liuh6 commited on
Commit
4652f31
·
verified ·
1 Parent(s): f7d467f

End of training

Browse files
Files changed (1) hide show
  1. README.md +5 -5
README.md CHANGED
@@ -24,7 +24,7 @@ model-index:
24
  metrics:
25
  - name: Wer
26
  type: wer
27
- value: 17.061159650516284
28
  ---
29
 
30
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -34,8 +34,8 @@ should probably proofread and complete it, then remove this comment. -->
34
 
35
  This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Chinese English dataset.
36
  It achieves the following results on the evaluation set:
37
- - Loss: 0.3605
38
- - Wer: 17.0612
39
 
40
  ## Model description
41
 
@@ -61,13 +61,13 @@ The following hyperparameters were used during training:
61
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_steps: 500
64
- - training_steps: 600
65
 
66
  ### Training results
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Wer |
69
  |:-------------:|:------:|:----:|:---------------:|:-------:|
70
- | 0.1706 | 0.6667 | 600 | 0.3605 | 17.0612 |
71
 
72
 
73
  ### Framework versions
 
24
  metrics:
25
  - name: Wer
26
  type: wer
27
+ value: 16.918189038919778
28
  ---
29
 
30
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
34
 
35
  This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Chinese English dataset.
36
  It achieves the following results on the evaluation set:
37
+ - Loss: 0.3651
38
+ - Wer: 16.9182
39
 
40
  ## Model description
41
 
 
61
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
62
  - lr_scheduler_type: linear
63
  - lr_scheduler_warmup_steps: 500
64
+ - training_steps: 400
65
 
66
  ### Training results
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Wer |
69
  |:-------------:|:------:|:----:|:---------------:|:-------:|
70
+ | 0.2244 | 0.4444 | 400 | 0.3651 | 16.9182 |
71
 
72
 
73
  ### Framework versions