File size: 19,285 Bytes
17d8554
 
 
d47609b
 
 
 
9236026
d3a0d0d
 
 
 
d6c1131
17d8554
 
5a786ce
 
17d8554
 
 
 
 
 
 
 
 
 
03d07d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17d8554
 
d47609b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17d8554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d47609b
17d8554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d47609b
17d8554
 
 
 
 
 
 
d47609b
17d8554
 
 
 
 
 
 
 
 
 
d47609b
17d8554
 
d47609b
17d8554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d47609b
 
17d8554
 
 
 
 
 
 
 
 
 
 
 
 
9236026
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
---
language: en
license: apache-2.0
base_model:
- Wan-AI/Wan2.2-T2V-A14B
- Wan-AI/Wan2.2-I2V-A14B
- Wan-AI/Wan2.2-TI2V-5B
pipeline_tag: text-to-video
tags:
- text-to-video;
- image-to-video;
- comfyUI;
- video-generation;
---

You're welcome to visit our [GitHub repository](https://github.com/ModelTC/Wan2.2-Lightning) for the latest model releases or to reproduce our results.

# Wan2.2-Lightning

<!-- [**Wan2.2-Lightning: Distill Wan2.2 Family into 4 Steps**] <be> -->


We are excited to release the distilled version of <a href="https://wan.video"><b>Wan2.2</b></a> video generation model family, which offers the following advantages:
- **Fast**: Video generation now requires only 4 steps without the need of CFG trick, leading to x20 speed-up
- **High-quality**: The distilled model delivers visuals on par with the base model in most scenarios, sometimes even better.
- **Complex Motion Generation**: Despite the reduction to just 4 steps, the model retains excellent motion dynamics in the generated scenes.


## 🔥 Latest News!!

* Aug 08, 2025: 👋 Release of Native ComfyUI Workflows.

 <!-- and [lora weights](https://hf-mirror.com/lightx2v/Wan2.2-Lightning/tree/main) for the `Wan2.2-Lightning` models! -->

 <!-- Choose one of These new [weights](https://hf-mirror.com/lightx2v/Wan2.2-Lightning/tree/main) are also compatible with [Kijai's ComfyUI WanVideoWrapper](https://github.com/kijai/ComfyUI-WanVideoWrapper). -->

<table align="center">
  <thead>
    <tr>
      <th>Model</th>
      <th>Type</th>
      <th>For Native Comfy</th>
      <th>For Kijai's Wrapper</th>
    </tr>
  </thead>
  <tbody>
    <tr>
      <td><b>Wan2.2-I2V-A14B-NFE4-V1</b></td>
      <td>Image-to-Video</td>
      <td><a href="https://huggingface.co/lightx2v/Wan2.2-Lightning/blob/main/Wan2.2-I2V-A14B-4steps-lora-rank64-Seko-V1/Wan2.2-I2V-A14B-4steps-lora-rank64-Seko-V1-NativeComfy.json">I2V-V1-WF</a></td>
      <td><a href="https://huggingface.co/lightx2v/Wan2.2-Lightning/blob/main/Wan2.2-I2V-A14B-4steps-lora-rank64-Seko-V1/Wan2.2-I2V-A14B-4steps-lora-rank64-Seko-V1-forKJ.json">I2V-V1-WF</a></td>
    </tr>
    <tr>
      <td><b>Wan2.2-T2V-A14B-NFE4-V1.1</b></td>
      <td>Text-to-Video</td>
      <td><a href="https://huggingface.co/lightx2v/Wan2.2-Lightning/blob/main/Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1.1/Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1.1-NativeComfy.json">T2V-V1.1-WF</a></td>
      <td><a href="https://huggingface.co/lightx2v/Wan2.2-Lightning/blob/main/Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1.1/Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1.1-forKJ.json">T2V-V1.1-WF</a></td>
    </tr>
    <!-- <tr>
      <td><b>Wan2.2-T2V-A14B-NFE4-V1</b></td>
      <td>Text-to-Video</td>
      <td><a href="https://hf-mirror/lightx2v/Wan2.2-Lightning/blob/main/Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1/Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1-NativeComfy.json">Workflow</a></td>
    </tr> -->
  </tbody>
</table>

* Aug 07, 2025: 👋 Release of [Wan2.2-I2V-A14B-NFE4-V1](https://huggingface.co/lightx2v/Wan2.2-Lightning/tree/main/Wan2.2-I2V-A14B-4steps-lora-rank64-Seko-V1).
 <!-- A [workflow](https://hf-mirror.com/lightx2v/Wan2.2-Lightning/blob/main/Wan2.2-I2V-A14B-4steps-lora-rank64-Seko-V1/Wan2.2-I2V-A14B-4steps-lora-rank64-Seko-V1-forKJ.json) compatible with [Kijai's ComfyUI WanVideoWrapper](https://github.com/kijai/ComfyUI-WanVideoWrapper) is inside this link. Enjoy! -->
* Aug 07, 2025: 👋 Release of [Wan2.2-T2V-A14B-NFE4-V1.1](https://huggingface.co/lightx2v/Wan2.2-Lightning/tree/main/Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1.1). The generation quality of V1.1 is slightly better than V1.
<!-- A [workflow](https://hf-mirror.com/lightx2v/Wan2.2-Lightning/blob/main/Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1.1/Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1.1-forKJ.json) compatible with [Kijai's ComfyUI WanVideoWrapper](https://github.com/kijai/ComfyUI-WanVideoWrapper) is inside this link. The generation quality of V1.1 is slightly better than V1. Enjoy! -->
* Aug 04, 2025: 👋 Release of [Wan2.2-T2V-A14B-NFE4-V1](https://huggingface.co/lightx2v/Wan2.2-Lightning/tree/main/Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1).

## Video Demos
### Wan2.2-I2V-A14B-NFE4-V1 Demo

The videos below can be reproduced using [examples/i2v_prompt_list.txt](examples/i2v_prompt_list.txt) and [examples/i2v_image_path_list.txt](examples/i2v_image_path_list.txt).

<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
  <tr>
      <td>
          <video src="https://github.com/user-attachments/assets/4f6bb1e0-9e2b-4eb2-8b9f-0678ccd5b4ec" width="100%" controls loop></video>
      </td>
      <td>
          <video src="https://github.com/user-attachments/assets/bb249553-3f52-40b3-88f9-6e3bca1a8358" width="100%" controls loop></video>
      </td>
       <td>
          <video src="https://github.com/user-attachments/assets/17a6d26a-dd63-47ef-9a98-1502f503dfba" width="100%" controls loop></video>
     </td>
  </tr>
  <tr>
      <td>
          <video src="https://github.com/user-attachments/assets/6ccc69cf-e129-456f-8b93-6dc709cb0ede" width="100%" controls loop></video>
      </td>
      <td>
          <video src="https://github.com/user-attachments/assets/6cf9c586-f37a-47ed-ab5b-e106c3877fa8" width="100%" controls loop></video>
      </td>
       <td>
          <video src="https://github.com/user-attachments/assets/27e82fdf-88af-44ac-b987-b48aa3f9f793" width="100%" controls loop></video>
     </td>
  </tr>
  <tr>
      <td>
          <video src="https://github.com/user-attachments/assets/36a76f1d-2b64-4b16-a862-210d0ffd6d55" width="100%" controls loop></video>
      </td>
      <td>
          <video src="https://github.com/user-attachments/assets/4bc36c70-931e-4539-be8c-432d832819d3" width="100%" controls loop></video>
      </td>
       <td>
          <video src="https://github.com/user-attachments/assets/488b9179-741b-4b9d-8f23-895981f054cb" width="100%" controls loop></video>
     </td>
  </tr>
</table>

### Wan2.2-T2V-A14B-NFE4-V1 Demo

The videos below can be reproduced using [examples/prompt_list.txt](examples/prompt_list.txt).

<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
  <tr>
      <td>
          <video src="https://github.com/user-attachments/assets/ae791fbb-ef4a-4f72-989a-2ac862883201" width="100%" controls loop></video>
      </td>
      <td>
          <video src="https://github.com/user-attachments/assets/f8083a50-25a0-42a8-9cd1-635f99588b19" width="100%" controls loop></video>
      </td>
       <td>
          <video src="https://github.com/user-attachments/assets/5f15826b-b07b-49a2-a522-f2caea0adc60" width="100%" controls loop></video>
     </td>
  </tr>
  <tr>
      <td>
          <video src="https://github.com/user-attachments/assets/9e48c7c2-f1a1-4d94-ade0-11e1aa913cb7" width="100%" controls loop></video>
      </td>
      <td>
          <video src="https://github.com/user-attachments/assets/45ae83df-af1e-4506-b00e-7d413a0dfa51" width="100%" controls loop></video>
      </td>
       <td>
          <video src="https://github.com/user-attachments/assets/554dd476-d9c1-49df-b6e1-d129113cb2be" width="100%" controls loop></video>
     </td>
  </tr>
  <tr>
      <td>
          <video src="https://github.com/user-attachments/assets/f22b8c0f-9e40-418d-8cd5-153da3678093" width="100%" controls loop></video>
      </td>
      <td>
          <video src="https://github.com/user-attachments/assets/2fc03af0-7c76-48e5-ab12-fc222164ec64" width="100%" controls loop></video>
      </td>
       <td>
          <video src="https://github.com/user-attachments/assets/a8d07ae6-f037-4518-9b13-4a6702a3e0ae" width="100%" controls loop></video>
     </td>
  </tr>
</table>

### Wan2.2-T2V-A14B-NFE4 Limitation

When the video contains elements with extremely large motion, the generated results may include artifacts.
In some results, the direction of the vehicles may be reversed.

<table border="0" style="width: 100%; text-align: left; margin-top: 20px;">
  <tr>
      <td>
          <video src="https://github.com/user-attachments/assets/db8f4240-7feb-4b95-8851-c52220ece9dc" width="100%" controls loop></video>
      </td>
      <td>
          <video src="https://github.com/user-attachments/assets/43820463-22e0-41aa-a446-e0f130ef80d0" width="100%" controls loop></video>
      </td>
       <td>
          <video src="https://github.com/user-attachments/assets/8a0580eb-2b35-4548-abcb-45fc0df12ff0" width="100%" controls loop></video>
     </td>
  </tr>
</table>



## 📑 Todo List
- [x] Wan2.2-T2V-A14B-4steps
- [x] Wan2.2-I2V-A14B-4steps
- [ ] Wan2.2-TI2V-5B-4steps

## 🚀 Run Wan2.2-Lightning

#### Installation

Please follow [Wan2.2 Official Github](https://github.com/Wan-Video/Wan2.2/) to install the **Python Environment** and download the **Base Model**.

#### Model Download

Download models using huggingface-cli:
``` sh
pip install "huggingface_hub[cli]"
huggingface-cli download Wan-AI/Wan2.2-T2V-A14B --local-dir ./Wan2.2-T2V-A14B
huggingface-cli download lightx2v/Wan2.2-Lightning --local-dir ./Wan2.2-Lightning
```

#### Run Text-to-Video Generation

This repository supports the `Wan2.2-T2V-A14B` Text-to-Video model and can simultaneously support video generation at 480P and 720P resolutions, either portrait or landscape.


##### (1) Without Prompt Extension

To facilitate implementation, we will start with a basic version of the inference process that skips the [prompt extension](#2-using-prompt-extention) step.

- Single-GPU, Single-prompt inference

``` sh
python generate.py  --task t2v-A14B --size "1280*720" --ckpt_dir ./Wan2.2-T2V-A14B --lora_dir ./Wan2.2-Lightning/Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1 --offload_model True --base_seed 42 --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage."
```

- Single-GPU, Multiple-prompt inference
``` sh
python generate.py  --task t2v-A14B --size "1280*720" --ckpt_dir ./Wan2.2-T2V-A14B --lora_dir ./Wan2.2-Lightning/Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1 --offload_model True --base_seed 42 --prompt_file examples/prompt_list.txt
```

> 💡 This command can run on a GPU with at least 80GB VRAM.

> 💡If you encounter OOM (Out-of-Memory) issues, you can use the `--offload_model True`, `--convert_model_dtype` and `--t5_cpu` options to reduce GPU memory usage.


- Multi-GPU inference using FSDP + DeepSpeed Ulysses

  We use [PyTorch FSDP](https://docs.pytorch.org/docs/stable/fsdp.html) and [DeepSpeed Ulysses](https://arxiv.org/abs/2309.14509) to accelerate inference.


``` sh
torchrun --nproc_per_node=8 generate.py --task t2v-A14B --size "1280*720" --ckpt_dir ./Wan2.2-T2V-A14B --lora_dir ./Wan2.2-Lightning/Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1 --dit_fsdp --t5_fsdp --ulysses_size 8 --base_seed 42 --prompt_file examples/prompt_list.txt
```


##### (2) Using Prompt Extension

Extending the prompts can effectively enrich the details in the generated videos, further enhancing the video quality. Therefore, we recommend enabling prompt extension. We provide the following two methods for prompt extension:

- Use the Dashscope API for extension.
  - Apply for a `dashscope.api_key` in advance ([EN](https://www.alibabacloud.com/help/en/model-studio/getting-started/first-api-call-to-qwen) | [CN](https://help.aliyun.com/zh/model-studio/getting-started/first-api-call-to-qwen)).
  - Configure the environment variable `DASH_API_KEY` to specify the Dashscope API key. For users of Alibaba Cloud's international site, you also need to set the environment variable `DASH_API_URL` to 'https://dashscope-intl.aliyuncs.com/api/v1'. For more detailed instructions, please refer to the [dashscope document](https://www.alibabacloud.com/help/en/model-studio/developer-reference/use-qwen-by-calling-api?spm=a2c63.p38356.0.i1).
  - Use the `qwen-plus` model for text-to-video tasks and `qwen-vl-max` for image-to-video tasks.
  - You can modify the model used for extension with the parameter `--prompt_extend_model`. For example:
```sh
DASH_API_KEY=your_key torchrun --nproc_per_node=8 generate.py  --task t2v-A14B --size 1280*720 --ckpt_dir ./Wan2.2-T2V-A14B --lora_dir ./Wan2.2-Lightning/Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1 --dit_fsdp --t5_fsdp --ulysses_size 8 --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage" --use_prompt_extend --prompt_extend_method 'dashscope' --prompt_extend_target_lang 'zh'
```

- Using a local model for extension.

  - By default, the Qwen model on HuggingFace is used for this extension. Users can choose Qwen models or other models based on the available GPU memory size.
  - For text-to-video tasks, you can use models like `Qwen/Qwen2.5-14B-Instruct`, `Qwen/Qwen2.5-7B-Instruct` and `Qwen/Qwen2.5-3B-Instruct`.
  - For image-to-video tasks, you can use models like `Qwen/Qwen2.5-VL-7B-Instruct` and `Qwen/Qwen2.5-VL-3B-Instruct`.
  - Larger models generally provide better extension results but require more GPU memory.
  - You can modify the model used for extension with the parameter `--prompt_extend_model` , allowing you to specify either a local model path or a Hugging Face model. For example:

``` sh
torchrun --nproc_per_node=8 generate.py  --task t2v-A14B --size 1280*720 --ckpt_dir ./Wan2.2-T2V-A14B --lora_dir ./Wan2.2-Lightning/Wan2.2-T2V-A14B-4steps-lora-rank64-Seko-V1 --dit_fsdp --t5_fsdp --ulysses_size 8 --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage" --use_prompt_extend --prompt_extend_method 'local_qwen' --prompt_extend_target_lang 'zh'
```


#### Run Image-to-Video Generation

This repository supports the `Wan2.2-I2V-A14B` Image-to-Video model and can simultaneously support video generation at 480P and 720P resolutions.


- Single-GPU inference
```sh
python generate.py  --task i2v-A14B  --size "1280*720" --ckpt_dir ./Wan2.2-I2V-A14B --lora_dir ./Wan2.2-Lightning/Wan2.2-I2V-A14B-4steps-lora-rank64-Seko-V1 --offload_model True --base_seed 42 --prompt_file examples/i2v_prompt_list.txt --image_path_file examples/i2v_image_path_list.txt
```

> This command can run on a GPU with at least 80GB VRAM.

> 💡For the Image-to-Video task, the `size` parameter represents the area of the generated video, with the aspect ratio following that of the original input image.


- Multi-GPU inference using FSDP + DeepSpeed Ulysses

```sh
torchrun --nproc_per_node=8 generate.py --task i2v-A14B --size 1280*720 --ckpt_dir ./Wan2.2-I2V-A14B --lora_dir ./Wan2.2-Lightning/Wan2.2-I2V-A14B-4steps-lora-rank64-Seko-V1 --dit_fsdp --t5_fsdp --ulysses_size 8 --base_seed 42 --prompt_file examples/i2v_prompt_list.txt --image_path_file examples/i2v_image_path_list.txt
```

<!-- 
- Image-to-Video Generation without prompt

```sh
DASH_API_KEY=your_key torchrun --nproc_per_node=8 generate.py --task i2v-A14B --size 1280*720 --ckpt_dir ./Wan2.2-I2V-A14B --prompt '' --image examples/i2v_input.JPG --dit_fsdp --t5_fsdp --ulysses_size 8 --use_prompt_extend --prompt_extend_method 'dashscope'
```

> 💡The model can generate videos solely from the input image. You can use prompt extension to generate prompt from the image.

> The process of prompt extension can be referenced [here](#2-using-prompt-extention).

#### Run Text-Image-to-Video Generation

This repository supports the `Wan2.2-TI2V-5B` Text-Image-to-Video model and can support video generation at 720P resolutions.


- Single-GPU Text-to-Video inference
```sh
python generate.py --task ti2v-5B --size 1280*704 --ckpt_dir ./Wan2.2-TI2V-5B --offload_model True --convert_model_dtype --t5_cpu --prompt "Two anthropomorphic cats in comfy boxing gear and bright gloves fight intensely on a spotlighted stage"
```

> 💡Unlike other tasks, the 720P resolution of the Text-Image-to-Video task is `1280*704` or `704*1280`.

> This command can run on a GPU with at least 24GB VRAM (e.g, RTX 4090 GPU).

> 💡If you are running on a GPU with at least 80GB VRAM, you can remove the `--offload_model True`, `--convert_model_dtype` and `--t5_cpu` options to speed up execution.


- Single-GPU Image-to-Video inference
```sh
python generate.py --task ti2v-5B --size 1280*704 --ckpt_dir ./Wan2.2-TI2V-5B --offload_model True --convert_model_dtype --t5_cpu --image examples/i2v_input.JPG --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
```

> 💡If the image parameter is configured, it is an Image-to-Video generation; otherwise, it defaults to a Text-to-Video generation.

> 💡Similar to Image-to-Video, the `size` parameter represents the area of the generated video, with the aspect ratio following that of the original input image.


- Multi-GPU inference using FSDP + DeepSpeed Ulysses

```sh
torchrun --nproc_per_node=8 generate.py --task ti2v-5B --size 1280*704 --ckpt_dir ./Wan2.2-TI2V-5B --dit_fsdp --t5_fsdp --ulysses_size 8 --image examples/i2v_input.JPG --prompt "Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside."
```

> The process of prompt extension can be referenced [here](#2-using-prompt-extension). 
-->



## License Agreement
The models in this repository are licensed under the Apache 2.0 License. We claim no rights over the your generated contents, granting you the freedom to use them while ensuring that your usage complies with the provisions of this license. You are fully accountable for your use of the models, which must not involve sharing any content that violates applicable laws, causes harm to individuals or groups, disseminates personal information intended for harm, spreads misinformation, or targets vulnerable populations. For a complete list of restrictions and details regarding your rights, please refer to the full text of the [license](LICENSE.txt).


## Acknowledgements

We built upon and reused code from the following projects: [Wan2.1](https://github.com/Wan-Video/Wan2.1), [Wan2.2](https://github.com/Wan-Video/Wan2.2), licensed under the Apache License 2.0. 

We also adopt the evaluation text prompts from [Movie Gen Bench](https://github.com/facebookresearch/MovieGenBench), which is licensed under the Creative Commons Attribution-NonCommercial 4.0 (CC BY-NC 4.0) License. The original license can be found [here](https://github.com/facebookresearch/MovieGenBench/blob/main/LICENSE).

The selected prompts are further enhanced using the `Qwen/Qwen2.5-14B-Instruct`model [Qwen](https://huggingface.co/Qwen).