File size: 10,068 Bytes
b4740c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
# Multi-Model Orchestrator: Parent-Child LLM System

A sophisticated multi-model orchestration system that manages parent-child LLM relationships, specifically integrating the [CLIP-GPT2 Image Captioner](https://huggingface.co/kunaliitkgp09/clip-gpt2-image-captioner) and [Flickr30k Text-to-Image](https://huggingface.co/kunaliitkgp09/flickr30k-text-to-image) models.

## 🚀 Features

### **Parent Orchestrator**
- **Intelligent Task Routing**: Automatically routes tasks to appropriate child models
- **Model Management**: Handles loading, caching, and lifecycle of child models
- **Error Handling**: Robust error handling and recovery mechanisms
- **Task History**: Comprehensive logging and monitoring of all operations
- **Async Support**: Both synchronous and asynchronous processing modes

### **Child Models**
- **CLIP-GPT2 Image Captioner**: Converts images to descriptive text captions
- **Flickr30k Text-to-Image**: Generates images from text descriptions
- **Extensible Architecture**: Easy to add new child models

### **Advanced Capabilities**
- **Multimodal Processing**: Combines multiple child models for complex tasks
- **Batch Processing**: Handle multiple tasks efficiently
- **Performance Monitoring**: Track processing times and success rates
- **Memory Management**: Efficient GPU/CPU memory usage

## 📁 Project Structure

```
├── multi_model_orchestrator.py    # Advanced orchestrator with full features
├── simple_orchestrator.py         # Simplified interface matching original code
├── multi_model_example.py         # Comprehensive examples and demonstrations
├── multi_model_requirements.txt   # Dependencies for multi-model system
└── MULTI_MODEL_README.md          # This file
```

## 🛠️ Installation

1. **Install dependencies:**
```bash
pip install -r multi_model_requirements.txt
```

2. **Verify installation:**
```python
import torch
from transformers import CLIPProcessor
from diffusers import StableDiffusionPipeline
print("All dependencies installed successfully!")
```

## 🎯 Quick Start

### **Basic Usage (Matching Original Code)**

```python
from simple_orchestrator import SimpleMultiModelOrchestrator

# Initialize orchestrator
orchestrator = SimpleMultiModelOrchestrator()
orchestrator.initialize_models()

# Generate caption from image
caption = orchestrator.generate_caption("sample_image.jpg")
print(f"Caption: {caption}")

# Generate image from text
image_path = orchestrator.generate_image("A beautiful sunset over mountains")
print(f"Generated image: {image_path}")

# Route tasks
caption = orchestrator.route_task("caption", "sample_image.jpg")
image_path = orchestrator.route_task("generate_image", "A cat on a windowsill")
```

### **Advanced Usage**

```python
from multi_model_orchestrator import MultiModelOrchestrator
import asyncio

async def main():
    # Initialize advanced orchestrator
    orchestrator = MultiModelOrchestrator()
    await orchestrator.initialize()
    
    # Multimodal processing
    results = await orchestrator.process_multimodal(
        image_path="sample_image.jpg",
        text_prompt="A serene landscape with mountains"
    )
    
    print("Results:", results)

asyncio.run(main())
```

## 🔧 Model Integration

### **Child Model 1: CLIP-GPT2 Image Captioner**
- **Model**: `kunaliitkgp09/clip-gpt2-image-captioner`
- **Task**: Image-to-text captioning
- **Input**: Image file path
- **Output**: Descriptive text caption
- **Performance**: ~40% accuracy on test samples

### **Child Model 2: Flickr30k Text-to-Image**
- **Model**: `kunaliitkgp09/flickr30k-text-to-image`
- **Task**: Text-to-image generation
- **Input**: Text prompt
- **Output**: Generated image file
- **Performance**: Fine-tuned on Flickr30k dataset

## 📊 Usage Examples

### **1. Image Captioning**
```python
# Generate caption from image
caption = orchestrator.generate_caption("path/to/image.jpg")
print(f"Generated Caption: {caption}")
```

### **2. Text-to-Image Generation**
```python
# Generate image from text
image_path = orchestrator.generate_image("A majestic eagle soaring over mountains")
print(f"Generated Image: {image_path}")
```

### **3. Multimodal Processing**
```python
# Process both image and text together
results = orchestrator.process_multimodal_task(
    image_path="sample_image.jpg",
    text_prompt="A serene landscape with mountains"
)

print("Caption:", results["caption"])
print("Generated Image:", results["generated_image"])
print("Analysis:", results["analysis_prompt"])
```

### **4. Async Processing**
```python
# Async version for better performance
async def async_example():
    results = await orchestrator.process_multimodal_async(
        image_path="sample_image.jpg",
        text_prompt="A futuristic cityscape"
    )
    return results
```

### **5. Batch Processing**
```python
# Process multiple tasks
image_tasks = [
    "A beautiful sunset",
    "A cozy coffee shop",
    "A vibrant garden"
]

for prompt in image_tasks:
    image_path = orchestrator.generate_image(prompt)
    print(f"Generated: {image_path}")
```

## 🔍 Task History and Monitoring

```python
# Get orchestrator status
status = orchestrator.get_status()
print(f"Status: {status}")

# Get task history
history = orchestrator.get_task_history()
for task in history:
    print(f"Task: {task['task_type']}, Time: {task['processing_time']:.2f}s")

# Save task history
orchestrator.save_task_history("my_tasks.json")
```

## ⚙️ Configuration Options

### **Model Configuration**
```python
# Custom model parameters
orchestrator = SimpleMultiModelOrchestrator(device="cuda")  # or "cpu"

# Custom generation parameters
image_path = orchestrator.generate_image(
    "A beautiful landscape",
    output_path="custom_output.png"
)
```

### **Async Configuration**
```python
# Async orchestrator with concurrent processing
async_orchestrator = AsyncMultiModelOrchestrator()

# Process tasks concurrently
results = await async_orchestrator.process_multimodal_async(
    image_path="image.jpg",
    text_prompt="prompt"
)
```

## 🎯 Use Cases

### **1. Content Creation**
- Generate captions for social media images
- Create images from text descriptions
- Multimodal content analysis

### **2. Research and Development**
- Model performance comparison
- Multimodal AI research
- Prototype development

### **3. Production Systems**
- Automated content generation
- Image analysis pipelines
- Text-to-image applications

### **4. Educational Applications**
- AI model demonstration
- Multimodal learning systems
- Research toolkits

## 🔧 Advanced Features

### **Error Handling**
```python
try:
    caption = orchestrator.generate_caption("image.jpg")
except Exception as e:
    print(f"Error: {e}")
    # Handle error gracefully
```

### **Performance Optimization**
```python
# Use async for better performance
async def optimized_processing():
    tasks = [
        orchestrator.generate_caption_async("image1.jpg"),
        orchestrator.generate_caption_async("image2.jpg"),
        orchestrator.generate_image_async("prompt1"),
        orchestrator.generate_image_async("prompt2")
    ]
    
    results = await asyncio.gather(*tasks)
    return results
```

### **Custom Model Integration**
```python
# Add new child models
class CustomChildModel:
    def __init__(self, model_name):
        self.model = load_model(model_name)
    
    def process(self, input_data):
        # Custom processing logic
        return result

# Integrate with orchestrator
orchestrator.add_child_model("custom_model", CustomChildModel("model_name"))
```

## 📈 Performance Metrics

The orchestrator tracks various performance metrics:

- **Processing Time**: Time taken for each task
- **Success Rate**: Percentage of successful operations
- **Memory Usage**: GPU/CPU memory consumption
- **Model Load Times**: Time to initialize each child model
- **Task Throughput**: Number of tasks processed per second

## 🚨 Important Notes

### **System Requirements**
- **GPU**: Recommended for optimal performance (CUDA compatible)
- **RAM**: 8GB+ for smooth operation
- **Storage**: 5GB+ for model downloads and generated content
- **Python**: 3.8+ required

### **Model Downloads**
- Models are downloaded automatically on first use
- CLIP-GPT2: ~500MB
- Stable Diffusion: ~4GB
- Total initial download: ~5GB

### **Memory Management**
- Models are loaded into GPU memory when available
- CPU fallback available for systems without GPU
- Memory usage scales with batch size and model complexity

## 🤝 Contributing

Contributions are welcome! Please feel free to submit pull requests or open issues for:

- New child model integrations
- Performance improvements
- Bug fixes
- Documentation enhancements
- Feature requests

## 📄 License

This project is licensed under the MIT License - see the LICENSE file for details.

## 🙏 Acknowledgments

- **CLIP-GPT2 Model**: [kunaliitkgp09/clip-gpt2-image-captioner](https://huggingface.co/kunaliitkgp09/clip-gpt2-image-captioner)
- **Stable Diffusion Model**: [kunaliitkgp09/flickr30k-text-to-image](https://huggingface.co/kunaliitkgp09/flickr30k-text-to-image)
- **Hugging Face**: For providing the model hosting platform
- **PyTorch**: For the deep learning framework
- **Transformers**: For the model loading and processing utilities

## 📚 References

1. **CLIP**: "Learning Transferable Visual Representations" (Radford et al., 2021)
2. **GPT-2**: "Language Models are Unsupervised Multitask Learners" (Radford et al., 2019)
3. **Stable Diffusion**: "High-Resolution Image Synthesis with Latent Diffusion Models" (Rombach et al., 2022)
4. **Flickr30k**: "From Image Descriptions to Visual Denotations" (Young et al., 2014)

## 🔗 Links

- **CLIP-GPT2 Model**: https://huggingface.co/kunaliitkgp09/clip-gpt2-image-captioner
- **Flickr30k Text-to-Image**: https://huggingface.co/kunaliitkgp09/flickr30k-text-to-image
- **Hugging Face Hub**: https://huggingface.co/
- **PyTorch**: https://pytorch.org/
- **Transformers**: https://huggingface.co/docs/transformers/

---

**Happy Orchestrating! 🚀**