File size: 1,307 Bytes
7bff84b af500d9 7bff84b 4509173 af500d9 7bff84b af500d9 7bff84b af500d9 7bff84b af500d9 01b69bc af500d9 01b69bc 4509173 af500d9 01b69bc af500d9 7bff84b af500d9 4509173 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
---
base_model: openai/gpt-oss-20b
datasets:
- kingabzpro/dermatology-qa-firecrawl-dataset
library_name: transformers
model_name: gpt-oss-20b-dermatology-qa
tags:
- generated_from_trainer
- trl
- sft
- dermatology
- medical
licence: license
license: apache-2.0
language:
- en
pipeline_tag: text-generation
---
# Model Card for gpt-oss-20b-dermatology-qa
This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) on the [kingabzpro/dermatology-qa-firecrawl-dataset](https://huggingface.co/kingabzpro/gpt-oss-20b-medical-qa) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).
## Quick start
```python
from transformers import pipeline
question = "How does the source suggest clinicians approach the diagnosis of rosacea?"
# Load pipeline
generator = pipeline(
"text-generation",
model="kingabzpro/gpt-oss-20b-dermatology-qa",
device="cuda" # or device=0
)
# Run inference (passing in chat-style format)
output = generator(
[{"role": "user", "content": question}],
max_new_tokens=200,
return_full_text=False
)[0]
print(output["generated_text"])
# The source says that clinicians should use a combination of clinical signs and symptoms when diagnosing rosacea, rather than relying on a single feature.
``` |