Upload BD3LM
Browse files- config.json +1 -1
- configuration_bd3lm.py +1 -1
- modeling_bd3lm.py +97 -53
config.json
CHANGED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
"architectures": [
|
| 4 |
"BD3LM"
|
| 5 |
],
|
| 6 |
-
"attn_backend": "
|
| 7 |
"auto_map": {
|
| 8 |
"AutoConfig": "configuration_bd3lm.BD3LMConfig",
|
| 9 |
"AutoModelForMaskedLM": "modeling_bd3lm.BD3LM"
|
|
|
|
| 3 |
"architectures": [
|
| 4 |
"BD3LM"
|
| 5 |
],
|
| 6 |
+
"attn_backend": "flex",
|
| 7 |
"auto_map": {
|
| 8 |
"AutoConfig": "configuration_bd3lm.BD3LMConfig",
|
| 9 |
"AutoModelForMaskedLM": "modeling_bd3lm.BD3LM"
|
configuration_bd3lm.py
CHANGED
|
@@ -15,7 +15,7 @@ class BD3LMConfig(transformers.PretrainedConfig):
|
|
| 15 |
vocab_size: int = 50258,
|
| 16 |
model_length: int = 1024,
|
| 17 |
cross_attn: bool = True,
|
| 18 |
-
attn_backend: str = '
|
| 19 |
hidden_dim: int = 768,
|
| 20 |
cond_dim: int = 129,
|
| 21 |
n_blocks: int = 12,
|
|
|
|
| 15 |
vocab_size: int = 50258,
|
| 16 |
model_length: int = 1024,
|
| 17 |
cross_attn: bool = True,
|
| 18 |
+
attn_backend: str = 'flex',
|
| 19 |
hidden_dim: int = 768,
|
| 20 |
cond_dim: int = 129,
|
| 21 |
n_blocks: int = 12,
|
modeling_bd3lm.py
CHANGED
|
@@ -5,13 +5,17 @@ import math
|
|
| 5 |
import typing
|
| 6 |
|
| 7 |
import einops
|
| 8 |
-
import
|
| 9 |
-
import flash_attn.layers.rotary
|
| 10 |
import torch
|
| 11 |
import torch.nn as nn
|
| 12 |
import torch.nn.functional as F
|
| 13 |
import transformers
|
| 14 |
from transformers import modeling_outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
from .configuration_bd3lm import BD3LMConfig
|
| 17 |
|
|
@@ -21,21 +25,55 @@ torch._C._jit_set_profiling_executor(False)
|
|
| 21 |
torch._C._jit_override_can_fuse_on_cpu(True)
|
| 22 |
torch._C._jit_override_can_fuse_on_gpu(True)
|
| 23 |
|
| 24 |
-
def
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
def bias_dropout_add_scale(
|
| 41 |
x: torch.Tensor,
|
|
@@ -132,12 +170,6 @@ def rotate_half(x):
|
|
| 132 |
def apply_rotary_pos_emb_torchscript(qkv, cos, sin):
|
| 133 |
return (qkv * cos) + (rotate_half(qkv) * sin)
|
| 134 |
|
| 135 |
-
def apply_rotary_pos_emb(qkv, cos, sin):
|
| 136 |
-
cos = cos[0,:,0,0,:cos.shape[-1]//2]
|
| 137 |
-
sin = sin[0,:,0,0,:sin.shape[-1]//2]
|
| 138 |
-
return flash_attn.layers.rotary.apply_rotary_emb_qkv_(qkv, cos, sin)
|
| 139 |
-
|
| 140 |
-
|
| 141 |
# function overload
|
| 142 |
def modulate(x, shift, scale):
|
| 143 |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
|
@@ -317,32 +349,33 @@ class DDiTBlock(nn.Module):
|
|
| 317 |
h=self.n_heads)
|
| 318 |
with torch.cuda.amp.autocast(enabled=False):
|
| 319 |
cos, sin = rotary_cos_sin
|
| 320 |
-
|
| 321 |
-
qkv
|
| 322 |
-
qkv, cos.to(qkv.dtype), sin.to(qkv.dtype))
|
| 323 |
-
else:
|
| 324 |
-
qkv = apply_rotary_pos_emb_torchscript(
|
| 325 |
-
qkv, cos.to(qkv.dtype), sin.to(qkv.dtype))
|
| 326 |
return qkv
|
| 327 |
|
| 328 |
-
def cross_attn(self, x, qkv,
|
| 329 |
scale = qkv.shape[-1]
|
| 330 |
qkv = qkv.transpose(1, 3)
|
| 331 |
-
|
| 332 |
-
cross_attn_mask = cross_attn_mask.bool() if cross_attn_mask is not None else None
|
| 333 |
x = F.scaled_dot_product_attention(
|
| 334 |
query=qkv[:, :, 0],
|
| 335 |
key=qkv[:, :, 1],
|
| 336 |
value=qkv[:, :, 2],
|
| 337 |
-
attn_mask=
|
| 338 |
-
dropout_p=attn_dropout,
|
| 339 |
is_causal=False,
|
| 340 |
scale=1 / math.sqrt(scale))
|
| 341 |
x = x.transpose(1, 2)
|
| 342 |
x = einops.rearrange(x, 'b s h d -> b s (h d)')
|
| 343 |
return x
|
| 344 |
-
|
| 345 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
sample_mode=False, store_kv=False):
|
| 347 |
bias_dropout_scale_fn = self._get_bias_dropout_scale()
|
| 348 |
|
|
@@ -354,17 +387,21 @@ class DDiTBlock(nn.Module):
|
|
| 354 |
x = modulate_fused(self.norm1(x), shift_msa, scale_msa)
|
| 355 |
|
| 356 |
# get qkvs
|
| 357 |
-
if
|
| 358 |
qkv_x = self.get_qkv(x[:,:self.n], rotary_cos_sin)
|
| 359 |
qkv_x0 = self.get_qkv(x[:,self.n:], rotary_cos_sin)
|
| 360 |
qkv = torch.cat((qkv_x, qkv_x0), dim=1)
|
| 361 |
else:
|
| 362 |
qkv = self.get_qkv(x, rotary_cos_sin, store_kv=store_kv)
|
| 363 |
|
| 364 |
-
if
|
| 365 |
x = regular_attention_multi_headed(qkv)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
else:
|
| 367 |
-
|
| 368 |
|
| 369 |
x = bias_dropout_scale_fn(self.attn_out(x),
|
| 370 |
None,
|
|
@@ -457,15 +494,18 @@ class DITBackbone(nn.Module):
|
|
| 457 |
else:
|
| 458 |
return bias_dropout_add_scale_fused_inference
|
| 459 |
|
| 460 |
-
def gen_mask(self, seqlen, block_size):
|
| 461 |
-
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
|
|
|
|
|
|
|
|
|
| 469 |
|
| 470 |
def forward(self, indices, sigma, sample_mode=False,
|
| 471 |
store_kv=False, output_hidden_states=False):
|
|
@@ -478,13 +518,13 @@ class DITBackbone(nn.Module):
|
|
| 478 |
c = F.silu(self.sigma_map(sigma))
|
| 479 |
if self.cross_attn:
|
| 480 |
rotary_cos_sin = self.rotary_emb(x[:, :self.n])
|
| 481 |
-
|
| 482 |
# use block-causal mask only during sampling
|
| 483 |
if sample_mode:
|
| 484 |
-
|
| 485 |
self.n:self.n+x.shape[1], self.n:self.n+x.shape[1]]
|
| 486 |
else:
|
| 487 |
-
|
| 488 |
rotary_cos_sin = self.rotary_emb(x)
|
| 489 |
|
| 490 |
with torch.cuda.amp.autocast(dtype=self.precision):
|
|
@@ -492,7 +532,7 @@ class DITBackbone(nn.Module):
|
|
| 492 |
x = self.blocks[i](x,
|
| 493 |
rotary_cos_sin,
|
| 494 |
c,
|
| 495 |
-
|
| 496 |
sample_mode=sample_mode,
|
| 497 |
store_kv=store_kv)
|
| 498 |
if output_hidden_states:
|
|
@@ -512,6 +552,7 @@ class BD3LM(transformers.PreTrainedModel):
|
|
| 512 |
self,
|
| 513 |
config: BD3LMConfig):
|
| 514 |
super().__init__(config)
|
|
|
|
| 515 |
self.backbone = DITBackbone(config)
|
| 516 |
if config.var_min:
|
| 517 |
self.register_buffer(
|
|
@@ -523,7 +564,7 @@ class BD3LM(transformers.PreTrainedModel):
|
|
| 523 |
|
| 524 |
def reset_kv_cache(self):
|
| 525 |
for block in self.backbone.blocks:
|
| 526 |
-
block.kv_cache = None
|
| 527 |
|
| 528 |
def forward(
|
| 529 |
self,
|
|
@@ -537,6 +578,9 @@ class BD3LM(transformers.PreTrainedModel):
|
|
| 537 |
torch.Tensor, typing.Tuple,
|
| 538 |
modeling_outputs.MaskedLMOutput]:
|
| 539 |
"""HF-compatible forward method."""
|
|
|
|
|
|
|
|
|
|
| 540 |
output_hidden_states = (
|
| 541 |
output_hidden_states
|
| 542 |
if output_hidden_states is not None
|
|
|
|
| 5 |
import typing
|
| 6 |
|
| 7 |
import einops
|
| 8 |
+
from functools import partial
|
|
|
|
| 9 |
import torch
|
| 10 |
import torch.nn as nn
|
| 11 |
import torch.nn.functional as F
|
| 12 |
import transformers
|
| 13 |
from transformers import modeling_outputs
|
| 14 |
+
try:
|
| 15 |
+
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
|
| 16 |
+
FLEX_ATTN_AVAILABLE = True
|
| 17 |
+
except:
|
| 18 |
+
FLEX_ATTN_AVAILABLE = False
|
| 19 |
|
| 20 |
from .configuration_bd3lm import BD3LMConfig
|
| 21 |
|
|
|
|
| 25 |
torch._C._jit_override_can_fuse_on_cpu(True)
|
| 26 |
torch._C._jit_override_can_fuse_on_gpu(True)
|
| 27 |
|
| 28 |
+
def block_diff_mask(b, h, q_idx, kv_idx, block_size=None, n=None):
|
| 29 |
+
"""
|
| 30 |
+
Constructs the specialized block diffusion attention mask for training
|
| 31 |
+
composed of three masks:
|
| 32 |
+
- **Block Diagonal Mask (M_BD)**: Self-attention within noised blocks
|
| 33 |
+
- **Offset Block Causal Mask (M_OBC)**: Cross-attention for conditional context
|
| 34 |
+
- **Block Causal Mask (M_BC)**: Attention to update x0
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
b, h: Batch and head indices (ignored for mask logic).
|
| 38 |
+
q_idx, kv_idx: Query and Key indices.
|
| 39 |
+
seq_len: Total sequence length.
|
| 40 |
+
block_size: Defines the block structure.
|
| 41 |
+
|
| 42 |
+
Returns:
|
| 43 |
+
A boolean attention mask.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
# Indicate whether token belongs to xt or x0
|
| 47 |
+
x0_flag_q = (q_idx >= n)
|
| 48 |
+
x0_flag_kv = (kv_idx >= n)
|
| 49 |
+
|
| 50 |
+
# Compute block indices
|
| 51 |
+
block_q = torch.where(x0_flag_q == 1,
|
| 52 |
+
(q_idx - n) // block_size,
|
| 53 |
+
q_idx // block_size)
|
| 54 |
+
block_kv = torch.where(x0_flag_kv == 1,
|
| 55 |
+
(kv_idx - n) // block_size,
|
| 56 |
+
kv_idx // block_size)
|
| 57 |
+
|
| 58 |
+
# **1. Block Diagonal Mask (M_BD) **
|
| 59 |
+
block_diagonal = (block_q == block_kv) & (x0_flag_q == x0_flag_kv)
|
| 60 |
+
|
| 61 |
+
# **2. Offset Block-Causal Mask (M_OBC) **
|
| 62 |
+
offset_block_causal = (
|
| 63 |
+
(block_q > block_kv)
|
| 64 |
+
& (x0_flag_kv == 1)
|
| 65 |
+
& (x0_flag_q == 0)
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
# **3. Block-Causal Mask (M_BC) **
|
| 69 |
+
block_causal = (block_q >= block_kv) & (x0_flag_kv == 1) & (x0_flag_q == 1)
|
| 70 |
+
|
| 71 |
+
# **4. Combine Masks **
|
| 72 |
+
return block_diagonal | offset_block_causal | block_causal
|
| 73 |
+
|
| 74 |
+
@torch.compile(fullgraph=True, mode="max-autotune-no-cudagraphs")
|
| 75 |
+
def fused_flex_attention(q, k, v, mask=None):
|
| 76 |
+
return flex_attention(q, k, v, block_mask=mask)
|
| 77 |
|
| 78 |
def bias_dropout_add_scale(
|
| 79 |
x: torch.Tensor,
|
|
|
|
| 170 |
def apply_rotary_pos_emb_torchscript(qkv, cos, sin):
|
| 171 |
return (qkv * cos) + (rotate_half(qkv) * sin)
|
| 172 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
# function overload
|
| 174 |
def modulate(x, shift, scale):
|
| 175 |
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
|
|
|
| 349 |
h=self.n_heads)
|
| 350 |
with torch.cuda.amp.autocast(enabled=False):
|
| 351 |
cos, sin = rotary_cos_sin
|
| 352 |
+
qkv = apply_rotary_pos_emb_torchscript(
|
| 353 |
+
qkv, cos.to(qkv.dtype), sin.to(qkv.dtype))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
return qkv
|
| 355 |
|
| 356 |
+
def cross_attn(self, x, qkv, mask=None):
|
| 357 |
scale = qkv.shape[-1]
|
| 358 |
qkv = qkv.transpose(1, 3)
|
| 359 |
+
mask = mask.bool() if mask is not None else None
|
|
|
|
| 360 |
x = F.scaled_dot_product_attention(
|
| 361 |
query=qkv[:, :, 0],
|
| 362 |
key=qkv[:, :, 1],
|
| 363 |
value=qkv[:, :, 2],
|
| 364 |
+
attn_mask=mask,
|
|
|
|
| 365 |
is_causal=False,
|
| 366 |
scale=1 / math.sqrt(scale))
|
| 367 |
x = x.transpose(1, 2)
|
| 368 |
x = einops.rearrange(x, 'b s h d -> b s (h d)')
|
| 369 |
return x
|
| 370 |
+
|
| 371 |
+
def cross_attn_flex(self, qkv, mask=None):
|
| 372 |
+
qkv = einops.rearrange(qkv, 'b s three h d -> b h three s d', h=self.n_heads)
|
| 373 |
+
x = fused_flex_attention(
|
| 374 |
+
qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], mask=mask)
|
| 375 |
+
x = einops.rearrange(x, 'b h s d -> b s (h d)')
|
| 376 |
+
return x
|
| 377 |
+
|
| 378 |
+
def forward(self, x, rotary_cos_sin, c, mask=None,
|
| 379 |
sample_mode=False, store_kv=False):
|
| 380 |
bias_dropout_scale_fn = self._get_bias_dropout_scale()
|
| 381 |
|
|
|
|
| 387 |
x = modulate_fused(self.norm1(x), shift_msa, scale_msa)
|
| 388 |
|
| 389 |
# get qkvs
|
| 390 |
+
if mask is not None and not sample_mode:
|
| 391 |
qkv_x = self.get_qkv(x[:,:self.n], rotary_cos_sin)
|
| 392 |
qkv_x0 = self.get_qkv(x[:,self.n:], rotary_cos_sin)
|
| 393 |
qkv = torch.cat((qkv_x, qkv_x0), dim=1)
|
| 394 |
else:
|
| 395 |
qkv = self.get_qkv(x, rotary_cos_sin, store_kv=store_kv)
|
| 396 |
|
| 397 |
+
if mask is None and self.attn_backend == 'flash_attn':
|
| 398 |
x = regular_attention_multi_headed(qkv)
|
| 399 |
+
elif self.attn_backend == 'sdpa':
|
| 400 |
+
x = self.cross_attn(x, qkv, mask=mask)
|
| 401 |
+
elif self.attn_backend == 'flex' and FLEX_ATTN_AVAILABLE:
|
| 402 |
+
x = self.cross_attn_flex(qkv, mask=mask)
|
| 403 |
else:
|
| 404 |
+
raise ValueError('Unknown attention backend')
|
| 405 |
|
| 406 |
x = bias_dropout_scale_fn(self.attn_out(x),
|
| 407 |
None,
|
|
|
|
| 494 |
else:
|
| 495 |
return bias_dropout_add_scale_fused_inference
|
| 496 |
|
| 497 |
+
def gen_mask(self, seqlen, block_size, attn_backend='sdpa'):
|
| 498 |
+
"""Genererates attention mask"""
|
| 499 |
+
if attn_backend == 'sdpa':
|
| 500 |
+
self.block_diff_mask = block_diff_mask(
|
| 501 |
+
b=None, h=None, q_idx=torch.arange(seqlen*2)[:, None], kv_idx=torch.arange(seqlen*2)[None, :],
|
| 502 |
+
block_size=block_size, n=seqlen)
|
| 503 |
+
elif attn_backend == 'flex':
|
| 504 |
+
self.block_diff_mask = create_block_mask(
|
| 505 |
+
partial(block_diff_mask, block_size=block_size, n=seqlen),
|
| 506 |
+
B=None, H=None, Q_LEN=seqlen*2, KV_LEN=seqlen*2)
|
| 507 |
+
else:
|
| 508 |
+
raise ValueError('Unknown attention backend')
|
| 509 |
|
| 510 |
def forward(self, indices, sigma, sample_mode=False,
|
| 511 |
store_kv=False, output_hidden_states=False):
|
|
|
|
| 518 |
c = F.silu(self.sigma_map(sigma))
|
| 519 |
if self.cross_attn:
|
| 520 |
rotary_cos_sin = self.rotary_emb(x[:, :self.n])
|
| 521 |
+
mask = self.mask.to(x.device)
|
| 522 |
# use block-causal mask only during sampling
|
| 523 |
if sample_mode:
|
| 524 |
+
mask = mask[
|
| 525 |
self.n:self.n+x.shape[1], self.n:self.n+x.shape[1]]
|
| 526 |
else:
|
| 527 |
+
mask = None
|
| 528 |
rotary_cos_sin = self.rotary_emb(x)
|
| 529 |
|
| 530 |
with torch.cuda.amp.autocast(dtype=self.precision):
|
|
|
|
| 532 |
x = self.blocks[i](x,
|
| 533 |
rotary_cos_sin,
|
| 534 |
c,
|
| 535 |
+
mask=mask,
|
| 536 |
sample_mode=sample_mode,
|
| 537 |
store_kv=store_kv)
|
| 538 |
if output_hidden_states:
|
|
|
|
| 552 |
self,
|
| 553 |
config: BD3LMConfig):
|
| 554 |
super().__init__(config)
|
| 555 |
+
self.config = config
|
| 556 |
self.backbone = DITBackbone(config)
|
| 557 |
if config.var_min:
|
| 558 |
self.register_buffer(
|
|
|
|
| 564 |
|
| 565 |
def reset_kv_cache(self):
|
| 566 |
for block in self.backbone.blocks:
|
| 567 |
+
block.kv_cache = None
|
| 568 |
|
| 569 |
def forward(
|
| 570 |
self,
|
|
|
|
| 578 |
torch.Tensor, typing.Tuple,
|
| 579 |
modeling_outputs.MaskedLMOutput]:
|
| 580 |
"""HF-compatible forward method."""
|
| 581 |
+
if sample_mode:
|
| 582 |
+
assert self.config.attn_backend == 'sdpa', 'Sampling only supported with SDPA'
|
| 583 |
+
|
| 584 |
output_hidden_states = (
|
| 585 |
output_hidden_states
|
| 586 |
if output_hidden_states is not None
|