kingabzpro commited on
Commit
af500d9
·
verified ·
1 Parent(s): f84fe8d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +25 -34
README.md CHANGED
@@ -1,18 +1,25 @@
1
  ---
2
  base_model: openai/gpt-oss-20b
3
- datasets: gpt-oss-20b-dermatology-qa
 
4
  library_name: transformers
5
  model_name: gpt-oss-20b-dermatology-qa
6
  tags:
7
  - generated_from_trainer
8
- - sft
9
  - trl
 
 
 
10
  licence: license
 
 
 
 
11
  ---
12
 
13
  # Model Card for gpt-oss-20b-dermatology-qa
14
 
15
- This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) on the [gpt-oss-20b-dermatology-qa](https://huggingface.co/datasets/gpt-oss-20b-dermatology-qa) dataset.
16
  It has been trained using [TRL](https://github.com/huggingface/trl).
17
 
18
  ## Quick start
@@ -20,40 +27,24 @@ It has been trained using [TRL](https://github.com/huggingface/trl).
20
  ```python
21
  from transformers import pipeline
22
 
23
- question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
24
- generator = pipeline("text-generation", model="kingabzpro/gpt-oss-20b-dermatology-qa", device="cuda")
25
- output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
26
- print(output["generated_text"])
27
- ```
28
-
29
- ## Training procedure
30
-
31
-
32
 
 
 
 
 
 
 
33
 
34
- This model was trained with SFT.
35
-
36
- ### Framework versions
37
-
38
- - TRL: 0.22.1
39
- - Transformers: 4.55.4
40
- - Pytorch: 2.8.0.dev20250319+cu128
41
- - Datasets: 4.0.0
42
- - Tokenizers: 0.21.4
43
-
44
- ## Citations
45
 
 
 
 
 
 
 
46
 
 
47
 
48
- Cite TRL as:
49
-
50
- ```bibtex
51
- @misc{vonwerra2022trl,
52
- title = {{TRL: Transformer Reinforcement Learning}},
53
- author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
54
- year = 2020,
55
- journal = {GitHub repository},
56
- publisher = {GitHub},
57
- howpublished = {\url{https://github.com/huggingface/trl}}
58
- }
59
  ```
 
1
  ---
2
  base_model: openai/gpt-oss-20b
3
+ datasets:
4
+ - kingabzpro/dermatology-qa-firecrawl-dataset
5
  library_name: transformers
6
  model_name: gpt-oss-20b-dermatology-qa
7
  tags:
8
  - generated_from_trainer
 
9
  - trl
10
+ - sft
11
+ - dermatology
12
+ - medical
13
  licence: license
14
+ license: apache-2.0
15
+ language:
16
+ - en
17
+ pipeline_tag: text-generation
18
  ---
19
 
20
  # Model Card for gpt-oss-20b-dermatology-qa
21
 
22
+ This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) on the [kingabzpro/dermatology-qa-firecrawl-dataset](https://huggingface.co/kingabzpro/gpt-oss-20b-medical-qa) dataset.
23
  It has been trained using [TRL](https://github.com/huggingface/trl).
24
 
25
  ## Quick start
 
27
  ```python
28
  from transformers import pipeline
29
 
30
+ question = "How does the source suggest clinicians approach the diagnosis of rosacea?"
 
 
 
 
 
 
 
 
31
 
32
+ # Load pipeline
33
+ generator = pipeline(
34
+ "text-generation",
35
+ model="kingabzpro/gpt-oss-20b-dermatology-qa",
36
+ device="cuda" # or device=0
37
+ )
38
 
 
 
 
 
 
 
 
 
 
 
 
39
 
40
+ # Run inference (passing in chat-style format)
41
+ output = generator(
42
+ [{"role": "user", "content": question}],
43
+ max_new_tokens=200,
44
+ return_full_text=False
45
+ )[0]
46
 
47
+ print(output["generated_text"])
48
 
49
+ # The source says that clinicians should use a combination of clinical signs and symptoms when diagnosing rosacea, rather than relying on a single feature.
 
 
 
 
 
 
 
 
 
 
50
  ```