File size: 18,745 Bytes
3c25b5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b331aec
 
 
 
 
 
 
 
 
 
3c25b5d
 
 
 
 
 
 
 
 
 
 
 
 
ab72aa5
3c25b5d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5038a3a
3c25b5d
 
 
 
 
 
 
ab72aa5
3c25b5d
 
 
6fb52f3
 
 
7c100c3
b33ca64
5038a3a
6fb52f3
 
 
 
 
 
 
 
 
5038a3a
6fb52f3
 
 
 
 
 
7c100c3
5038a3a
6fb52f3
 
 
 
 
 
 
 
 
5038a3a
6fb52f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5038a3a
 
 
 
 
 
 
 
6fb52f3
5038a3a
 
 
6fb52f3
5038a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
6fb52f3
 
 
 
ab72aa5
3c25b5d
 
 
5038a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ab72aa5
3c25b5d
 
5038a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c25b5d
ab72aa5
3c25b5d
 
 
5038a3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aba2714
3c25b5d
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
---
license: apache-2.0
language:
- en
pipeline_tag: text-generation
tags:
- RAG
---
# Kurage

<p align="center">
    <img src="https://cdn-uploads.huggingface.co/production/uploads/64b63f8ad57e02621dc93c8b/_SkPhhsg40juscfv9dU4v.jpeg" alt="An anime image of a pink and blue jellyfish surrounded by bubbles" width=500 style="border: 5px solid #3d3c3c"/>
</p>

Kurage is a multipurpose RAG model from [Lightblue](https://huggingface.co/lightblue).

This version of the model has been trained to perform RAG in English.

Features of these models include:

* **Multi-chunk RAG** - Performs RAG using multiple contexts at once.
* **Single-chunk RAG** - Performs RAG using one context at a time, allowing for parallel computing.
* **Answer extension** - Prompts the model to write a longer answer to a given question.
* **Multilingual RAG** - Performs RAG using contexts in languages different to the language of the question.
* **Q&A generation** - Generates questions and answers from a reference text in order to pre-index a set of texts.

Find out how to use these features below.

For models in other languages check [our Kurage collection]. A multilingual model is coming soon!

# Features / How to use

First, load the model like so:

```python
from vllm import LLM, SamplingParams

llm = LLM(model="lightblue/kurage-ja")
sampling_params = SamplingParams(temperature=1.0, top_p=0.95, max_tokens=128)
```

## Feature: Multi-chunk RAG

This model can take multiple contexts and a question as input, and it will first output the references of the relevant contexts before outputting an answer to the question.

<details>
  <summary>Prompt style</summary>

### Input: 
```markdown
<<Chunk 1>>
Junko Nakagawa, a member of the Bank of Japan's Policy Board, stated on the 11th that real interest rates are currently at an extremely low level.
She mentioned that if the BOJ's economic and price outlook materializes in the future, the degree of monetary easing would be adjusted from the perspective of achieving the price target.

<<Chunk 2>>
Japan's current account surplus in July was 3.2 trillion yen, the highest monthly surplus on record for the month of July.
However, the surplus continues to be driven by the primary income balance, which recorded a surplus of 4.4 trillion yen in July, the highest monthly figure on record.

<<Chunk 3>>
Finance Minister Shunichi Suzuki appointed Kenji Suwazono, former Director-General of the Customs and Tariff Bureau at the Ministry of Finance, as the new Executive Director of the Bank of Japan effective the 10th. Suwazono succeeds Masaaki Kaizuka, whose term ended on the 9th, and his term will last for four years.

<<Chunk 4>>
In the yen appreciation phase of August, it has become a topic in the foreign exchange market that Japanese institutional investors engaged in the largest-ever outward securities investment.

<<Question>>
What is Japan's primary income balance currently?
```

### Output: 

```markdown
<<References>>
2

<<Answer>>
4.4 trillion yen
```

</details>

<details>
  <summary>Python code</summary>

```python
contexts = [
    "Junko Nakagawa, a member of the Bank of Japan's Policy Board, stated on the 11th that real interest rates are currently at an extremely low level. She mentioned that if the BOJ's economic and price outlook materializes in the future, the degree of monetary easing would be adjusted from the perspective of achieving the price target.",
    "Japan's current account surplus in July was 3.2 trillion yen, the highest monthly surplus on record for the month of July. However, the surplus continues to be driven by the primary income balance, which recorded a surplus of 4.4 trillion yen in July, the highest monthly figure on record.",
    "Finance Minister Shunichi Suzuki appointed Kenji Suwazono, former Director-General of the Customs and Tariff Bureau at the Ministry of Finance, as the new Executive Director of the Bank of Japan effective the 10th. Suwazono succeeds Masaaki Kaizuka, whose term ended on the 9th, and his term will last for four years.",
    "In the yen appreciation phase of August, it has become a topic in the foreign exchange market that Japanese institutional investors engaged in the largest-ever outward securities investment."
]

question = "What is Japan's primary income balance currently?"

def create_rag_prompt(contexts, question):

    context_str = "\n\n".join([f"<<Chunk {i+1}>>\n{x}" for i, x in enumerate(contexts)])

    str_inputs = f"""{context_str}

    <<Question>>
    {question}"""

    chat = [
      {"role": "user", "content": str_inputs},
    ]

    return llm.llm_engine.tokenizer.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

inputs = create_rag_prompt(contexts, question)

print(inputs)

outputs = llm.generate([inputs], sampling_params)

print(outputs[0].outputs[0].text)
```

</details>


## Feature: Single-chunk RAG

This model can also take a single context and a question as input, and it will determine whether it can answer the question based on the context, outputting an answer if it can. This allows for parallel computing of multiple contexts at the same time.

<details>
  <summary>Prompt style</summary>



### Irrelevant context input: 
```markdown
<<Chunk 1>>
Junko Nakagawa, a member of the Bank of Japan's Policy Board, stated on the 11th that real interest rates are currently at an extremely low level.
She mentioned that if the BOJ's economic and price outlook materializes in the future, the degree of monetary easing would be adjusted from the perspective of achieving the price target.

<<Question>>
What is Japan's primary income balance currently?
```

### Irrelevant context output: 

```markdown
<<References>>
None
```


### Relevant context input: 
```markdown
<<Chunk 1>>
Japan's current account surplus in July was 3.2 trillion yen, the highest monthly surplus on record for the month of July.
However, the surplus continues to be driven by the primary income balance, which recorded a surplus of 4.4 trillion yen in July, the highest monthly figure on record.

<<Question>>
What is Japan's primary income balance currently?
```

### Relevant context output: 

```markdown
<<References>>
1

<<Answer>>
4.4 trillion yen
```

</details>

<details>
  <summary>Python code</summary>

```python
contexts = [
    "Junko Nakagawa, a member of the Bank of Japan's Policy Board, stated on the 11th that real interest rates are currently at an extremely low level. She mentioned that if the BOJ's economic and price outlook materializes in the future, the degree of monetary easing would be adjusted from the perspective of achieving the price target.",
    "Japan's current account surplus in July was 3.2 trillion yen, the highest monthly surplus on record for the month of July. However, the surplus continues to be driven by the primary income balance, which recorded a surplus of 4.4 trillion yen in July, the highest monthly figure on record.",
    "Finance Minister Shunichi Suzuki appointed Kenji Suwazono, former Director-General of the Customs and Tariff Bureau at the Ministry of Finance, as the new Executive Director of the Bank of Japan effective the 10th. Suwazono succeeds Masaaki Kaizuka, whose term ended on the 9th, and his term will last for four years.",
    "In the yen appreciation phase of August, it has become a topic in the foreign exchange market that Japanese institutional investors engaged in the largest-ever outward securities investment."
]

question = "What is Japan's primary income balance currently?"

def create_rag_prompt(contexts, question):

    context_str = "\n\n".join([f"<<Chunk {i+1}>>\n{x}" for i, x in enumerate(contexts)])

    str_inputs = f"""{context_str}

    <<Question>>
    {question}"""

    chat = [
      {"role": "user", "content": str_inputs},
    ]

    return llm.llm_engine.tokenizer.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

outputs = llm.generate([create_rag_prompt(x, question) for x in contexts], sampling_params)

print("\n\n".join([o.outputs[0].text for o in outputs]))
```

</details>

## Feature: Answer extension

By default, this model is trained to output the shortest possible answer to a question. However, if you require a longer answer, you can prompt the model to write a longer answer by writing " <<Long>>" after your question.

<details>
  <summary>Prompt style</summary>

### Input: 
```markdown
<<Chunk 1>>
Japan's current account surplus in July was 3.2 trillion yen, the highest monthly surplus on record for the month of July.
However, the surplus continues to be driven by the primary income balance, which recorded a surplus of 4.4 trillion yen in July, the highest monthly figure on record.

<<Question>>
What is Japan's primary income balance currently? <<Long>>
```

### Relevant context output: 

```markdown
<<References>>
1

<<Answer>>
4.4 trillion yen
```

</details>

<details>
  <summary>Python code</summary>

```python
contexts = [
    "Junko Nakagawa, a member of the Bank of Japan's Policy Board, stated on the 11th that real interest rates are currently at an extremely low level. She mentioned that if the BOJ's economic and price outlook materializes in the future, the degree of monetary easing would be adjusted from the perspective of achieving the price target.",
    "Japan's current account surplus in July was 3.2 trillion yen, the highest monthly surplus on record for the month of July. However, the surplus continues to be driven by the primary income balance, which recorded a surplus of 4.4 trillion yen in July, the highest monthly figure on record.",
    "Finance Minister Shunichi Suzuki appointed Kenji Suwazono, former Director-General of the Customs and Tariff Bureau at the Ministry of Finance, as the new Executive Director of the Bank of Japan effective the 10th. Suwazono succeeds Masaaki Kaizuka, whose term ended on the 9th, and his term will last for four years.",
    "In the yen appreciation phase of August, it has become a topic in the foreign exchange market that Japanese institutional investors engaged in the largest-ever outward securities investment."
]

question = "What is Japan's primary income balance currently? <<Long>>"

def create_rag_prompt(contexts, question):

    context_str = "\n\n".join([f"<<Chunk {i+1}>>\n{x}" for i, x in enumerate(contexts)])

    str_inputs = f"""{context_str}

    <<Question>>
    {question}"""

    chat = [
      {"role": "user", "content": str_inputs},
    ]

    return llm.llm_engine.tokenizer.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

outputs = llm.generate([create_rag_prompt(x, question) for x in contexts], sampling_params)

print("\n\n".join([o.outputs[0].text for o in outputs]))
```

</details>

## Feature: Multilinguality

We have trained our model to be able to answer questions in Japanese based on texts in other languages too!

<details>
  <summary>Prompt style</summary>

### Input: 
```markdown
<<Chunk 1>>
Junko Nakagawa, a member of the Bank of Japan's Policy Board, stated on the 11th that real interest rates are currently at an extremely low level.
She mentioned that if the BOJ's economic and price outlook materializes in the future, the degree of monetary easing would be adjusted from the perspective of achieving the price target.

<<Chunk 2>>
7月の日本の経常収支は3.2兆円の黒字となり、7月としては過去最高の黒字額を記録した。しかし、黒字に貢献しているのは相変わらず第一次所得収支の黒字で、7月は4.4兆円の黒字を記録し、1カ月の黒字額としては過去最高を記録した。

<<Chunk 3>>
รัฐมนตรีว่าการกระทรวงการคลัง ชุนอิจิ สุซูกิ ได้แต่งตั้ง เค็นจิ สุวาโซโนะ อดีตอธิบดีกรมศุลกากรและภาษีสิ่งนำเข้าแห่งกระทรวงการคลัง เป็นกรรมการบริหารธนาคารแห่งประเทศญี่ปุ่นคนใหม่ มีผลตั้งแต่วันที่ 10 สุวาโซโนะจะมาแทน มาซาอะกิ ไคซูกะ ที่พ้นวาระไปในวันที่ 9 โดยมีวาระ 4 ปี

<<Chunk 4>>
In the yen appreciation phase of August, it has become a topic in the foreign exchange market that Japanese institutional investors engaged in the largest-ever outward securities investment.

<<Question>>
What is Japan's primary income balance currently?
```

### Output: 

```markdown
<<References>>
2

<<Answer>>
4.4 trillion yen
```

</details>

<details>
  <summary>Python code</summary>

```python
contexts = [
    "Junko Nakagawa, a member of the Bank of Japan's Policy Board, stated on the 11th that real interest rates are currently at an extremely low level. She mentioned that if the BOJ's economic and price outlook materializes in the future, the degree of monetary easing would be adjusted from the perspective of achieving the price target.",
    "7月の日本の経常収支は3.2兆円の黒字となり、7月としては過去最高の黒字額を記録した。しかし、黒字に貢献しているのは相変わらず第一次所得収支の黒字で、7月は4.4兆円の黒字を記録し、1カ月の黒字額としては過去最高を記録した。",
    "รัฐมนตรีว่าการกระทรวงการคลัง ชุนอิจิ สุซูกิ ได้แต่งตั้ง เค็นจิ สุวาโซโนะ อดีตอธิบดีกรมศุลกากรและภาษีสิ่งนำเข้าแห่งกระทรวงการคลัง เป็นกรรมการบริหารธนาคารแห่งประเทศญี่ปุ่นคนใหม่ มีผลตั้งแต่วันที่ 10 สุวาโซโนะจะมาแทน มาซาอะกิ ไคซูกะ ที่พ้นวาระไปในวันที่ 9 โดยมีวาระ 4 ปี",
    "In the yen appreciation phase of August, it has become a topic in the foreign exchange market that Japanese institutional investors engaged in the largest-ever outward securities investment."
]

question = "What is Japan's primary income balance currently?"

def create_rag_prompt(contexts, question):

    context_str = "\n\n".join([f"<<Chunk {i+1}>>\n{x}" for i, x in enumerate(contexts)])

    str_inputs = f"""{context_str}

    <<Question>>
    {question}"""

    chat = [
      {"role": "user", "content": str_inputs},
    ]

    return llm.llm_engine.tokenizer.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

inputs = create_rag_prompt(contexts, question)

print(inputs)

outputs = llm.generate([inputs], sampling_params)

print(outputs[0].outputs[0].text)
```

</details>
  
## Feature: Q&A generation

This model can also generate questions and answers based on a piece of text. This can be useful for pre-indexing a database or fine-tuning IR models that will then be used for RAG.

<details>
  <summary>Prompt style</summary>

### Input: 
```markdown
<<Q&A Generation Context>>
Japan's current account surplus in July was 3.2 trillion yen, the highest monthly surplus on record for the month of July.
However, the surplus continues to be driven by the primary income balance, which recorded a surplus of 4.4 trillion yen in July, the highest monthly figure on record.
```

### Output: 

```markdown
<<Question>>
What is Japan's current account surplus in July?

<<Answer>>
3.2 trillion yen
```

</details>

<details>
  <summary>Python code</summary>

```python
contexts = [
    "Junko Nakagawa, a member of the Bank of Japan's Policy Board, stated on the 11th that real interest rates are currently at an extremely low level. She mentioned that if the BOJ's economic and price outlook materializes in the future, the degree of monetary easing would be adjusted from the perspective of achieving the price target.",
    "7月の日本の経常収支は3.2兆円の黒字となり、7月としては過去最高の黒字額を記録した。しかし、黒字に貢献しているのは相変わらず第一次所得収支の黒字で、7月は4.4兆円の黒字を記録し、1カ月の黒字額としては過去最高を記録した。",
    "รัฐมนตรีว่าการกระทรวงการคลัง ชุนอิจิ สุซูกิ ได้แต่งตั้ง เค็นจิ สุวาโซโนะ อดีตอธิบดีกรมศุลกากรและภาษีสิ่งนำเข้าแห่งกระทรวงการคลัง เป็นกรรมการบริหารธนาคารแห่งประเทศญี่ปุ่นคนใหม่ มีผลตั้งแต่วันที่ 10 สุวาโซโนะจะมาแทน มาซาอะกิ ไคซูกะ ที่พ้นวาระไปในวันที่ 9 โดยมีวาระ 4 ปี",
    "In the yen appreciation phase of August, it has become a topic in the foreign exchange market that Japanese institutional investors engaged in the largest-ever outward securities investment."
]

question = "What is Japan's primary income balance currently?"

def create_qagen_prompt(context):

    str_inputs = f"""<<Q&A Generation Context>>
{context}"""

    chat = [
      {"role": "user", "content": str_inputs},
    ]

    return llm.llm_engine.tokenizer.tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

inputs = [create_qagen_prompt(x) for x in contexts]

outputs = llm.generate(inputs, sampling_params)

print("\n\n".join([o.outputs[0].text for o in outputs]))
```

</details>
  
<br/>

# Training data

We trained on chunks sourced from the documents in [MADLAD-400](https://huggingface.co/datasets/allenai/MADLAD-400) dataset that 
had been evaluated to contain a higher amount of educational information according to a state-of-the-art LLM.

We took chunks of size 250 tokens, 500 tokens, and 1000 tokens randomly for each document.

We then used these chunks to generate questions and answers based on this text using a state-of-the-art LLM.

Finally, we selected negatives for each chunk using the similarity from the dense embeddings of the [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) model.