Update README.md
Browse files
README.md
CHANGED
|
@@ -123,53 +123,49 @@ class to transcribe short-form audio files (< 30-seconds) as follows:
|
|
| 123 |
|
| 124 |
```python
|
| 125 |
import torch
|
| 126 |
-
from transformers import
|
| 127 |
from datasets import load_dataset, Audio
|
| 128 |
|
| 129 |
# config
|
| 130 |
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
| 131 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 132 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
| 133 |
|
| 134 |
# load model
|
| 135 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
| 136 |
-
model.to(device)
|
| 137 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
| 138 |
pipe = pipeline(
|
| 139 |
"automatic-speech-recognition",
|
| 140 |
-
model=
|
| 141 |
-
tokenizer=processor.tokenizer,
|
| 142 |
-
feature_extractor=processor.feature_extractor,
|
| 143 |
-
max_new_tokens=128,
|
| 144 |
torch_dtype=torch_dtype,
|
| 145 |
device=device,
|
|
|
|
| 146 |
)
|
| 147 |
|
| 148 |
# load sample audio & downsample to 16kHz
|
| 149 |
dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test")
|
| 150 |
-
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
|
| 151 |
sample = dataset[0]["audio"]
|
| 152 |
|
| 153 |
# run inference
|
| 154 |
-
result = pipe(sample)
|
| 155 |
print(result["text"])
|
| 156 |
```
|
| 157 |
|
| 158 |
- To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline (make sure the audio is sampled in 16kHz):
|
| 159 |
```diff
|
| 160 |
-
- result = pipe(sample)
|
| 161 |
-
+ result = pipe("audio.mp3")
|
| 162 |
```
|
| 163 |
|
| 164 |
- For segment-level timestamps, pass the argument `return_timestamps=True` and return the `"chunks"` output:
|
| 165 |
```python
|
| 166 |
-
result = pipe(sample, return_timestamps=True)
|
| 167 |
print(result["chunks"])
|
| 168 |
```
|
| 169 |
|
| 170 |
-
|
| 171 |
-
Kotoba-whisper is designed to be compatible with OpenAI's sequential long-form transcription algorithm. This algorithm uses a sliding window for buffered
|
| 172 |
inference of long audio files (> 30-seconds), and returns more accurate transcriptions compared to the [chunked long-form algorithm](#chunked-long-form).
|
|
|
|
| 173 |
The sequential long-form algorithm should be used in either of the following scenarios:
|
| 174 |
|
| 175 |
1. Transcription accuracy is the most important factor, and latency is less of a consideration
|
|
@@ -180,41 +176,6 @@ described [below](#chunked-long-form). For a detailed explanation of the differe
|
|
| 180 |
the [Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf). The [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
| 181 |
class can be used to transcribe long audio files with the sequential algorithm as follows:
|
| 182 |
|
| 183 |
-
```python
|
| 184 |
-
import torch
|
| 185 |
-
import numpy as np
|
| 186 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 187 |
-
from datasets import load_dataset
|
| 188 |
-
|
| 189 |
-
# config
|
| 190 |
-
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
| 191 |
-
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 192 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 193 |
-
|
| 194 |
-
# load model
|
| 195 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
| 196 |
-
model.to(device)
|
| 197 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
| 198 |
-
pipe = pipeline(
|
| 199 |
-
"automatic-speech-recognition",
|
| 200 |
-
model=model,
|
| 201 |
-
tokenizer=processor.tokenizer,
|
| 202 |
-
feature_extractor=processor.feature_extractor,
|
| 203 |
-
max_new_tokens=128,
|
| 204 |
-
torch_dtype=torch_dtype,
|
| 205 |
-
device=device,
|
| 206 |
-
)
|
| 207 |
-
|
| 208 |
-
# load sample audio (concatenate instances to create a long audio)
|
| 209 |
-
dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test")
|
| 210 |
-
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
|
| 211 |
-
sample = {"array": np.concatenate([i["array"] for i in dataset[:20]["audio"]]), "sampling_rate": dataset[0]['audio']['sampling_rate'], "path": "tmp"}
|
| 212 |
-
|
| 213 |
-
# run inference
|
| 214 |
-
result = pipe(sample)
|
| 215 |
-
print(result["text"])
|
| 216 |
-
```
|
| 217 |
-
|
| 218 |
|
| 219 |
### Chunked Long-Form
|
| 220 |
This algorithm should be used when a single large audio file is being transcribed and the fastest possible inference is required. In such circumstances,
|
|
@@ -224,37 +185,33 @@ is optimal. To activate batching over long audio files, pass the argument `batch
|
|
| 224 |
|
| 225 |
```python
|
| 226 |
import torch
|
| 227 |
-
from transformers import
|
| 228 |
from datasets import load_dataset
|
| 229 |
|
| 230 |
# config
|
| 231 |
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
| 232 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 233 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
| 234 |
|
| 235 |
# load model
|
| 236 |
-
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
| 237 |
-
model.to(device)
|
| 238 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
| 239 |
pipe = pipeline(
|
| 240 |
"automatic-speech-recognition",
|
| 241 |
-
model=
|
| 242 |
-
tokenizer=processor.tokenizer,
|
| 243 |
-
feature_extractor=processor.feature_extractor,
|
| 244 |
-
max_new_tokens=128,
|
| 245 |
-
chunk_length_s=25,
|
| 246 |
-
batch_size=16,
|
| 247 |
torch_dtype=torch_dtype,
|
| 248 |
device=device,
|
|
|
|
|
|
|
|
|
|
| 249 |
)
|
| 250 |
|
| 251 |
# load sample audio (concatenate instances to create a long audio)
|
| 252 |
dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test")
|
| 253 |
-
|
| 254 |
-
sample = {"array": np.concatenate([i["array"] for i in dataset[:20]["audio"]]), "sampling_rate": dataset[0]['audio']['sampling_rate'], "path": "tmp"}
|
| 255 |
|
| 256 |
# run inference
|
| 257 |
-
result = pipe(sample)
|
| 258 |
print(result["text"])
|
| 259 |
```
|
| 260 |
|
|
@@ -263,34 +220,41 @@ Kotoba-whisper can generate transcription with prompting as below:
|
|
| 263 |
|
| 264 |
```python
|
| 265 |
import torch
|
| 266 |
-
from transformers import
|
| 267 |
from datasets import load_dataset, Audio
|
| 268 |
|
| 269 |
# config
|
| 270 |
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
| 271 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 272 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
| 273 |
|
| 274 |
# load model
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
|
| 279 |
# load sample audio & downsample to 16kHz
|
| 280 |
dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test")
|
| 281 |
-
dataset = dataset.cast_column("audio", Audio(sampling_rate=16000))
|
| 282 |
-
input_features = processor(dataset[10]["audio"]["array"], return_tensors="pt").input_features
|
| 283 |
|
| 284 |
# --- Without prompt ---
|
| 285 |
-
|
| 286 |
-
print(
|
| 287 |
-
#
|
| 288 |
|
| 289 |
# --- With prompt ---: Let's change `81` to `91`.
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
#
|
|
|
|
|
|
|
| 294 |
```
|
| 295 |
|
| 296 |
### Additional Speed & Memory Improvements
|
|
@@ -310,31 +274,8 @@ pip install flash-attn --no-build-isolation
|
|
| 310 |
Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`:
|
| 311 |
|
| 312 |
```diff
|
| 313 |
-
-
|
| 314 |
-
+
|
| 315 |
-
```
|
| 316 |
-
|
| 317 |
-
#### Torch Scale-Product-Attention (SDPA)
|
| 318 |
-
|
| 319 |
-
If your GPU does not support Flash Attention, we recommend making use of PyTorch [scaled dot-product attention (SDPA)](https://pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html).
|
| 320 |
-
This attention implementation is activated **by default** for PyTorch versions 2.1.1 or greater. To check
|
| 321 |
-
whether you have a compatible PyTorch version, run the following Python code snippet:
|
| 322 |
-
|
| 323 |
-
```python
|
| 324 |
-
from transformers.utils import is_torch_sdpa_available
|
| 325 |
-
|
| 326 |
-
print(is_torch_sdpa_available())
|
| 327 |
-
```
|
| 328 |
-
|
| 329 |
-
If the above returns `True`, you have a valid version of PyTorch installed and SDPA is activated by default. If it
|
| 330 |
-
returns `False`, you need to upgrade your PyTorch version according to the [official instructions](https://pytorch.org/get-started/locally/)
|
| 331 |
-
|
| 332 |
-
Once a valid PyTorch version is installed, SDPA is activated by default. It can also be set explicitly by specifying
|
| 333 |
-
`attn_implementation="sdpa"` as follows:
|
| 334 |
-
|
| 335 |
-
```diff
|
| 336 |
-
- model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True)
|
| 337 |
-
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True, attn_implementation="sdpa")
|
| 338 |
```
|
| 339 |
|
| 340 |
|
|
|
|
| 123 |
|
| 124 |
```python
|
| 125 |
import torch
|
| 126 |
+
from transformers import pipeline
|
| 127 |
from datasets import load_dataset, Audio
|
| 128 |
|
| 129 |
# config
|
| 130 |
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
| 131 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 132 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 133 |
+
model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
|
| 134 |
+
generate_kwargs = {"language": "japanese", "task": "transcribe"}
|
| 135 |
|
| 136 |
# load model
|
|
|
|
|
|
|
|
|
|
| 137 |
pipe = pipeline(
|
| 138 |
"automatic-speech-recognition",
|
| 139 |
+
model=model_id,
|
|
|
|
|
|
|
|
|
|
| 140 |
torch_dtype=torch_dtype,
|
| 141 |
device=device,
|
| 142 |
+
model_kwargs=model_kwargs
|
| 143 |
)
|
| 144 |
|
| 145 |
# load sample audio & downsample to 16kHz
|
| 146 |
dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test")
|
|
|
|
| 147 |
sample = dataset[0]["audio"]
|
| 148 |
|
| 149 |
# run inference
|
| 150 |
+
result = pipe(sample, generate_kwargs=generate_kwargs)
|
| 151 |
print(result["text"])
|
| 152 |
```
|
| 153 |
|
| 154 |
- To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline (make sure the audio is sampled in 16kHz):
|
| 155 |
```diff
|
| 156 |
+
- result = pipe(sample, generate_kwargs=generate_kwargs)
|
| 157 |
+
+ result = pipe("audio.mp3", generate_kwargs=generate_kwargs)
|
| 158 |
```
|
| 159 |
|
| 160 |
- For segment-level timestamps, pass the argument `return_timestamps=True` and return the `"chunks"` output:
|
| 161 |
```python
|
| 162 |
+
result = pipe(sample, return_timestamps=True, generate_kwargs=generate_kwargs)
|
| 163 |
print(result["chunks"])
|
| 164 |
```
|
| 165 |
|
| 166 |
+
***Sequential Long-Form:*** Kotoba-whisper is designed to be compatible with OpenAI's sequential long-form transcription algorithm. This algorithm uses a sliding window for buffered
|
|
|
|
| 167 |
inference of long audio files (> 30-seconds), and returns more accurate transcriptions compared to the [chunked long-form algorithm](#chunked-long-form).
|
| 168 |
+
As default, if long audio files are passed to the model, it will transcribes with the sequential long-form transcription.
|
| 169 |
The sequential long-form algorithm should be used in either of the following scenarios:
|
| 170 |
|
| 171 |
1. Transcription accuracy is the most important factor, and latency is less of a consideration
|
|
|
|
| 176 |
the [Distil-Whisper paper](https://arxiv.org/pdf/2311.00430.pdf). The [`pipeline`](https://huggingface.co/docs/transformers/main_classes/pipelines#transformers.AutomaticSpeechRecognitionPipeline)
|
| 177 |
class can be used to transcribe long audio files with the sequential algorithm as follows:
|
| 178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
### Chunked Long-Form
|
| 181 |
This algorithm should be used when a single large audio file is being transcribed and the fastest possible inference is required. In such circumstances,
|
|
|
|
| 185 |
|
| 186 |
```python
|
| 187 |
import torch
|
| 188 |
+
from transformers import pipeline
|
| 189 |
from datasets import load_dataset
|
| 190 |
|
| 191 |
# config
|
| 192 |
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
| 193 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 194 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 195 |
+
model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
|
| 196 |
+
generate_kwargs = {"language": "japanese", "task": "transcribe"}
|
| 197 |
|
| 198 |
# load model
|
|
|
|
|
|
|
|
|
|
| 199 |
pipe = pipeline(
|
| 200 |
"automatic-speech-recognition",
|
| 201 |
+
model=model_id,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
torch_dtype=torch_dtype,
|
| 203 |
device=device,
|
| 204 |
+
model_kwargs=model_kwargs,
|
| 205 |
+
chunk_length_s=25,
|
| 206 |
+
batch_size=16
|
| 207 |
)
|
| 208 |
|
| 209 |
# load sample audio (concatenate instances to create a long audio)
|
| 210 |
dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test")
|
| 211 |
+
sample = {"array": np.concatenate([i["array"] for i in dataset[:20]["audio"]]), "sampling_rate": dataset[0]['audio']['sampling_rate']}
|
|
|
|
| 212 |
|
| 213 |
# run inference
|
| 214 |
+
result = pipe(sample, generate_kwargs=generate_kwargs)
|
| 215 |
print(result["text"])
|
| 216 |
```
|
| 217 |
|
|
|
|
| 220 |
|
| 221 |
```python
|
| 222 |
import torch
|
| 223 |
+
from transformers import pipeline
|
| 224 |
from datasets import load_dataset, Audio
|
| 225 |
|
| 226 |
# config
|
| 227 |
model_id = "kotoba-tech/kotoba-whisper-v1.0"
|
| 228 |
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 229 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 230 |
+
model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
|
| 231 |
+
generate_kwargs = {"language": "japanese", "task": "transcribe"}
|
| 232 |
|
| 233 |
# load model
|
| 234 |
+
pipe = pipeline(
|
| 235 |
+
"automatic-speech-recognition",
|
| 236 |
+
model=model_id,
|
| 237 |
+
torch_dtype=torch_dtype,
|
| 238 |
+
device=device,
|
| 239 |
+
model_kwargs=model_kwargs
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
|
| 243 |
# load sample audio & downsample to 16kHz
|
| 244 |
dataset = load_dataset("japanese-asr/ja_asr.reazonspeech_test", split="test")
|
|
|
|
|
|
|
| 245 |
|
| 246 |
# --- Without prompt ---
|
| 247 |
+
result = pipe(dataset[10]["audio"], generate_kwargs=generate_kwargs)
|
| 248 |
+
print(result['text'])
|
| 249 |
+
# 81歳、力強い走りに変わってきます。
|
| 250 |
|
| 251 |
# --- With prompt ---: Let's change `81` to `91`.
|
| 252 |
+
prompt = "91歳"
|
| 253 |
+
generate_kwargs['prompt_ids'] = pipe.tokenizer.get_prompt_ids(prompt, return_tensors="pt").to(device)
|
| 254 |
+
result = pipe(dataset[10]["audio"], generate_kwargs=generate_kwargs)
|
| 255 |
+
result['text'] = result['text'][1 + len(prompt) + 1:] # prompt has been added at the beginning of the output now, so remove it.
|
| 256 |
+
print(result['text'])
|
| 257 |
+
# あっぶったでもスルガさん、91歳、力強い走りに変わってきます。
|
| 258 |
```
|
| 259 |
|
| 260 |
### Additional Speed & Memory Improvements
|
|
|
|
| 274 |
Then pass `attn_implementation="flash_attention_2"` to `from_pretrained`:
|
| 275 |
|
| 276 |
```diff
|
| 277 |
+
- model_kwargs = {"attn_implementation": "sdpa"} if torch.cuda.is_available() else {}
|
| 278 |
+
+ model_kwargs = {"attn_implementation": "flash_attention_2"} if torch.cuda.is_available() else {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
```
|
| 280 |
|
| 281 |
|