End of training
Browse files
README.md
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: meta-llama/Llama-3.2-1B-Instruct
|
3 |
+
library_name: peft
|
4 |
+
license: llama3.2
|
5 |
+
tags:
|
6 |
+
- trl
|
7 |
+
- sft
|
8 |
+
- generated_from_trainer
|
9 |
+
model-index:
|
10 |
+
- name: Llama-3.2-1B-Instruct-SchemaLinking-v1
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# Llama-3.2-1B-Instruct-SchemaLinking-v1
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the None dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.0956
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0001
|
41 |
+
- train_batch_size: 1
|
42 |
+
- eval_batch_size: 1
|
43 |
+
- seed: 14
|
44 |
+
- gradient_accumulation_steps: 8
|
45 |
+
- total_train_batch_size: 8
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: cosine
|
48 |
+
- lr_scheduler_warmup_ratio: 0.03
|
49 |
+
- num_epochs: 5
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
55 |
+
|:-------------:|:------:|:----:|:---------------:|
|
56 |
+
| 0.3641 | 0.4668 | 500 | 0.1527 |
|
57 |
+
| 0.1066 | 0.9336 | 1000 | 0.1083 |
|
58 |
+
| 0.0794 | 1.4004 | 1500 | 0.0963 |
|
59 |
+
| 0.0739 | 1.8672 | 2000 | 0.0872 |
|
60 |
+
| 0.058 | 2.3341 | 2500 | 0.0910 |
|
61 |
+
| 0.057 | 2.8009 | 3000 | 0.0859 |
|
62 |
+
| 0.0432 | 3.2678 | 3500 | 0.0895 |
|
63 |
+
| 0.0452 | 3.7346 | 4000 | 0.0890 |
|
64 |
+
| 0.0406 | 4.2014 | 4500 | 0.0944 |
|
65 |
+
| 0.0363 | 4.6682 | 5000 | 0.0956 |
|
66 |
+
|
67 |
+
|
68 |
+
### Framework versions
|
69 |
+
|
70 |
+
- PEFT 0.13.0
|
71 |
+
- Transformers 4.45.1
|
72 |
+
- Pytorch 2.4.1+cu121
|
73 |
+
- Datasets 3.0.1
|
74 |
+
- Tokenizers 0.20.0
|