Update README.md
Browse files
README.md
CHANGED
|
@@ -1,199 +1,167 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
library_name: transformers
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
|
|
|
| 5 |
|
| 6 |
-
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
|
|
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
|
|
|
| 19 |
|
| 20 |
-
-
|
| 21 |
-
|
| 22 |
-
-
|
| 23 |
-
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
| 31 |
|
| 32 |
-
|
| 33 |
-
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
| 36 |
-
|
|
|
|
|
|
|
| 37 |
|
| 38 |
-
|
|
|
|
| 39 |
|
| 40 |
-
|
|
|
|
| 41 |
|
| 42 |
-
|
| 43 |
|
| 44 |
-
|
| 45 |
|
| 46 |
-
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
|
| 50 |
-
|
| 51 |
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
|
| 54 |
-
|
| 55 |
|
| 56 |
-
|
| 57 |
|
| 58 |
-
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
###
|
| 65 |
|
| 66 |
-
|
| 67 |
|
| 68 |
-
|
|
|
|
| 69 |
|
| 70 |
-
|
|
|
|
| 71 |
|
| 72 |
-
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
###
|
| 79 |
|
| 80 |
-
|
| 81 |
|
| 82 |
-
|
|
|
|
| 83 |
|
| 84 |
-
|
| 85 |
|
| 86 |
-
|
|
|
|
|
|
|
| 87 |
|
| 88 |
-
|
|
|
|
| 89 |
|
| 90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
|
|
|
|
|
|
|
| 94 |
|
| 95 |
-
|
| 96 |
|
| 97 |
-
|
| 98 |
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
-
|
| 161 |
-
[More Information Needed]
|
| 162 |
-
|
| 163 |
-
#### Hardware
|
| 164 |
-
|
| 165 |
-
[More Information Needed]
|
| 166 |
-
|
| 167 |
-
#### Software
|
| 168 |
-
|
| 169 |
-
[More Information Needed]
|
| 170 |
-
|
| 171 |
-
## Citation [optional]
|
| 172 |
-
|
| 173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
-
|
| 175 |
-
**BibTeX:**
|
| 176 |
-
|
| 177 |
-
[More Information Needed]
|
| 178 |
-
|
| 179 |
-
**APA:**
|
| 180 |
-
|
| 181 |
-
[More Information Needed]
|
| 182 |
-
|
| 183 |
-
## Glossary [optional]
|
| 184 |
-
|
| 185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
-
|
| 187 |
-
[More Information Needed]
|
| 188 |
-
|
| 189 |
-
## More Information [optional]
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 1 |
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- wikimedia/wikipedia
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
library_name: transformers
|
| 8 |
+
tags:
|
| 9 |
+
- LLM2Vec
|
| 10 |
+
- encoder
|
| 11 |
+
- LLM
|
| 12 |
+
- classification
|
| 13 |
+
- NER
|
| 14 |
+
- question-answering
|
| 15 |
---
|
| 16 |
+
# LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
|
| 17 |
|
| 18 |
+
> LLM2Vec is a simple recipe to convert decoder-only LLMs into text encoders. It consists of 3 simple steps: 1) enabling bidirectional attention, 2) masked next token prediction, and 3) unsupervised contrastive learning. The model can be further fine-tuned to achieve state-of-the-art performance.
|
| 19 |
+
- **Repository:** https://github.com/McGill-NLP/llm2vec
|
| 20 |
+
- **Paper:** https://arxiv.org/abs/2404.05961
|
| 21 |
|
| 22 |
+
## Overview:
|
| 23 |
+
This is a bi-directional version of Tiny-LLaMA-1.0B trained with masked token prediction on the Wikipedia dataset. Modern decoder models offer several advantages over classical encoders like BERT:
|
| 24 |
|
| 25 |
+
They are pre-trained on more recent textual corpora
|
| 26 |
+
They are trained on larger and more diverse datasets
|
| 27 |
+
Modern decoders have better support for long-context windows
|
| 28 |
+
Flash-attention support is available for these models
|
| 29 |
|
| 30 |
+
Considering these benefits, we are excited to release a series of decoder models tuned to work in a bi-directional setting. This approach combines the strengths of modern decoder architectures with the versatility of bi-directional context understanding, potentially opening up new possibilities for various natural language processing tasks, such as NER.
|
| 31 |
|
| 32 |
+
In comparison to original LLM2Vec we trained all weights of LLama model, it potentially improve bi-directional abilities of the model.
|
| 33 |
|
| 34 |
+
## Installation
|
| 35 |
+
```bash
|
| 36 |
+
pip install llm2vec
|
| 37 |
+
```
|
| 38 |
|
| 39 |
+
## Usage
|
| 40 |
+
```python
|
| 41 |
+
from llm2vec.models import LlamaBiModel
|
| 42 |
|
| 43 |
+
import torch
|
| 44 |
+
from transformers import AutoTokenizer
|
| 45 |
|
| 46 |
+
# Loading base Mistral model, along with custom code that enables bidirectional connections in decoder-only LLMs. MNTP LoRA weights are merged into the base model.
|
| 47 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 48 |
+
"knowledgator/Llama-encoder-1.0B"
|
| 49 |
+
)
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
model = LLamaBiModel.from_pretrained("knowledgator/Llama-encoder-1.0B")
|
| 52 |
|
| 53 |
+
text = "The quick brown fox jumps over the lazy dog."
|
| 54 |
|
| 55 |
+
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=512)
|
|
|
|
|
|
|
| 56 |
|
| 57 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 58 |
+
model = model.to(device)
|
| 59 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 60 |
|
| 61 |
+
with torch.no_grad():
|
| 62 |
+
outputs = model(**inputs)
|
| 63 |
|
| 64 |
+
last_hidden_states = outputs.last_hidden_state
|
| 65 |
+
```
|
| 66 |
|
| 67 |
+
Here's an improved and expanded version of the README snippet:
|
| 68 |
|
| 69 |
+
## Adapting for Different Discriminative Tasks
|
| 70 |
|
| 71 |
+
Our bi-directional LLaMA model can be easily adapted for various discriminative tasks such as text classification, question answering, and token classification.
|
| 72 |
+
To use these specialized versions, we provide a [fork of LLM2Vec](https://github.com/Knowledgator/llm2vec) with additional functionality.
|
| 73 |
|
| 74 |
+
### Installation
|
| 75 |
|
| 76 |
+
To get started, clone our fork of LLM2Vec and install it:
|
| 77 |
|
| 78 |
+
```bash
|
| 79 |
+
git clone https://github.com/Knowledgator/llm2vec.git
|
| 80 |
+
cd llm2vec
|
| 81 |
+
pip install -e .
|
| 82 |
+
```
|
| 83 |
|
| 84 |
+
Using `-e` flag installs the package in editable mode, which is useful for development.
|
| 85 |
|
| 86 |
+
### Usage
|
| 87 |
|
| 88 |
+
Here's how to import and use the models for different tasks:
|
| 89 |
|
| 90 |
+
```python
|
| 91 |
+
from llm2vec import (
|
| 92 |
+
AutoLLMEncoderForSequenceClassification,
|
| 93 |
+
AutoLLMEncoderForQuestionAnswering,
|
| 94 |
+
AutoLLMEncoderForTokenClassification
|
| 95 |
+
)
|
| 96 |
|
| 97 |
+
# Load models for different tasks
|
| 98 |
+
classification_model = AutoLLMEncoderForSequenceClassification.from_pretrained('knowledgator/Llama-encoder-1.0B')
|
| 99 |
+
question_answering_model = AutoLLMEncoderForQuestionAnswering.from_pretrained('knowledgator/Llama-encoder-1.0B')
|
| 100 |
+
token_classification_model = AutoLLMEncoderForTokenClassification.from_pretrained('knowledgator/Llama-encoder-1.0B')
|
| 101 |
+
```
|
| 102 |
|
| 103 |
+
### Example: Text Classification
|
| 104 |
|
| 105 |
+
Here's a basic example of how to use the model for text classification:
|
| 106 |
|
| 107 |
+
```python
|
| 108 |
+
from transformers import AutoTokenizer
|
| 109 |
|
| 110 |
+
# Load tokenizer
|
| 111 |
+
tokenizer = AutoTokenizer.from_pretrained('knowledgator/Llama-encoder-1.0B')
|
| 112 |
|
| 113 |
+
# Prepare input
|
| 114 |
+
text = "This movie is great!"
|
| 115 |
+
inputs = tokenizer(text, return_tensors="pt")
|
| 116 |
|
| 117 |
+
# Get classification logits
|
| 118 |
+
outputs = classification_model(**inputs)
|
| 119 |
+
logits = outputs.logits
|
| 120 |
|
| 121 |
+
# The logits can be used with a softmax function to get probabilities
|
| 122 |
+
# or you can use torch.argmax(logits, dim=1) to get the predicted class
|
| 123 |
+
```
|
| 124 |
|
| 125 |
+
### Fine-tuning
|
| 126 |
|
| 127 |
+
To fine-tune these models on your specific task:
|
| 128 |
|
| 129 |
+
1. Prepare your dataset in a format compatible with HuggingFace's `datasets` library.
|
| 130 |
+
2. Use the `Trainer` class from HuggingFace's `transformers` library to fine-tune the model.
|
| 131 |
|
| 132 |
+
Here's a basic example:
|
| 133 |
|
| 134 |
+
```python
|
| 135 |
+
from transformers import Trainer, TrainingArguments
|
| 136 |
+
from datasets import load_dataset
|
| 137 |
|
| 138 |
+
# Load your dataset
|
| 139 |
+
dataset = load_dataset("your_dataset")
|
| 140 |
|
| 141 |
+
# Define training arguments
|
| 142 |
+
training_args = TrainingArguments(
|
| 143 |
+
output_dir="./results",
|
| 144 |
+
num_train_epochs=3,
|
| 145 |
+
per_device_train_batch_size=8,
|
| 146 |
+
per_device_eval_batch_size=8,
|
| 147 |
+
warmup_steps=500,
|
| 148 |
+
weight_decay=0.01,
|
| 149 |
+
logging_dir="./logs",
|
| 150 |
+
)
|
| 151 |
|
| 152 |
+
# Initialize Trainer
|
| 153 |
+
trainer = Trainer(
|
| 154 |
+
model=classification_model,
|
| 155 |
+
args=training_args,
|
| 156 |
+
train_dataset=dataset["train"],
|
| 157 |
+
eval_dataset=dataset["test"],
|
| 158 |
+
)
|
| 159 |
|
| 160 |
+
# Fine-tune the model
|
| 161 |
+
trainer.train()
|
| 162 |
+
```
|
| 163 |
|
| 164 |
+
### Contributing
|
| 165 |
|
| 166 |
+
We welcome contributions! If you have suggestions for improvements or encounter any issues, please open an issue or submit a pull request on our [GitHub repository](https://github.com/Knowledgator/llm2vec).
|
| 167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|