Create benchmark.py
Browse files- benchmark.py +27 -0
benchmark.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from pprint import pprint
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
|
| 5 |
+
# config
|
| 6 |
+
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
| 7 |
+
generate_kwargs = {"language": "japanese", "task": "transcribe"}
|
| 8 |
+
|
| 9 |
+
# load model
|
| 10 |
+
pipe = pipeline(
|
| 11 |
+
"automatic-speech-recognition",
|
| 12 |
+
model=model_id,
|
| 13 |
+
chunk_length_s=15,
|
| 14 |
+
batch_size=64
|
| 15 |
+
)
|
| 16 |
+
test_audio = [
|
| 17 |
+
"kotoba-whisper-eval/audio/long_interview_1.wav",
|
| 18 |
+
"kotoba-whisper-eval/audio/manzai1.wav",
|
| 19 |
+
"kotoba-whisper-eval/audio/manzai2.wav",
|
| 20 |
+
"kotoba-whisper-eval/audio/manzai3.wav"
|
| 21 |
+
]
|
| 22 |
+
elapsed = {}
|
| 23 |
+
for x in test_audio:
|
| 24 |
+
start = time()
|
| 25 |
+
transcription = pipe(x, generate_kwargs=generate_kwargs)
|
| 26 |
+
elapsed[x] = time() - start
|
| 27 |
+
pprint(elapsed)
|