File size: 1,694 Bytes
f5e3aca 6fe8a44 f5e3aca 6fe8a44 f5e3aca 6fe8a44 f5e3aca 6fe8a44 f5e3aca 6fe8a44 f5e3aca 0de4349 f5e3aca 0de4349 f5e3aca 6fe8a44 f5e3aca 0de4349 6fe8a44 f5e3aca 6fe8a44 f5e3aca 6fe8a44 f5e3aca 6fe8a44 f5e3aca 6fe8a44 f5e3aca 6fe8a44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
---
library_name: transformers
license: apache-2.0
datasets:
- kurakurai/luth-sft
language:
- fr
- en
base_model:
- Qwen/Qwen3-1.7B
pipeline_tag: text-generation
---

---
# Luth-1.7B-Instruct
**Luth-1.7B-Instruct** is a French fine-tuned version of [Qwen3-1.7B](https://huggingface.co/Qwen/Qwen3-1.7B), trained on the [Luth-SFT](https://huggingface.co/datasets/kurakurai/luth-sft) dataset. The model has drastically improved its French capabilities in instruction following, math, and general knowledge. Additionally, its English capabilities have remained stable and have even increased in some areas.
Our Evaluation, training and data scripts are available on [GitHub](https://github.com/kurakurai/Luth).
## Model Details
Luth was trained using full fine-tuning on the Luth-SFT dataset with [Axolotl](https://github.com/axolotl-ai-cloud/axolotl). The resulting model was then merged with the base Qwen3-1.7B model. This process successfully retained the model's English capabilities while improving its performance on most selected benchmarks in both French and English.
## Benchmark Results
We used LightEval for evaluation, with custom tasks for the French benchmarks. The models were evaluated with a `temperature=0`.
**French Evaluation:**

**English Evaluation:**

## Citation
```bibtex
@misc{luth2025kurakurai,
title = {Luth-1.7B-Instruct},
author = {Kurakura AI Team},
year = {2025},
howpublished = {\url{https://huggingface.co/kurakurai/Luth-0.6B}},
note = {Qwen3-1.7B fine-tuned on French datasets}
}
```
|