asahi417 commited on
Commit
60f2cfb
·
verified ·
1 Parent(s): a10e123

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: ja
3
+ tags:
4
+ - audio
5
+ - automatic-speech-recognition
6
+ license: apache-2.0
7
+ ---
8
+
9
+ # Kotoba-Whisper: kotoba-whisper-v2.0 for Whisper cpp
10
+ This repository contains the model weights for [kotoba-tech/kotoba-whisper-v2.0](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0)
11
+ converted to [GGML](https://github.com/ggerganov/ggml) format. GGML is the weight format expected by C/C++ packages
12
+ such as [Whisper.cpp](https://github.com/ggerganov/whisper.cpp), for which we provide an example below.
13
+
14
+ ## Usage
15
+ Kotoba-Whisper can be run with the [Whisper.cpp](https://github.com/ggerganov/whisper.cpp) package with the original
16
+ sequential long-form transcription algorithm.
17
+
18
+ Steps for getting started:
19
+
20
+ 1. Clone the Whisper.cpp repository:
21
+ ```
22
+ git clone https://github.com/ggerganov/whisper.cpp.git
23
+ cd whisper.cpp
24
+ ```
25
+ 2. Download the GGML weights for `kotoba-tech/kotoba-whisper-v2.0`:
26
+
27
+ ```bash
28
+ wget https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0-ggml/resolve/main/ggml-kotoba-whisper-v2.0.bin -P ./models
29
+ ```
30
+
31
+ 3. Run inference using the provided sample audio:
32
+
33
+ ```bash
34
+ wget https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0-ggml/resolve/main/sample_ja_speech.wav
35
+ make -j && ./main -m models/ggml-kotoba-whisper-v2.0.bin -f sample_ja_speech.wav --output-file transcription --output-json
36
+ ```
37
+
38
+ Note that it runs only with 16-bit WAV files, so make sure to convert your input before running the tool. For example, you can use ffmpeg like this:
39
+ ```
40
+ ffmpeg -i input.mp3 -ar 16000 -ac 1 -c:a pcm_s16le output.wav
41
+ ```
42
+
43
+ ### Benchmark
44
+ Please refer to the [kotoba-tech/kotoba-whisper-v1.0-ggml](https://huggingface.co/kotoba-tech/kotoba-whisper-v1.0-ggml) for the detail of speed up.
45
+
46
+ ### Quantized Model
47
+ To use the quantized model, download the quantized GGML weights:
48
+
49
+ ```bash
50
+ wget https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0-ggml/resolve/main/ggml-kotoba-whisper-v2.0-q5_0.bin -P ./models
51
+ ```
52
+
53
+ Run inference on the sample audio:
54
+ ```bash
55
+ make -j && ./main -m models/ggml-kotoba-whisper-v2.0-q5_0.bin -f sample_ja_speech.wav --output-file transcription.quantized --output-json
56
+ ```
57
+
58
+ Note that the benchmark results are almost identical to the raw non-quantized model weight.
59
+
60
+ ### Conversion details
61
+ The original model was converted with the following command:
62
+
63
+ ```
64
+ # clone OpenAI whisper and whisper.cpp
65
+ git clone https://github.com/openai/whisper
66
+ git clone https://github.com/ggerganov/whisper.cpp
67
+
68
+ # get the models
69
+ cd whisper.cpp/models
70
+ git clone https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0
71
+
72
+ # convert to ggml
73
+ python3 ./convert-h5-to-ggml.py ./kotoba-whisper-v2.0/ ../../whisper .
74
+ mv ggml-model.bin ggml-kotoba-whisper-v2.0
75
+
76
+ # quantize ggml model
77
+ cd ../
78
+ ./quantize models/ggml-kotoba-whisper-v2.0.bin models/ggml-kotoba-whisper-v2.0-q5_0.bin q5_0
79
+ ```
80
+
81
+ ## Model Details
82
+
83
+ For more information about the kotoba-whisper-v2.0, refer to the original [model card](https://huggingface.co/kotoba-tech/kotoba-whisper-v2.0).