File size: 4,368 Bytes
f5e3aca 6fe8a44 f5e3aca 6fe8a44 f5e3aca 6fe8a44 f5e3aca 6fe8a44 f5e3aca 26d1ae9 0de4349 dd17218 f5e3aca 0de4349 f5e3aca 6fe8a44 f5e3aca 0de4349 4116090 6fe8a44 f5e3aca 6fe8a44 f5e3aca 6fe8a44 f5e3aca 6fe8a44 f5e3aca 4116090 c943a29 6fe8a44 f5e3aca 6fe8a44 2c8bf87 6fe8a44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
---
library_name: transformers
license: apache-2.0
datasets:
- kurakurai/luth-sft
language:
- fr
- en
base_model:
- Qwen/Qwen3-1.7B
pipeline_tag: text-generation
---

# Luth-1.7B-Instruct
**Luth-1.7B-Instruct** is a French fine-tuned version of [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B), trained on the [Luth-SFT](https://huggingface.co/datasets/kurakurai/luth-sft) dataset. The model has drastically improved its French capabilities in instruction following, math, and general knowledge. Additionally, its English capabilities have remained stable and have even increased in some areas.
Our Evaluation, training and data scripts are available on [GitHub](https://github.com/kurakurai/Luth), along with the [Blog](https://huggingface.co/blog/MaxLSB/luth) we wrote.

## Model Details
Luth was trained using full fine-tuning on the Luth-SFT dataset with [Axolotl](https://github.com/axolotl-ai-cloud/axolotl). The resulting model was then merged with the base Qwen3-1.7B model. This process successfully retained the model's English capabilities while improving its performance on most selected benchmarks in both French and English.
## Benchmark Results
We used LightEval for evaluation, with custom tasks for the French benchmarks. The models were evaluated with a `temperature=0`.
### Evaluation Visualizations
**French Evaluation:**

**English Evaluation:**

### French Benchmark Scores
| Benchmark | Qwen3-1.7B | SmolLM2-1.7B-Instruct | Qwen2.5-1.5B-Instruct | Luth-1.7B-Instruct |
|-------------------|------------------|-----------------------|-----------------------|----------------------|
| ifeval-fr | 54.53 | 31.24 | 32.90 | <u>57.67</u> |
| gpqa-diamond-fr | 26.90 | 21.83 | 28.93 | <u>38.58</u> |
| mmlu-fr | 28.46 | 33.73 | 46.25 | <u>49.66</u> |
| math-500-fr | 60.80 | 11.20 | 32.20 | <u>64.00</u> |
| arc-chall-fr | 33.28 | 28.57 | 32.68 | <u>35.16</u> |
| hellaswag-fr | 24.86 | <u>49.58</u> | 34.34 | 31.93 |
### English Benchmark Scores
| Benchmark | Qwen3-1.7B | SmolLM2-1.7B-Instruct | Qwen2.5-1.5B-Instruct | Luth-1.7B-Instruct |
|-------------------|------------------|-----------------------|-----------------------|----------------------|
| ifeval-en | <u>68.39</u> | 48.24 | 39.93 | 65.80 |
| gpqa-diamond-en | <u>31.82</u> | 24.75 | 30.30 | 31.82 |
| mmlu-en | 52.74 | 50.27 | 59.81 | <u>60.19</u> |
| math-500-en | 69.20 | 22.40 | 56.00 | <u>70.00</u> |
| arc-chall-en | 36.09 | 42.32 | 41.04 | <u>42.24</u> |
| hellaswag-en | 46.96 | <u>66.94</u> | 64.48 | 58.55 |
## Code Example
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("kurakurai/Luth-1.7B-Instruct")
model = AutoModelForCausalLM.from_pretrained("kurakurai/Luth-1.7B-Instruct")
messages = [
{"role": "user", "content": "Quelle est la capitale de la France?"},
]
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt",
).to(model.device)
outputs = model.generate(**inputs, max_new_tokens=100)
print(
tokenizer.decode(
outputs[0][inputs["input_ids"].shape[-1] :], skip_special_tokens=True
)
)
```
## Citation
```bibtex
@misc{luth2025kurakurai,
title = {Luth-1.7B-Instruct},
author = {Kurakura AI Team},
year = {2025},
howpublished = {\url{https://huggingface.co/kurakurai/Luth-1.7B-Instruct}},
note = {Qwen3-1.7B fine-tuned on French datasets}
}
```
|