Upload folder using huggingface_hub
Browse files- README.md +151 -3
- config.json +77 -0
- generation_config.json +9 -0
- model.safetensors +3 -0
- preprocessor_config.json +13 -0
- special_tokens_map.json +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +50 -0
README.md
CHANGED
@@ -1,3 +1,151 @@
|
|
1 |
-
---
|
2 |
-
license: cc-by-4.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-4.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
- fr
|
6 |
+
library_name: moshi
|
7 |
+
tags:
|
8 |
+
- audio
|
9 |
+
- automatic-speech-recognition
|
10 |
+
---
|
11 |
+
# Model Card for Kyutai STT
|
12 |
+
|
13 |
+
This repo is meant to use the model with [Transformers](https://github.com/huggingface/transformers) 🤗
|
14 |
+
|
15 |
+
Install Transformers from source:
|
16 |
+
```bash
|
17 |
+
pip install git+https://github.com/huggingface/transformers
|
18 |
+
```
|
19 |
+
|
20 |
+
Inference:
|
21 |
+
```python
|
22 |
+
import torch
|
23 |
+
from datasets import load_dataset, Audio
|
24 |
+
from transformers import KyutaiSpeechToTextProcessor, KyutaiSpeechToTextForConditionalGeneration
|
25 |
+
|
26 |
+
# 1. load the model and the processor
|
27 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
28 |
+
model_id = "kyutai/stt-2.6b-en_fr-trfs"
|
29 |
+
|
30 |
+
processor = KyutaiSpeechToTextProcessor.from_pretrained(model_id)
|
31 |
+
model = KyutaiSpeechToTextForConditionalGeneration.from_pretrained(model_id, device_map=torch_device, torch_dtype="auto")
|
32 |
+
|
33 |
+
# 2. load audio samples
|
34 |
+
ds = load_dataset(
|
35 |
+
"hf-internal-testing/librispeech_asr_dummy", "clean", split="validation"
|
36 |
+
)
|
37 |
+
ds = ds.cast_column("audio", Audio(sampling_rate=24000))
|
38 |
+
|
39 |
+
# 3. prepare the model inputs
|
40 |
+
inputs = processor(
|
41 |
+
ds[0]["audio"]["array"],
|
42 |
+
)
|
43 |
+
inputs.to(torch_device)
|
44 |
+
|
45 |
+
# 4. infer the model
|
46 |
+
output_tokens = model.generate(**inputs)
|
47 |
+
|
48 |
+
# 5. decode the generated tokens
|
49 |
+
print(processor.batch_decode(output_tokens, skip_special_tokens=True))
|
50 |
+
```
|
51 |
+
|
52 |
+
Batched inference:
|
53 |
+
```python
|
54 |
+
import torch
|
55 |
+
from datasets import load_dataset, Audio
|
56 |
+
from transformers import KyutaiSpeechToTextProcessor, KyutaiSpeechToTextForConditionalGeneration
|
57 |
+
|
58 |
+
# 1. load the model and the processor
|
59 |
+
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
|
60 |
+
model_id = "kyutai/stt-2.6b-en_fr-trfs"
|
61 |
+
|
62 |
+
processor = KyutaiSpeechToTextProcessor.from_pretrained(model_id)
|
63 |
+
model = KyutaiSpeechToTextForConditionalGeneration.from_pretrained(model_id, device_map=torch_device, torch_dtype="auto")
|
64 |
+
|
65 |
+
# 2. load audio samples
|
66 |
+
ds = load_dataset(
|
67 |
+
"hf-internal-testing/librispeech_asr_dummy", "clean", split="validation"
|
68 |
+
)
|
69 |
+
ds = ds.cast_column("audio", Audio(sampling_rate=24000))
|
70 |
+
|
71 |
+
# 3. prepare the model inputs
|
72 |
+
audio_arrays = [ds[i]["audio"]["array"] for i in range(4)]
|
73 |
+
inputs = processor(audio_arrays, return_tensors="pt", padding=True)
|
74 |
+
inputs = inputs.to(torch_device)
|
75 |
+
|
76 |
+
# 4. infer the model
|
77 |
+
output_tokens = model.generate(**inputs)
|
78 |
+
|
79 |
+
# 5. decode the generated tokens
|
80 |
+
decoded_outputs = processor.batch_decode(output_tokens, skip_special_tokens=True)
|
81 |
+
for output in decoded_outputs:
|
82 |
+
print(output)
|
83 |
+
```
|
84 |
+
|
85 |
+
See also the [project page](https://kyutai.org/next/stt)
|
86 |
+
and the [GitHub repository](https://github.com/kyutai-labs/delayed-streams-modeling/).
|
87 |
+
|
88 |
+
This is a model for streaming speech-to-text (STT, also known as automatic speech recognition, ASR).
|
89 |
+
Unlike offline speech-to-text, where the model needs the entire audio to produce the transcript,
|
90 |
+
our model starts to output the transcript as soon as a few seconds of audio become available.
|
91 |
+
|
92 |
+
## Model Details
|
93 |
+
|
94 |
+
The model architecture is a Transformer that consumes audio tokenized by Mimi (see [the Moshi paper](https://arxiv.org/abs/2410.00037)) and outputs text tokens.
|
95 |
+
The frame rate is 12.5 Hz and each audio frame is represented by 32 audio tokens.
|
96 |
+
|
97 |
+
We release two models:
|
98 |
+
- `kyutai/stt-1b-en_fr`, an English and French model with ~1B parameters, a 0.5 second delay, and a [semantic VAD](https://kyutai.org/next/stt#semantic-vad).
|
99 |
+
- `kyutai/stt-2.6b-en`, an English-only model with ~2.6B parameters and a 2.5 second delay.
|
100 |
+
|
101 |
+
## Model Description
|
102 |
+
|
103 |
+
Kyutai STT is a decoder-only model for streaming speech-to-text.
|
104 |
+
It leverages the multistream architecture of [Moshi](https://moshi.chat/) to model text stream based on the speech stream.
|
105 |
+
The text stream is shifted w.r.t. the audio stream to allow the model to predict text tokens based on the input audio.
|
106 |
+
|
107 |
+
* Developed by: Kyutai
|
108 |
+
* Model type: Streaming Speech-to-Text transcription.
|
109 |
+
* Language(s) (NLP): English and French for `kyutai/stt-1b-en_fr`, English for `kyutai/stt-2.6b-en`
|
110 |
+
* License: Model weights are licensed under CC-BY 4.0
|
111 |
+
* Repository: [GitHub](https://github.com/kyutai-labs/delayed-streams-modeling/)
|
112 |
+
|
113 |
+
## Uses
|
114 |
+
|
115 |
+
### Direct Use
|
116 |
+
|
117 |
+
The model can be used for streaming speech-to-text.
|
118 |
+
It is robust to noisy conditions and was found to perform well with audio as long as 2 hours with no additonal changes.
|
119 |
+
The model produces transcripts with capitalization and punctuation.
|
120 |
+
The predicted text token timestamps can be recovered by subtracting the model's text stream offset (0.5 or 2.5 seconds) from the frame's offset.
|
121 |
+
|
122 |
+
## How to Get Started with the Model
|
123 |
+
|
124 |
+
See the [GitHub repository](https://github.com/kyutai-labs/delayed-streams-modeling/).
|
125 |
+
|
126 |
+
## Training Details
|
127 |
+
|
128 |
+
### Training Data
|
129 |
+
|
130 |
+
Pretraining stage: For both `kyutai/stt-2.6b-en` and `kyutai/stt-1b-en_fr`, we use an audio collection of 2.5 million hours of publicly available audio content.
|
131 |
+
For this dataset, we obtained synthetic transcripts by running [whisper-timestamped](https://github.com/linto-ai/whisper-timestamped).
|
132 |
+
|
133 |
+
For `kyutai/stt-2.6b-en`:
|
134 |
+
|
135 |
+
- Finetuning stage: We then finetune the model on a collection of public datasets with
|
136 |
+
ground-truth transcripts. This dataset contains 24000 hours of audio.
|
137 |
+
|
138 |
+
- Long-form finetuning stage: Finally, we finetune the model on a combination of data from the previous stage and long-form audio.
|
139 |
+
The long-form audio is obtained from two sources: (a) concatenating LibriSpeech examples (1000 hours), (b) synthesizing dialogs (22000 hours).
|
140 |
+
|
141 |
+
For `kyutai/stt-1b-en_fr`:
|
142 |
+
|
143 |
+
- Finetuning stage: We finetune on the Fisher dataset of 2000 hours of English audio, plus proprietary data (1000 hours in English, 600 hours in French).
|
144 |
+
|
145 |
+
### Compute Infrastructure
|
146 |
+
|
147 |
+
Pretraining and finetuning was done with 48 and 16 H100 Nvidia GPUs, respectively.
|
148 |
+
|
149 |
+
## Model Card Authors
|
150 |
+
|
151 |
+
Neil Zeghidour, Eugene Kharitonov, Manu Orsini, Václav Volhejn, Gabriel de Marmiesse, Edouard Grave, Patrick Perez, Laurent Mazaré, Alexandre Défossez
|
config.json
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"KyutaiSpeechToTextForConditionalGeneration"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"audio_bos_token_id": 2048,
|
7 |
+
"audio_pad_token_id": 69569,
|
8 |
+
"bos_token_id": 48000,
|
9 |
+
"codebook_vocab_size": 2049,
|
10 |
+
"codec_config": {
|
11 |
+
"_frame_rate": null,
|
12 |
+
"attention_bias": false,
|
13 |
+
"attention_dropout": 0.0,
|
14 |
+
"audio_channels": 1,
|
15 |
+
"codebook_dim": 256,
|
16 |
+
"codebook_size": 2048,
|
17 |
+
"compress": 2,
|
18 |
+
"dilation_growth_rate": 2,
|
19 |
+
"head_dim": 64,
|
20 |
+
"hidden_act": "gelu",
|
21 |
+
"hidden_size": 512,
|
22 |
+
"initializer_range": 0.02,
|
23 |
+
"intermediate_size": 2048,
|
24 |
+
"kernel_size": 7,
|
25 |
+
"last_kernel_size": 3,
|
26 |
+
"layer_scale_initial_scale": 0.01,
|
27 |
+
"max_position_embeddings": 8000,
|
28 |
+
"model_type": "mimi",
|
29 |
+
"norm_eps": 1e-05,
|
30 |
+
"num_attention_heads": 8,
|
31 |
+
"num_filters": 64,
|
32 |
+
"num_hidden_layers": 8,
|
33 |
+
"num_key_value_heads": 8,
|
34 |
+
"num_quantizers": 32,
|
35 |
+
"num_residual_layers": 1,
|
36 |
+
"num_semantic_quantizers": 1,
|
37 |
+
"pad_mode": "constant",
|
38 |
+
"residual_kernel_size": 3,
|
39 |
+
"rope_theta": 10000.0,
|
40 |
+
"sampling_rate": 24000,
|
41 |
+
"sliding_window": 250,
|
42 |
+
"trim_right_ratio": 1.0,
|
43 |
+
"upsample_groups": 512,
|
44 |
+
"upsampling_ratios": [
|
45 |
+
8,
|
46 |
+
6,
|
47 |
+
5,
|
48 |
+
4
|
49 |
+
],
|
50 |
+
"use_cache": false,
|
51 |
+
"use_causal_conv": true,
|
52 |
+
"use_conv_shortcut": false,
|
53 |
+
"use_streaming": false,
|
54 |
+
"vector_quantization_hidden_dimension": 256
|
55 |
+
},
|
56 |
+
"ffn_dim": 11264,
|
57 |
+
"frame_size": 1920,
|
58 |
+
"head_dim": 128,
|
59 |
+
"hidden_act": "silu",
|
60 |
+
"hidden_size": 2048,
|
61 |
+
"initializer_range": 0.02,
|
62 |
+
"max_position_embeddings": 375,
|
63 |
+
"model_type": "kyutai_speech_to_text",
|
64 |
+
"num_attention_heads": 16,
|
65 |
+
"num_codebooks": 32,
|
66 |
+
"num_hidden_layers": 16,
|
67 |
+
"num_key_value_heads": 16,
|
68 |
+
"pad_token_id": 3,
|
69 |
+
"rms_norm_eps": 1e-08,
|
70 |
+
"rope_theta": 100000.0,
|
71 |
+
"sliding_window": 375,
|
72 |
+
"tie_word_embeddings": false,
|
73 |
+
"torch_dtype": "bfloat16",
|
74 |
+
"transformers_version": "4.53.0.dev0",
|
75 |
+
"use_cache": true,
|
76 |
+
"vocab_size": 8001
|
77 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"audio_window_size": 1,
|
3 |
+
"bos_token_id": 48000,
|
4 |
+
"cache_implementation": "sliding_window",
|
5 |
+
"codec_cache_implementation": "sliding_window",
|
6 |
+
"codec_use_cache": true,
|
7 |
+
"pad_token_id": 3,
|
8 |
+
"transformers_version": "4.53.0.dev0"
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59a6da960020ea4e1436118c63d7cd73f013e0c62466de12d7ad4b64454fd035
|
3 |
+
size 2697201444
|
preprocessor_config.json
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"audio_delay_seconds": 0.5,
|
3 |
+
"audio_silence_prefix_seconds": 0.0,
|
4 |
+
"chunk_length_s": null,
|
5 |
+
"feature_extractor_type": "KyutaiSpeechToTextFeatureExtractor",
|
6 |
+
"feature_size": 1,
|
7 |
+
"overlap": null,
|
8 |
+
"padding_side": "right",
|
9 |
+
"padding_value": 0.0,
|
10 |
+
"processor_class": "KyutaiSpeechToTextProcessor",
|
11 |
+
"return_attention_mask": true,
|
12 |
+
"sampling_rate": 24000
|
13 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"unk_token": "<unk>"
|
3 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<unk>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<s>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<pad>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
}
|
35 |
+
},
|
36 |
+
"bos_token_id": null,
|
37 |
+
"chat_template": null,
|
38 |
+
"clean_up_tokenization_spaces": false,
|
39 |
+
"eos_token_id": null,
|
40 |
+
"extra_special_tokens": {},
|
41 |
+
"model_input_names": [
|
42 |
+
"input_ids",
|
43 |
+
"attention_mask"
|
44 |
+
],
|
45 |
+
"model_max_length": 1000000000000000019884624838656,
|
46 |
+
"pad_token_id": null,
|
47 |
+
"processor_class": "KyutaiSpeechToTextProcessor",
|
48 |
+
"tokenizer_class": "PreTrainedTokenizerFast",
|
49 |
+
"unk_token": "<unk>"
|
50 |
+
}
|