114 |
-
$ pip install git+https://github.com/patrickvonplaten/human_pose.git
|
| 115 |
-
```
|
| 116 |
-
|
| 117 |
-
```py
|
| 118 |
-
from PIL import Image
|
| 119 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 120 |
-
import torch
|
| 121 |
-
from human_pose import OpenposeDetector
|
| 122 |
-
|
| 123 |
-
openpose = OpenposeDetector.from_pretrained('lllyasviel/ControlNet')
|
| 124 |
-
|
| 125 |
-
image = Image.open('images/pose.png')
|
| 126 |
-
|
| 127 |
-
image = openpose(image)
|
| 128 |
-
|
| 129 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 130 |
-
"fusing/stable-diffusion-v1-5-controlnet-openpose",
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 134 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
| 135 |
-
)
|
| 136 |
-
pipe.to('cuda')
|
| 137 |
-
|
| 138 |
-
image = pipe("chef in the kitchen", image).images[0]
|
| 139 |
-
|
| 140 |
-
image.save('images/chef_pose_out.png')
|
| 141 |
-
```
|
| 142 |
-
|
| 143 |
-

|
| 144 |
-
|
| 145 |
-

|
| 146 |
-
|
| 147 |
-

|
| 148 |
-
|
| 149 |
-
## Semantic Segmentation
|
| 150 |
-
|
| 151 |
-
Semantic segmentation relies on transformers. Transformers is a
|
| 152 |
-
dependency of diffusers for running controlnet, so you should
|
| 153 |
-
have it installed already.
|
| 154 |
-
|
| 155 |
-
```py
|
| 156 |
-
from transformers import AutoImageProcessor, UperNetForSemanticSegmentation
|
| 157 |
-
from PIL import Image
|
| 158 |
-
import numpy as np
|
| 159 |
-
from controlnet_utils import ade_palette
|
| 160 |
-
import torch
|
| 161 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 162 |
-
|
| 163 |
-
image_processor = AutoImageProcessor.from_pretrained("openmmlab/upernet-convnext-small")
|
| 164 |
-
image_segmentor = UperNetForSemanticSegmentation.from_pretrained("openmmlab/upernet-convnext-small")
|
| 165 |
-
|
| 166 |
-
image = Image.open("./images/house.png").convert('RGB')
|
| 167 |
-
|
| 168 |
-
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
| 169 |
-
|
| 170 |
-
with torch.no_grad():
|
| 171 |
-
outputs = image_segmentor(pixel_values)
|
| 172 |
-
|
| 173 |
-
seg = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0]
|
| 174 |
-
|
| 175 |
-
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
| 176 |
-
|
| 177 |
-
palette = np.array(ade_palette())
|
| 178 |
-
|
| 179 |
-
for label, color in enumerate(palette):
|
| 180 |
-
color_seg[seg == label, :] = color
|
| 181 |
-
|
| 182 |
-
color_seg = color_seg.astype(np.uint8)
|
| 183 |
-
|
| 184 |
-
image = Image.fromarray(color_seg)
|
| 185 |
-
|
| 186 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 187 |
-
"fusing/stable-diffusion-v1-5-controlnet-seg",
|
| 188 |
-
)
|
| 189 |
-
|
| 190 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 191 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
| 192 |
-
)
|
| 193 |
-
pipe.to('cuda')
|
| 194 |
-
|
| 195 |
-
image = pipe("house", image).images[0]
|
| 196 |
-
|
| 197 |
-
image.save('./images/house_seg_out.png')
|
| 198 |
-
```
|
| 199 |
-
|
| 200 |
-

|
| 201 |
-
|
| 202 |
-

|
| 203 |
-
|
| 204 |
-

|
| 205 |
|
| 206 |
## Depth control
|
| 207 |
|
|
|
|
|
|
|
| 208 |
Depth control relies on transformers. Transformers is a dependency of diffusers for running controlnet, so
|
| 209 |
you should have it installed already.
|
| 210 |
|
| 211 |
```py
|
| 212 |
from transformers import pipeline
|
| 213 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 214 |
from PIL import Image
|
| 215 |
import numpy as np
|
|
|
|
| 216 |
|
| 217 |
depth_estimator = pipeline('depth-estimation')
|
| 218 |
|
|
@@ -224,15 +44,23 @@ image = np.concatenate([image, image, image], axis=2)
|
|
| 224 |
image = Image.fromarray(image)
|
| 225 |
|
| 226 |
controlnet = ControlNetModel.from_pretrained(
|
| 227 |
-
"fusing/stable-diffusion-v1-5-controlnet-depth",
|
| 228 |
)
|
| 229 |
|
| 230 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 231 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
| 232 |
)
|
| 233 |
-
pipe.to('cuda')
|
| 234 |
|
| 235 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 236 |
|
| 237 |
image.save('./images/stormtrooper_depth_out.png')
|
| 238 |
```
|
|
@@ -243,139 +71,6 @@ image.save('./images/stormtrooper_depth_out.png')
|
|
| 243 |
|
| 244 |

|
| 245 |
|
|
|
|
| 246 |
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
```py
|
| 250 |
-
from PIL import Image
|
| 251 |
-
from transformers import pipeline
|
| 252 |
-
import numpy as np
|
| 253 |
-
import cv2
|
| 254 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 255 |
-
|
| 256 |
-
image = Image.open("images/toy.png").convert("RGB")
|
| 257 |
-
|
| 258 |
-
depth_estimator = pipeline("depth-estimation", model ="Intel/dpt-hybrid-midas" )
|
| 259 |
-
|
| 260 |
-
image = depth_estimator(image)['predicted_depth'][0]
|
| 261 |
-
|
| 262 |
-
image = image.numpy()
|
| 263 |
-
|
| 264 |
-
image_depth = image.copy()
|
| 265 |
-
image_depth -= np.min(image_depth)
|
| 266 |
-
image_depth /= np.max(image_depth)
|
| 267 |
-
|
| 268 |
-
bg_threhold = 0.4
|
| 269 |
-
|
| 270 |
-
x = cv2.Sobel(image, cv2.CV_32F, 1, 0, ksize=3)
|
| 271 |
-
x[image_depth < bg_threhold] = 0
|
| 272 |
-
|
| 273 |
-
y = cv2.Sobel(image, cv2.CV_32F, 0, 1, ksize=3)
|
| 274 |
-
y[image_depth < bg_threhold] = 0
|
| 275 |
-
|
| 276 |
-
z = np.ones_like(x) * np.pi * 2.0
|
| 277 |
-
|
| 278 |
-
image = np.stack([x, y, z], axis=2)
|
| 279 |
-
image /= np.sum(image ** 2.0, axis=2, keepdims=True) ** 0.5
|
| 280 |
-
image = (image * 127.5 + 127.5).clip(0, 255).astype(np.uint8)
|
| 281 |
-
image = Image.fromarray(image)
|
| 282 |
-
|
| 283 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 284 |
-
"fusing/stable-diffusion-v1-5-controlnet-normal",
|
| 285 |
-
)
|
| 286 |
-
|
| 287 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 288 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
| 289 |
-
)
|
| 290 |
-
pipe.to('cuda')
|
| 291 |
-
|
| 292 |
-
image = pipe("cute toy", image).images[0]
|
| 293 |
-
|
| 294 |
-
image.save('images/toy_normal_out.png')
|
| 295 |
-
```
|
| 296 |
-
|
| 297 |
-

|
| 298 |
-
|
| 299 |
-

|
| 300 |
-
|
| 301 |
-

|
| 302 |
-
|
| 303 |
-
## Scribble
|
| 304 |
-
|
| 305 |
-
Install the additional controlnet models package.
|
| 306 |
-
|
| 307 |
-
```sh
|
| 308 |
-
$ pip install git+https://github.com/patrickvonplaten/human_pose.git
|
| 309 |
-
```
|
| 310 |
-
|
| 311 |
-
```py
|
| 312 |
-
from PIL import Image
|
| 313 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 314 |
-
import torch
|
| 315 |
-
from human_pose import HEDdetector
|
| 316 |
-
|
| 317 |
-
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
| 318 |
-
|
| 319 |
-
image = Image.open('images/bag.png')
|
| 320 |
-
|
| 321 |
-
image = hed(image, scribble=True)
|
| 322 |
-
|
| 323 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 324 |
-
"fusing/stable-diffusion-v1-5-controlnet-scribble",
|
| 325 |
-
)
|
| 326 |
-
|
| 327 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 328 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
| 329 |
-
)
|
| 330 |
-
pipe.to('cuda')
|
| 331 |
-
|
| 332 |
-
image = pipe("bag", image).images[0]
|
| 333 |
-
|
| 334 |
-
image.save('images/bag_scribble_out.png')
|
| 335 |
-
```
|
| 336 |
-
|
| 337 |
-

|
| 338 |
-
|
| 339 |
-

|
| 340 |
-
|
| 341 |
-

|
| 342 |
-
|
| 343 |
-
## HED Boundary
|
| 344 |
-
|
| 345 |
-
Install the additional controlnet models package.
|
| 346 |
-
|
| 347 |
-
```sh
|
| 348 |
-
$ pip install git+https://github.com/patrickvonplaten/human_pose.git
|
| 349 |
-
```
|
| 350 |
-
|
| 351 |
-
```py
|
| 352 |
-
from PIL import Image
|
| 353 |
-
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 354 |
-
import torch
|
| 355 |
-
from human_pose import HEDdetector
|
| 356 |
-
|
| 357 |
-
hed = HEDdetector.from_pretrained('lllyasviel/ControlNet')
|
| 358 |
-
|
| 359 |
-
image = Image.open('images/man.png')
|
| 360 |
-
|
| 361 |
-
image = hed(image)
|
| 362 |
-
|
| 363 |
-
controlnet = ControlNetModel.from_pretrained(
|
| 364 |
-
"fusing/stable-diffusion-v1-5-controlnet-hed",
|
| 365 |
-
)
|
| 366 |
-
|
| 367 |
-
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 368 |
-
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None
|
| 369 |
-
)
|
| 370 |
-
pipe.to('cuda')
|
| 371 |
-
|
| 372 |
-
image = pipe("oil painting of handsome old man, masterpiece", image).images[0]
|
| 373 |
-
|
| 374 |
-
image.save('images/man_hed_out.png')
|
| 375 |
-
```
|
| 376 |
-
|
| 377 |
-

|
| 378 |
-
|
| 379 |
-

|
| 380 |
-
|
| 381 |
-

|
|
|
|
| 18 |
The auxiliary conditioning is passed directly to the diffusers pipeline. If you want to process an image to create the auxiliary conditioning, external dependencies are required.
|
| 19 |
|
| 20 |
Some of the additional conditionings can be extracted from images via additional models. We extracted these
|
| 21 |
+
additional models from the original controlnet repo into a separate package that can be found on [github](https://github.com/patrickvonplaten/controlnet_aux.git).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
## Depth control
|
| 24 |
|
| 25 |
+
### Diffusers
|
| 26 |
+
|
| 27 |
Depth control relies on transformers. Transformers is a dependency of diffusers for running controlnet, so
|
| 28 |
you should have it installed already.
|
| 29 |
|
| 30 |
```py
|
| 31 |
from transformers import pipeline
|
| 32 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
|
| 33 |
from PIL import Image
|
| 34 |
import numpy as np
|
| 35 |
+
import torch
|
| 36 |
|
| 37 |
depth_estimator = pipeline('depth-estimation')
|
| 38 |
|
|
|
|
| 44 |
image = Image.fromarray(image)
|
| 45 |
|
| 46 |
controlnet = ControlNetModel.from_pretrained(
|
| 47 |
+
"fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=torch.float16
|
| 48 |
)
|
| 49 |
|
| 50 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
| 51 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16
|
| 52 |
)
|
|
|
|
| 53 |
|
| 54 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
| 55 |
+
|
| 56 |
+
# Remove if you do not have xformers installed
|
| 57 |
+
# see https://huggingface.co/docs/diffusers/v0.13.0/en/optimization/xformers#installing-xformers
|
| 58 |
+
# for installation instructions
|
| 59 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 60 |
+
|
| 61 |
+
pipe.enable_model_cpu_offload()
|
| 62 |
+
|
| 63 |
+
image = pipe("Stormtrooper's lecture", image, num_inference_steps=20).images[0]
|
| 64 |
|
| 65 |
image.save('./images/stormtrooper_depth_out.png')
|
| 66 |
```
|
|
|
|
| 71 |
|
| 72 |

|
| 73 |
|
| 74 |
+
### Training
|
| 75 |
|
| 76 |
+
The depth model was trained on 3M depth-image, caption pairs. The depth images were generated with Midas. The model was trained for 500 GPU-hours with Nvidia A100 80G using Stable Diffusion 1.5 as a base model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
controlnet_utils.py
DELETED
|
@@ -1,40 +0,0 @@
|
|
| 1 |
-
def ade_palette():
|
| 2 |
-
"""ADE20K palette that maps each class to RGB values."""
|
| 3 |
-
return [[120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
|
| 4 |
-
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255],
|
| 5 |
-
[230, 230, 230], [4, 250, 7], [224, 5, 255], [235, 255, 7],
|
| 6 |
-
[150, 5, 61], [120, 120, 70], [8, 255, 51], [255, 6, 82],
|
| 7 |
-
[143, 255, 140], [204, 255, 4], [255, 51, 7], [204, 70, 3],
|
| 8 |
-
[0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
|
| 9 |
-
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220],
|
| 10 |
-
[255, 9, 92], [112, 9, 255], [8, 255, 214], [7, 255, 224],
|
| 11 |
-
[255, 184, 6], [10, 255, 71], [255, 41, 10], [7, 255, 255],
|
| 12 |
-
[224, 255, 8], [102, 8, 255], [255, 61, 6], [255, 194, 7],
|
| 13 |
-
[255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
|
| 14 |
-
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255],
|
| 15 |
-
[140, 140, 140], [250, 10, 15], [20, 255, 0], [31, 255, 0],
|
| 16 |
-
[255, 31, 0], [255, 224, 0], [153, 255, 0], [0, 0, 255],
|
| 17 |
-
[255, 71, 0], [0, 235, 255], [0, 173, 255], [31, 0, 255],
|
| 18 |
-
[11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
|
| 19 |
-
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0],
|
| 20 |
-
[255, 102, 0], [194, 255, 0], [0, 143, 255], [51, 255, 0],
|
| 21 |
-
[0, 82, 255], [0, 255, 41], [0, 255, 173], [10, 0, 255],
|
| 22 |
-
[173, 255, 0], [0, 255, 153], [255, 92, 0], [255, 0, 255],
|
| 23 |
-
[255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
|
| 24 |
-
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255],
|
| 25 |
-
[255, 0, 204], [0, 255, 194], [0, 255, 82], [0, 10, 255],
|
| 26 |
-
[0, 112, 255], [51, 0, 255], [0, 194, 255], [0, 122, 255],
|
| 27 |
-
[0, 255, 163], [255, 153, 0], [0, 255, 10], [255, 112, 0],
|
| 28 |
-
[143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
|
| 29 |
-
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255],
|
| 30 |
-
[255, 0, 31], [0, 184, 255], [0, 214, 255], [255, 0, 112],
|
| 31 |
-
[92, 255, 0], [0, 224, 255], [112, 224, 255], [70, 184, 160],
|
| 32 |
-
[163, 0, 255], [153, 0, 255], [71, 255, 0], [255, 0, 163],
|
| 33 |
-
[255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
|
| 34 |
-
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0],
|
| 35 |
-
[10, 190, 212], [214, 255, 0], [0, 204, 255], [20, 0, 255],
|
| 36 |
-
[255, 255, 0], [0, 153, 255], [0, 41, 255], [0, 255, 204],
|
| 37 |
-
[41, 0, 255], [41, 255, 0], [173, 0, 255], [0, 245, 255],
|
| 38 |
-
[71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
|
| 39 |
-
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194],
|
| 40 |
-
[102, 255, 0], [92, 0, 255]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
images/bag.png
DELETED
|
Binary file (462 kB)
|
|
|
images/bag_scribble.png
DELETED
|
Binary file (11 kB)
|
|
|
images/bag_scribble_out.png
DELETED
|
Binary file (556 kB)
|
|
|
images/bird.png
DELETED
Git LFS Details
|
images/bird_canny.png
DELETED
|
Binary file (29.1 kB)
|
|
|
images/bird_canny_out.png
DELETED
|
Binary file (845 kB)
|
|
|
images/chef_pose_out.png
DELETED
|
Binary file (570 kB)
|
|
|
images/house.png
DELETED
|
Binary file (391 kB)
|
|
|
images/house_seg.png
DELETED
|
Binary file (3.68 kB)
|
|
|
images/house_seg_out.png
DELETED
|
Binary file (472 kB)
|
|
|
images/man.png
DELETED
|
Binary file (773 kB)
|
|
|
images/man_hed.png
DELETED
|
Binary file (118 kB)
|
|
|
images/man_hed_out.png
DELETED
|
Binary file (737 kB)
|
|
|
images/openpose.png
DELETED
|
Binary file (6.55 kB)
|
|
|
images/pose.png
DELETED
|
Binary file (592 kB)
|
|
|
images/room.png
DELETED
|
Binary file (637 kB)
|
|
|
images/room_mlsd.png
DELETED
|
Binary file (9.06 kB)
|
|
|
images/room_mlsd_out.png
DELETED
|
Binary file (575 kB)
|
|
|
images/stormtrooper_depth_out.png
CHANGED
|
|
images/toy.png
DELETED
|
Binary file (312 kB)
|
|
|
images/toy_normal.png
DELETED
|
Binary file (90.1 kB)
|
|
|
images/toy_normal_out.png
DELETED
|
Binary file (231 kB)
|
|
|