File size: 1,307 Bytes
7bff84b
 
af500d9
 
7bff84b
 
 
 
4509173
af500d9
 
 
7bff84b
af500d9
 
 
 
7bff84b
 
 
 
af500d9
7bff84b
 
 
 
 
 
 
af500d9
01b69bc
af500d9
 
 
 
 
 
01b69bc
4509173
af500d9
 
 
 
 
 
01b69bc
af500d9
7bff84b
af500d9
4509173
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
base_model: openai/gpt-oss-20b
datasets:
- kingabzpro/dermatology-qa-firecrawl-dataset
library_name: transformers
model_name: gpt-oss-20b-dermatology-qa
tags:
- generated_from_trainer
- trl
- sft
- dermatology
- medical
licence: license
license: apache-2.0
language:
- en
pipeline_tag: text-generation
---

# Model Card for gpt-oss-20b-dermatology-qa

This model is a fine-tuned version of [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) on the [kingabzpro/dermatology-qa-firecrawl-dataset](https://huggingface.co/kingabzpro/gpt-oss-20b-medical-qa) dataset.
It has been trained using [TRL](https://github.com/huggingface/trl).

## Quick start

```python
from transformers import pipeline

question = "How does the source suggest clinicians approach the diagnosis of rosacea?"

# Load pipeline
generator = pipeline(
    "text-generation",
    model="kingabzpro/gpt-oss-20b-dermatology-qa",
    device="cuda"  # or device=0
)


# Run inference (passing in chat-style format)
output = generator(
    [{"role": "user", "content": question}],
    max_new_tokens=200,
    return_full_text=False
)[0]

print(output["generated_text"])

# The source says that clinicians should use a combination of clinical signs and symptoms when diagnosing rosacea, rather than relying on a single feature.
```