init
Browse files
pipeline/kotoba_whisper.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
| 1 |
import requests
|
| 2 |
-
from typing import Union, Optional, Dict
|
| 3 |
-
from collections import defaultdict
|
| 4 |
|
| 5 |
import torch
|
| 6 |
import numpy as np
|
|
@@ -24,25 +23,13 @@ class Punctuator:
|
|
| 24 |
def __init__(self, model: str = "pcs_47lang"):
|
| 25 |
self.punctuation_model = PunctCapSegModelONNX.from_pretrained(model)
|
| 26 |
|
| 27 |
-
def punctuate(self,
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
punctuated = punctuated.replace("。", "")
|
| 35 |
-
punctuated = punctuated[:ind] + "。" + punctuated[ind:]
|
| 36 |
-
return punctuated
|
| 37 |
-
|
| 38 |
-
text_edit = self.punctuation_model.infer([c['text'] for c in pipeline_chunk])
|
| 39 |
-
return [
|
| 40 |
-
{
|
| 41 |
-
'timestamp': c['timestamp'],
|
| 42 |
-
'speaker': c['speaker'],
|
| 43 |
-
'text': validate_punctuation(c['text'], "".join(e))
|
| 44 |
-
} for c, e in zip(pipeline_chunk, text_edit)
|
| 45 |
-
]
|
| 46 |
|
| 47 |
|
| 48 |
class SpeakerDiarization:
|
|
@@ -114,104 +101,68 @@ class KotobaWhisperPipeline(AutomaticSpeechRecognitionPipeline):
|
|
| 114 |
)
|
| 115 |
|
| 116 |
def _sanitize_parameters(self,
|
| 117 |
-
chunk_length_s=None,
|
| 118 |
-
stride_length_s=None,
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
add_punctuation: bool =False,
|
| 126 |
-
return_unique_speaker: bool =True,
|
| 127 |
num_speakers: Optional[int] = None,
|
| 128 |
min_speakers: Optional[int] = None,
|
| 129 |
max_speakers: Optional[int] = None):
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
if generate_kwargs is
|
| 141 |
-
|
| 142 |
-
raise ValueError(
|
| 143 |
-
"`max_new_tokens` is defined both as an argument and inside `generate_kwargs` argument, please use"
|
| 144 |
-
" only 1 version"
|
| 145 |
-
)
|
| 146 |
-
forward_params.update(generate_kwargs)
|
| 147 |
-
|
| 148 |
-
postprocess_params = {}
|
| 149 |
-
if decoder_kwargs is not None:
|
| 150 |
-
postprocess_params["decoder_kwargs"] = decoder_kwargs
|
| 151 |
-
if return_timestamps is not None:
|
| 152 |
-
# Check whether we have a valid setting for return_timestamps and throw an error before we perform a forward pass
|
| 153 |
-
if self.type == "seq2seq" and return_timestamps:
|
| 154 |
-
raise ValueError("We cannot return_timestamps yet on non-CTC models apart from Whisper!")
|
| 155 |
-
if self.type == "ctc_with_lm" and return_timestamps != "word":
|
| 156 |
-
raise ValueError("CTC with LM can only predict word level timestamps, set `return_timestamps='word'`")
|
| 157 |
-
if self.type == "ctc" and return_timestamps not in ["char", "word"]:
|
| 158 |
-
raise ValueError(
|
| 159 |
-
"CTC can either predict character level timestamps, or word level timestamps. "
|
| 160 |
-
"Set `return_timestamps='char'` or `return_timestamps='word'` as required."
|
| 161 |
-
)
|
| 162 |
-
if self.type == "seq2seq_whisper" and return_timestamps == "char":
|
| 163 |
-
raise ValueError(
|
| 164 |
-
"Whisper cannot return `char` timestamps, only word level or segment level timestamps. "
|
| 165 |
-
"Use `return_timestamps='word'` or `return_timestamps=True` respectively."
|
| 166 |
-
)
|
| 167 |
-
forward_params["return_timestamps"] = return_timestamps
|
| 168 |
-
postprocess_params["return_timestamps"] = return_timestamps
|
| 169 |
-
if return_language is not None:
|
| 170 |
-
if self.type != "seq2seq_whisper":
|
| 171 |
-
raise ValueError("Only Whisper can return language for now.")
|
| 172 |
-
postprocess_params["return_language"] = return_language
|
| 173 |
-
postprocess_params["return_language"] = return_language
|
| 174 |
-
postprocess_params["add_punctuation"] = add_punctuation
|
| 175 |
-
postprocess_params["return_unique_speaker"] = return_unique_speaker
|
| 176 |
-
postprocess_params["num_speakers"] = num_speakers
|
| 177 |
-
postprocess_params["min_speakers"] = min_speakers
|
| 178 |
-
postprocess_params["max_speakers"] = max_speakers
|
| 179 |
return preprocess_params, forward_params, postprocess_params
|
| 180 |
|
| 181 |
-
def preprocess(self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
if isinstance(inputs, str):
|
| 183 |
if inputs.startswith("http://") or inputs.startswith("https://"):
|
| 184 |
-
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
|
| 185 |
-
# like http_huggingface_co.png
|
| 186 |
inputs = requests.get(inputs).content
|
| 187 |
else:
|
| 188 |
with open(inputs, "rb") as f:
|
| 189 |
inputs = f.read()
|
| 190 |
-
|
| 191 |
if isinstance(inputs, bytes):
|
| 192 |
inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate)
|
| 193 |
-
|
| 194 |
-
stride = None
|
| 195 |
-
extra = {}
|
| 196 |
if isinstance(inputs, dict):
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
# better integration
|
| 200 |
-
if not ("sampling_rate" in inputs and ("raw" in inputs or "array" in inputs)):
|
| 201 |
raise ValueError(
|
| 202 |
"When passing a dictionary to AutomaticSpeechRecognitionPipeline, the dict needs to contain a "
|
| 203 |
-
'"
|
| 204 |
"containing the sampling_rate associated with that array"
|
| 205 |
)
|
| 206 |
-
|
| 207 |
-
_inputs = inputs.pop("raw", None)
|
| 208 |
-
if _inputs is None:
|
| 209 |
-
# Remove path which will not be used from `datasets`.
|
| 210 |
-
inputs.pop("path", None)
|
| 211 |
-
_inputs = inputs.pop("array", None)
|
| 212 |
in_sampling_rate = inputs.pop("sampling_rate")
|
| 213 |
-
|
| 214 |
-
inputs = _inputs
|
| 215 |
if in_sampling_rate != self.feature_extractor.sampling_rate:
|
| 216 |
if is_torchaudio_available():
|
| 217 |
from torchaudio import functional as F
|
|
@@ -220,190 +171,100 @@ class KotobaWhisperPipeline(AutomaticSpeechRecognitionPipeline):
|
|
| 220 |
"torchaudio is required to resample audio samples in AutomaticSpeechRecognitionPipeline. "
|
| 221 |
"The torchaudio package can be installed through: `pip install torchaudio`."
|
| 222 |
)
|
| 223 |
-
|
| 224 |
inputs = F.resample(
|
| 225 |
torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate
|
| 226 |
).numpy()
|
| 227 |
-
ratio = self.feature_extractor.sampling_rate / in_sampling_rate
|
| 228 |
-
else:
|
| 229 |
-
ratio = 1
|
| 230 |
-
if stride is not None:
|
| 231 |
-
if stride[0] + stride[1] > inputs.shape[0]:
|
| 232 |
-
raise ValueError("Stride is too large for input")
|
| 233 |
|
| 234 |
-
|
| 235 |
-
# swallowed by the `feature_extractor` later, and then batching
|
| 236 |
-
# can add extra data in the inputs, so we need to keep track
|
| 237 |
-
# of the original length in the stride so we can cut properly.
|
| 238 |
-
stride = (inputs.shape[0], int(round(stride[0] * ratio)), int(round(stride[1] * ratio)))
|
| 239 |
if not isinstance(inputs, np.ndarray):
|
| 240 |
raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`")
|
| 241 |
if len(inputs.shape) != 1:
|
| 242 |
raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline")
|
| 243 |
|
| 244 |
-
|
| 245 |
-
if stride_length_s is None:
|
| 246 |
-
stride_length_s = chunk_length_s / 6
|
| 247 |
-
|
| 248 |
-
if isinstance(stride_length_s, (int, float)):
|
| 249 |
-
stride_length_s = [stride_length_s, stride_length_s]
|
| 250 |
-
|
| 251 |
-
# XXX: Carefuly, this variable will not exist in `seq2seq` setting.
|
| 252 |
-
# Currently chunking is not possible at this level for `seq2seq` so
|
| 253 |
-
# it's ok.
|
| 254 |
-
align_to = getattr(self.model.config, "inputs_to_logits_ratio", 1)
|
| 255 |
-
chunk_len = int(round(chunk_length_s * self.feature_extractor.sampling_rate / align_to) * align_to)
|
| 256 |
-
stride_left = int(round(stride_length_s[0] * self.feature_extractor.sampling_rate / align_to) * align_to)
|
| 257 |
-
stride_right = int(round(stride_length_s[1] * self.feature_extractor.sampling_rate / align_to) * align_to)
|
| 258 |
-
|
| 259 |
-
if chunk_len < stride_left + stride_right:
|
| 260 |
-
raise ValueError("Chunk length must be superior to stride length")
|
| 261 |
-
|
| 262 |
-
for item in chunk_iter(
|
| 263 |
-
inputs, self.feature_extractor, chunk_len, stride_left, stride_right, self.torch_dtype
|
| 264 |
-
):
|
| 265 |
-
item["audio_array"] = inputs
|
| 266 |
-
yield item
|
| 267 |
-
else:
|
| 268 |
-
if inputs.shape[0] > self.feature_extractor.n_samples:
|
| 269 |
-
processed = self.feature_extractor(
|
| 270 |
-
inputs,
|
| 271 |
-
sampling_rate=self.feature_extractor.sampling_rate,
|
| 272 |
-
truncation=False,
|
| 273 |
-
padding="longest",
|
| 274 |
-
return_tensors="pt",
|
| 275 |
-
)
|
| 276 |
-
else:
|
| 277 |
-
processed = self.feature_extractor(
|
| 278 |
-
inputs, sampling_rate=self.feature_extractor.sampling_rate, return_tensors="pt"
|
| 279 |
-
)
|
| 280 |
-
|
| 281 |
-
if self.torch_dtype is not None:
|
| 282 |
-
processed = processed.to(dtype=self.torch_dtype)
|
| 283 |
-
if stride is not None:
|
| 284 |
-
processed["stride"] = stride
|
| 285 |
-
yield {"is_last": True, "audio_array": inputs, **processed, **extra}
|
| 286 |
-
|
| 287 |
-
def _forward(self, model_inputs, **generate_kwargs):
|
| 288 |
-
attention_mask = model_inputs.pop("attention_mask", None)
|
| 289 |
-
stride = model_inputs.pop("stride", None)
|
| 290 |
-
is_last = model_inputs.pop("is_last")
|
| 291 |
-
audio_array = model_inputs.pop("audio_array")
|
| 292 |
-
encoder = self.model.get_encoder()
|
| 293 |
-
# Consume values so we can let extra information flow freely through
|
| 294 |
-
# the pipeline (important for `partial` in microphone)
|
| 295 |
-
if "input_features" in model_inputs:
|
| 296 |
-
inputs = model_inputs.pop("input_features")
|
| 297 |
-
elif "input_values" in model_inputs:
|
| 298 |
-
inputs = model_inputs.pop("input_values")
|
| 299 |
-
else:
|
| 300 |
-
raise ValueError(
|
| 301 |
-
"Seq2Seq speech recognition model requires either a "
|
| 302 |
-
f"`input_features` or `input_values` key, but only has {model_inputs.keys()}"
|
| 303 |
-
)
|
| 304 |
-
|
| 305 |
-
# custom processing for Whisper timestamps and word-level timestamps
|
| 306 |
-
generate_kwargs["return_timestamps"] = True
|
| 307 |
-
if inputs.shape[-1] > self.feature_extractor.nb_max_frames:
|
| 308 |
-
generate_kwargs["input_features"] = inputs
|
| 309 |
-
else:
|
| 310 |
-
generate_kwargs["encoder_outputs"] = encoder(inputs, attention_mask=attention_mask)
|
| 311 |
-
|
| 312 |
-
tokens = self.model.generate(attention_mask=attention_mask, **generate_kwargs)
|
| 313 |
-
# whisper longform generation stores timestamps in "segments"
|
| 314 |
-
out = {"tokens": tokens}
|
| 315 |
-
if self.type == "seq2seq_whisper":
|
| 316 |
-
if stride is not None:
|
| 317 |
-
out["stride"] = stride
|
| 318 |
-
|
| 319 |
-
# Leftover
|
| 320 |
-
extra = model_inputs
|
| 321 |
-
return {"is_last": is_last, "audio_array": audio_array, **out, **extra}
|
| 322 |
-
|
| 323 |
-
def postprocess(self,
|
| 324 |
-
model_outputs,
|
| 325 |
-
decoder_kwargs: Optional[Dict] = None,
|
| 326 |
-
return_language=None,
|
| 327 |
-
add_punctuation: bool = False,
|
| 328 |
-
return_unique_speaker: bool = True,
|
| 329 |
-
num_speakers: Optional[int] = None,
|
| 330 |
-
min_speakers: Optional[int] = None,
|
| 331 |
-
max_speakers: Optional[int] = None,
|
| 332 |
-
*args,
|
| 333 |
-
**kwargs):
|
| 334 |
-
assert len(model_outputs) > 0
|
| 335 |
-
outputs = super().postprocess(
|
| 336 |
-
model_outputs=model_outputs,
|
| 337 |
-
decoder_kwargs=decoder_kwargs,
|
| 338 |
-
return_timestamps=True,
|
| 339 |
-
return_language=return_language
|
| 340 |
-
)
|
| 341 |
-
audio_array = outputs.pop("audio_array")[0]
|
| 342 |
sd = self.model_speaker_diarization(
|
| 343 |
-
|
| 344 |
num_speakers=num_speakers,
|
| 345 |
min_speakers=min_speakers,
|
| 346 |
max_speakers=max_speakers,
|
| 347 |
sampling_rate=self.feature_extractor.sampling_rate
|
| 348 |
)
|
| 349 |
-
diarization_result = {s: [[i.start, i.end] for i in sd.label_timeline(s)] for s in sd.labels()}
|
| 350 |
-
timelines = sd.get_timeline()
|
| 351 |
-
|
| 352 |
-
pointer_ts = 0
|
| 353 |
-
pointer_chunk = 0
|
| 354 |
-
new_chunks = []
|
| 355 |
-
while True:
|
| 356 |
-
if pointer_ts == len(timelines):
|
| 357 |
-
ts = timelines[-1]
|
| 358 |
-
for chunk in outputs["chunks"][pointer_chunk:]:
|
| 359 |
-
chunk["speaker"] = sd.get_labels(ts)
|
| 360 |
-
new_chunks.append(chunk)
|
| 361 |
-
break
|
| 362 |
-
if pointer_chunk == len(outputs["chunks"]):
|
| 363 |
-
break
|
| 364 |
-
ts = timelines[pointer_ts]
|
| 365 |
-
|
| 366 |
-
chunk = outputs["chunks"][pointer_chunk]
|
| 367 |
-
if "speaker" not in chunk:
|
| 368 |
-
chunk["speaker"] = []
|
| 369 |
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
else:
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
|
| 395 |
-
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
| 400 |
-
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
return outputs
|
|
|
|
| 1 |
import requests
|
| 2 |
+
from typing import Union, Optional, Dict
|
|
|
|
| 3 |
|
| 4 |
import torch
|
| 5 |
import numpy as np
|
|
|
|
| 23 |
def __init__(self, model: str = "pcs_47lang"):
|
| 24 |
self.punctuation_model = PunctCapSegModelONNX.from_pretrained(model)
|
| 25 |
|
| 26 |
+
def punctuate(self, text: str) -> str:
|
| 27 |
+
if any(p in text for p in self.ja_punctuations):
|
| 28 |
+
return text
|
| 29 |
+
punctuated = "".join(self.punctuation_model.infer([text])[0])
|
| 30 |
+
if 'unk' in punctuated.lower():
|
| 31 |
+
return text
|
| 32 |
+
return punctuated
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
|
| 35 |
class SpeakerDiarization:
|
|
|
|
| 101 |
)
|
| 102 |
|
| 103 |
def _sanitize_parameters(self,
|
| 104 |
+
chunk_length_s: Optional[int] = None,
|
| 105 |
+
stride_length_s: Optional[int] = None,
|
| 106 |
+
generate_kwargs: Optional[Dict] = None,
|
| 107 |
+
max_new_tokens: Optional[int] = None,
|
| 108 |
+
add_punctuation: bool = False,
|
| 109 |
+
return_unique_speaker: bool = True,
|
| 110 |
+
add_silence_end: Optional[float] = None,
|
| 111 |
+
add_silence_start: Optional[float] = None,
|
|
|
|
|
|
|
| 112 |
num_speakers: Optional[int] = None,
|
| 113 |
min_speakers: Optional[int] = None,
|
| 114 |
max_speakers: Optional[int] = None):
|
| 115 |
+
preprocess_params = {
|
| 116 |
+
"chunk_length_s": chunk_length_s,
|
| 117 |
+
"stride_length_s": stride_length_s,
|
| 118 |
+
"add_silence_end": add_silence_end,
|
| 119 |
+
"add_silence_start": add_silence_start,
|
| 120 |
+
"num_speakers": num_speakers,
|
| 121 |
+
"min_speakers": min_speakers,
|
| 122 |
+
"max_speakers": max_speakers,
|
| 123 |
+
}
|
| 124 |
+
postprocess_params = {"add_punctuation": add_punctuation, "return_timestamps": True, "return_language": False}
|
| 125 |
+
forward_params = {} if generate_kwargs is None else generate_kwargs
|
| 126 |
+
forward_params.update({"max_new_tokens": max_new_tokens, "return_timestamps": True})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
return preprocess_params, forward_params, postprocess_params
|
| 128 |
|
| 129 |
+
def preprocess(self,
|
| 130 |
+
inputs,
|
| 131 |
+
chunk_length_s: Optional[int] = None,
|
| 132 |
+
stride_length_s: Optional[int] = None,
|
| 133 |
+
add_silence_end: Optional[float] = None,
|
| 134 |
+
add_silence_start: Optional[float] = None,
|
| 135 |
+
num_speakers: Optional[int] = None,
|
| 136 |
+
min_speakers: Optional[int] = None,
|
| 137 |
+
max_speakers: Optional[int] = None):
|
| 138 |
+
|
| 139 |
+
def _pad_audio_array(_audio):
|
| 140 |
+
if add_silence_start:
|
| 141 |
+
_audio = np.concatenate([np.zeros(int(self.feature_extractor.sampling_rate * add_silence_start)), _audio])
|
| 142 |
+
if add_silence_end:
|
| 143 |
+
_audio = np.concatenate([_audio, np.zeros(int(self.feature_extractor.sampling_rate * add_silence_end))])
|
| 144 |
+
return _audio
|
| 145 |
+
|
| 146 |
+
# load file
|
| 147 |
if isinstance(inputs, str):
|
| 148 |
if inputs.startswith("http://") or inputs.startswith("https://"):
|
| 149 |
+
# We need to actually check for a real protocol, otherwise it's impossible to use a local file like http_huggingface_co.png
|
|
|
|
| 150 |
inputs = requests.get(inputs).content
|
| 151 |
else:
|
| 152 |
with open(inputs, "rb") as f:
|
| 153 |
inputs = f.read()
|
|
|
|
| 154 |
if isinstance(inputs, bytes):
|
| 155 |
inputs = ffmpeg_read(inputs, self.feature_extractor.sampling_rate)
|
|
|
|
|
|
|
|
|
|
| 156 |
if isinstance(inputs, dict):
|
| 157 |
+
# Accepting `"array"` which is the key defined in `datasets` for better integration
|
| 158 |
+
if not ("sampling_rate" in inputs and "array" in inputs):
|
|
|
|
|
|
|
| 159 |
raise ValueError(
|
| 160 |
"When passing a dictionary to AutomaticSpeechRecognitionPipeline, the dict needs to contain a "
|
| 161 |
+
'"array" key containing the numpy array representing the audio and a "sampling_rate" key, '
|
| 162 |
"containing the sampling_rate associated with that array"
|
| 163 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
in_sampling_rate = inputs.pop("sampling_rate")
|
| 165 |
+
inputs = inputs.pop("array", None)
|
|
|
|
| 166 |
if in_sampling_rate != self.feature_extractor.sampling_rate:
|
| 167 |
if is_torchaudio_available():
|
| 168 |
from torchaudio import functional as F
|
|
|
|
| 171 |
"torchaudio is required to resample audio samples in AutomaticSpeechRecognitionPipeline. "
|
| 172 |
"The torchaudio package can be installed through: `pip install torchaudio`."
|
| 173 |
)
|
|
|
|
| 174 |
inputs = F.resample(
|
| 175 |
torch.from_numpy(inputs), in_sampling_rate, self.feature_extractor.sampling_rate
|
| 176 |
).numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
+
# validate audio array
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
if not isinstance(inputs, np.ndarray):
|
| 180 |
raise ValueError(f"We expect a numpy ndarray as input, got `{type(inputs)}`")
|
| 181 |
if len(inputs.shape) != 1:
|
| 182 |
raise ValueError("We expect a single channel audio input for AutomaticSpeechRecognitionPipeline")
|
| 183 |
|
| 184 |
+
# diarization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
sd = self.model_speaker_diarization(
|
| 186 |
+
inputs,
|
| 187 |
num_speakers=num_speakers,
|
| 188 |
min_speakers=min_speakers,
|
| 189 |
max_speakers=max_speakers,
|
| 190 |
sampling_rate=self.feature_extractor.sampling_rate
|
| 191 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
+
# loop over audio chunks and speakers
|
| 194 |
+
labels = list(sd.labels())
|
| 195 |
+
for n, s in enumerate(labels):
|
| 196 |
+
timelines = list(sd.label_timeline(s))
|
| 197 |
+
for m, i in enumerate(timelines):
|
| 198 |
+
start = int(i.start * self.feature_extractor.sampling_rate)
|
| 199 |
+
end = int(i.end * self.feature_extractor.sampling_rate)
|
| 200 |
+
audio_array = _pad_audio_array(inputs[start: end])
|
| 201 |
+
|
| 202 |
+
if chunk_length_s is not None:
|
| 203 |
+
stride_length_s = chunk_length_s / 6 if stride_length_s is None else stride_length_s
|
| 204 |
+
stride_length_s = [stride_length_s, stride_length_s] if isinstance(stride_length_s, (int, float)) else stride_length_s
|
| 205 |
+
align_to = getattr(self.model.config, "inputs_to_logits_ratio", 1)
|
| 206 |
+
chunk_len = int(round(chunk_length_s * self.feature_extractor.sampling_rate / align_to) * align_to)
|
| 207 |
+
stride_left = int(round(stride_length_s[0] * self.feature_extractor.sampling_rate / align_to) * align_to)
|
| 208 |
+
stride_right = int(round(stride_length_s[1] * self.feature_extractor.sampling_rate / align_to) * align_to)
|
| 209 |
+
if chunk_len < stride_left + stride_right:
|
| 210 |
+
raise ValueError("Chunk length must be superior to stride length")
|
| 211 |
+
for item in chunk_iter(
|
| 212 |
+
audio_array, self.feature_extractor, chunk_len, stride_left, stride_right, self.torch_dtype
|
| 213 |
+
):
|
| 214 |
+
item["speaker_id"] = s
|
| 215 |
+
item["speaker_span"] = [i.start, i.end]
|
| 216 |
+
item["is_last"] = m == len(timelines) - 1 and n == len(labels) - 1 and item["is_last"]
|
| 217 |
+
yield item
|
| 218 |
else:
|
| 219 |
+
if inputs.shape[0] > self.feature_extractor.n_samples:
|
| 220 |
+
processed = self.feature_extractor(
|
| 221 |
+
audio_array,
|
| 222 |
+
sampling_rate=self.feature_extractor.sampling_rate,
|
| 223 |
+
truncation=False,
|
| 224 |
+
padding="longest",
|
| 225 |
+
return_tensors="pt",
|
| 226 |
+
)
|
| 227 |
+
else:
|
| 228 |
+
processed = self.feature_extractor(
|
| 229 |
+
audio_array,
|
| 230 |
+
sampling_rate=self.feature_extractor.sampling_rate,
|
| 231 |
+
return_tensors="pt"
|
| 232 |
+
)
|
| 233 |
+
if self.torch_dtype is not None:
|
| 234 |
+
processed = processed.to(dtype=self.torch_dtype)
|
| 235 |
+
processed["speaker_id"] = s
|
| 236 |
+
processed["speaker_span"] = [i.start, i.end]
|
| 237 |
+
processed["is_last"] = m == len(timelines) - 1 and n == len(labels) - 1
|
| 238 |
+
yield processed
|
| 239 |
+
|
| 240 |
+
def _forward(self, model_inputs, **generate_kwargs):
|
| 241 |
+
generate_kwargs["attention_mask"] = model_inputs.pop("attention_mask", None)
|
| 242 |
+
generate_kwargs["input_features"] = model_inputs.pop("input_features")
|
| 243 |
+
tokens = self.model.generate(**generate_kwargs)
|
| 244 |
+
return {"tokens": tokens, **model_inputs}
|
| 245 |
+
|
| 246 |
+
def postprocess(self, model_outputs, **postprocess_parameters):
|
| 247 |
+
if postprocess_parameters["add_punctuation"] and self.punctuator is None:
|
| 248 |
+
self.punctuator = Punctuator()
|
| 249 |
+
outputs = {"chunks": []}
|
| 250 |
+
for o in model_outputs:
|
| 251 |
+
text, chunks = self.tokenizer._decode_asr(
|
| 252 |
+
[o],
|
| 253 |
+
return_language=postprocess_parameters["return_language"],
|
| 254 |
+
return_timestamps=postprocess_parameters["return_timestamps"],
|
| 255 |
+
time_precision=self.feature_extractor.chunk_length / self.model.config.max_source_positions,
|
| 256 |
+
)
|
| 257 |
+
start, end = o["speaker_span"]
|
| 258 |
+
new_chunk = []
|
| 259 |
+
for c in chunks["chunks"]:
|
| 260 |
+
c["timestamp"] = [round(c["timestamp"][0] + start, 2), round(c["timestamp"][0] + end, 2)]
|
| 261 |
+
c["speaker_id"] = o["speaker_id"]
|
| 262 |
+
new_chunk.append(c)
|
| 263 |
+
outputs["chunks"] += new_chunk
|
| 264 |
+
outputs["speaker_ids"] = sorted(set([o["speaker_id"] for o in outputs["chunks"]]))
|
| 265 |
+
for s in outputs["speaker_ids"]:
|
| 266 |
+
outputs[f"chunk/{s}"] = sorted([o for o in outputs["chunks"] if o["speaker_id"] == s], key=lambda x: x["timestamp"][0])
|
| 267 |
+
outputs[f"text/{s}"] = "".join([i["text"] for i in outputs[f"chunk/{s}"]])
|
| 268 |
+
if postprocess_parameters["add_punctuation"]:
|
| 269 |
+
outputs[f"text/{s}"] = self.punctuator.punctuate(outputs[f"text/{s}"])
|
| 270 |
return outputs
|
pipeline/sample_diarization_japanese.mp3
ADDED
|
Binary file (858 kB). View file
|
|
|
sample_audio/sample_diarization_japanese.mp3
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:75afe01062ebd4b4e3555e8ef41becd56274e2d9b4f8c26919f870636a1c55f6
|
| 3 |
+
size 857719
|