Upload ExaoneForCausalLM
Browse files- README.md +199 -0
- config.json +70 -0
- configuration_exaone.py +183 -0
- generation_config.json +7 -0
- model.safetensors +3 -0
- modeling_exaone.py +1394 -0
README.md
ADDED
|
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags: []
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# Model Card for Model ID
|
| 7 |
+
|
| 8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
## Model Details
|
| 13 |
+
|
| 14 |
+
### Model Description
|
| 15 |
+
|
| 16 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
+
|
| 18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
+
|
| 20 |
+
- **Developed by:** [More Information Needed]
|
| 21 |
+
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
+
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
+
- **Model type:** [More Information Needed]
|
| 24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
+
- **License:** [More Information Needed]
|
| 26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
+
|
| 28 |
+
### Model Sources [optional]
|
| 29 |
+
|
| 30 |
+
<!-- Provide the basic links for the model. -->
|
| 31 |
+
|
| 32 |
+
- **Repository:** [More Information Needed]
|
| 33 |
+
- **Paper [optional]:** [More Information Needed]
|
| 34 |
+
- **Demo [optional]:** [More Information Needed]
|
| 35 |
+
|
| 36 |
+
## Uses
|
| 37 |
+
|
| 38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
+
|
| 40 |
+
### Direct Use
|
| 41 |
+
|
| 42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
+
|
| 44 |
+
[More Information Needed]
|
| 45 |
+
|
| 46 |
+
### Downstream Use [optional]
|
| 47 |
+
|
| 48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
+
|
| 50 |
+
[More Information Needed]
|
| 51 |
+
|
| 52 |
+
### Out-of-Scope Use
|
| 53 |
+
|
| 54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
| 55 |
+
|
| 56 |
+
[More Information Needed]
|
| 57 |
+
|
| 58 |
+
## Bias, Risks, and Limitations
|
| 59 |
+
|
| 60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
+
|
| 62 |
+
[More Information Needed]
|
| 63 |
+
|
| 64 |
+
### Recommendations
|
| 65 |
+
|
| 66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
+
|
| 68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
+
|
| 70 |
+
## How to Get Started with the Model
|
| 71 |
+
|
| 72 |
+
Use the code below to get started with the model.
|
| 73 |
+
|
| 74 |
+
[More Information Needed]
|
| 75 |
+
|
| 76 |
+
## Training Details
|
| 77 |
+
|
| 78 |
+
### Training Data
|
| 79 |
+
|
| 80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
+
|
| 82 |
+
[More Information Needed]
|
| 83 |
+
|
| 84 |
+
### Training Procedure
|
| 85 |
+
|
| 86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
+
|
| 88 |
+
#### Preprocessing [optional]
|
| 89 |
+
|
| 90 |
+
[More Information Needed]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
#### Training Hyperparameters
|
| 94 |
+
|
| 95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
+
|
| 97 |
+
#### Speeds, Sizes, Times [optional]
|
| 98 |
+
|
| 99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
+
|
| 101 |
+
[More Information Needed]
|
| 102 |
+
|
| 103 |
+
## Evaluation
|
| 104 |
+
|
| 105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
+
|
| 107 |
+
### Testing Data, Factors & Metrics
|
| 108 |
+
|
| 109 |
+
#### Testing Data
|
| 110 |
+
|
| 111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
+
|
| 113 |
+
[More Information Needed]
|
| 114 |
+
|
| 115 |
+
#### Factors
|
| 116 |
+
|
| 117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
+
|
| 119 |
+
[More Information Needed]
|
| 120 |
+
|
| 121 |
+
#### Metrics
|
| 122 |
+
|
| 123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
+
|
| 125 |
+
[More Information Needed]
|
| 126 |
+
|
| 127 |
+
### Results
|
| 128 |
+
|
| 129 |
+
[More Information Needed]
|
| 130 |
+
|
| 131 |
+
#### Summary
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Model Examination [optional]
|
| 136 |
+
|
| 137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
+
|
| 139 |
+
[More Information Needed]
|
| 140 |
+
|
| 141 |
+
## Environmental Impact
|
| 142 |
+
|
| 143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
+
|
| 145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
+
|
| 147 |
+
- **Hardware Type:** [More Information Needed]
|
| 148 |
+
- **Hours used:** [More Information Needed]
|
| 149 |
+
- **Cloud Provider:** [More Information Needed]
|
| 150 |
+
- **Compute Region:** [More Information Needed]
|
| 151 |
+
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
+
|
| 153 |
+
## Technical Specifications [optional]
|
| 154 |
+
|
| 155 |
+
### Model Architecture and Objective
|
| 156 |
+
|
| 157 |
+
[More Information Needed]
|
| 158 |
+
|
| 159 |
+
### Compute Infrastructure
|
| 160 |
+
|
| 161 |
+
[More Information Needed]
|
| 162 |
+
|
| 163 |
+
#### Hardware
|
| 164 |
+
|
| 165 |
+
[More Information Needed]
|
| 166 |
+
|
| 167 |
+
#### Software
|
| 168 |
+
|
| 169 |
+
[More Information Needed]
|
| 170 |
+
|
| 171 |
+
## Citation [optional]
|
| 172 |
+
|
| 173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 174 |
+
|
| 175 |
+
**BibTeX:**
|
| 176 |
+
|
| 177 |
+
[More Information Needed]
|
| 178 |
+
|
| 179 |
+
**APA:**
|
| 180 |
+
|
| 181 |
+
[More Information Needed]
|
| 182 |
+
|
| 183 |
+
## Glossary [optional]
|
| 184 |
+
|
| 185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
| 186 |
+
|
| 187 |
+
[More Information Needed]
|
| 188 |
+
|
| 189 |
+
## More Information [optional]
|
| 190 |
+
|
| 191 |
+
[More Information Needed]
|
| 192 |
+
|
| 193 |
+
## Model Card Authors [optional]
|
| 194 |
+
|
| 195 |
+
[More Information Needed]
|
| 196 |
+
|
| 197 |
+
## Model Card Contact
|
| 198 |
+
|
| 199 |
+
[More Information Needed]
|
config.json
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation_function": "silu",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"ExaoneForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"auto_map": {
|
| 8 |
+
"AutoConfig": "configuration_exaone.ExaoneConfig",
|
| 9 |
+
"AutoModelForCausalLM": "modeling_exaone.ExaoneForCausalLM",
|
| 10 |
+
"AutoModelForSequenceClassification": "modeling_exaone.ExaoneForSequenceClassification"
|
| 11 |
+
},
|
| 12 |
+
"bos_token_id": 1,
|
| 13 |
+
"embed_dropout": 0.0,
|
| 14 |
+
"eos_token_id": 361,
|
| 15 |
+
"head_dim": 80,
|
| 16 |
+
"hidden_size": 2560,
|
| 17 |
+
"initializer_range": 0.02,
|
| 18 |
+
"intermediate_size": 7168,
|
| 19 |
+
"layer_norm_epsilon": 1e-05,
|
| 20 |
+
"max_position_embeddings": 32768,
|
| 21 |
+
"model_type": "exaone",
|
| 22 |
+
"num_attention_heads": 32,
|
| 23 |
+
"num_key_value_heads": 8,
|
| 24 |
+
"num_layers": 30,
|
| 25 |
+
"pad_token_id": 0,
|
| 26 |
+
"quantization_config": {
|
| 27 |
+
"backend": null,
|
| 28 |
+
"batch_size": 1,
|
| 29 |
+
"bits": 4,
|
| 30 |
+
"block_name_to_quantize": null,
|
| 31 |
+
"cache_block_outputs": true,
|
| 32 |
+
"checkpoint_format": "gptq",
|
| 33 |
+
"damp_percent": 0.1,
|
| 34 |
+
"dataset": "wikitext2",
|
| 35 |
+
"desc_act": false,
|
| 36 |
+
"exllama_config": {
|
| 37 |
+
"version": 1
|
| 38 |
+
},
|
| 39 |
+
"group_size": 128,
|
| 40 |
+
"max_input_length": null,
|
| 41 |
+
"meta": {
|
| 42 |
+
"quantizer": [
|
| 43 |
+
"optimum:1.27.0",
|
| 44 |
+
"auto_gptq:0.7.1"
|
| 45 |
+
]
|
| 46 |
+
},
|
| 47 |
+
"model_seqlen": null,
|
| 48 |
+
"module_name_preceding_first_block": null,
|
| 49 |
+
"modules_in_block_to_quantize": null,
|
| 50 |
+
"pad_token_id": null,
|
| 51 |
+
"quant_method": "gptq",
|
| 52 |
+
"sym": true,
|
| 53 |
+
"tokenizer": null,
|
| 54 |
+
"true_sequential": true,
|
| 55 |
+
"use_cuda_fp16": false,
|
| 56 |
+
"use_exllama": true
|
| 57 |
+
},
|
| 58 |
+
"rope_scaling": {
|
| 59 |
+
"factor": 8.0,
|
| 60 |
+
"high_freq_factor": 4.0,
|
| 61 |
+
"low_freq_factor": 1.0,
|
| 62 |
+
"original_max_position_embeddings": 8192,
|
| 63 |
+
"rope_type": "llama3"
|
| 64 |
+
},
|
| 65 |
+
"rope_theta": 1000000,
|
| 66 |
+
"torch_dtype": "float16",
|
| 67 |
+
"transformers_version": "4.55.2",
|
| 68 |
+
"use_cache": true,
|
| 69 |
+
"vocab_size": 102400
|
| 70 |
+
}
|
configuration_exaone.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2021 The LG AI Research EXAONE Lab. All rights reserved.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
"""EXAONE model configuration"""
|
| 16 |
+
|
| 17 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 18 |
+
from transformers.utils import logging
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
logger = logging.get_logger(__name__)
|
| 22 |
+
|
| 23 |
+
EXAONE_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class ExaoneConfig(PretrainedConfig):
|
| 27 |
+
r"""
|
| 28 |
+
This is the configuration class to store the configuration of a [`ExaoneModel`]. It is used to
|
| 29 |
+
instantiate a EXAONE model according to the specified arguments, defining the model architecture. Instantiating a
|
| 30 |
+
configuration with the defaults will yield a similar configuration to that of the EXAONE-3.0-7.8B-Instruct [LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)
|
| 31 |
+
|
| 32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model
|
| 33 |
+
outputs. Read the documentation from [`PretrainedConfig`] for more information.
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
vocab_size (`int`, *optional*, defaults to 102400):
|
| 38 |
+
Vocabulary size of the EXAONE model. Defines the number of different tokens that can be represented by the
|
| 39 |
+
`inputs_ids` passed when calling [`ExaoneModel`]. Vocabulary size of the model.
|
| 40 |
+
Defines the different tokens that can be represented by the `inputs_ids` passed to the forward method of
|
| 41 |
+
[`ExaoneModel`].
|
| 42 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 43 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 44 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 45 |
+
hidden_size (`int`, *optional*, defaults to 2048):
|
| 46 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 47 |
+
num_layers (`int`, *optional*, defaults to 32):
|
| 48 |
+
Number of hidden layers in the Transformer encoder.
|
| 49 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 50 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 51 |
+
num_key_value_heads (`int`, *optional*):
|
| 52 |
+
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 53 |
+
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
| 54 |
+
`num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
| 55 |
+
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
| 56 |
+
by meanpooling all the original heads within that group. For more details checkout [this
|
| 57 |
+
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
|
| 58 |
+
`num_attention_heads`.
|
| 59 |
+
intermediate_size (`int`, *optional*, defaults to `hidden_size * 4`):
|
| 60 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
| 61 |
+
activation_function (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 62 |
+
The non-linear activation function (function or string) in the decoder.
|
| 63 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 64 |
+
The base period of the RoPE embeddings.
|
| 65 |
+
rope_scaling (`Dict`, *optional*):
|
| 66 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
| 67 |
+
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
| 68 |
+
accordingly.
|
| 69 |
+
Expected contents:
|
| 70 |
+
`rope_type` (`str`):
|
| 71 |
+
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
| 72 |
+
'llama3'], with 'default' being the original RoPE implementation.
|
| 73 |
+
`factor` (`float`, *optional*):
|
| 74 |
+
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
| 75 |
+
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
| 76 |
+
original maximum pre-trained length.
|
| 77 |
+
`original_max_position_embeddings` (`int`, *optional*):
|
| 78 |
+
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
| 79 |
+
pretraining.
|
| 80 |
+
`attention_factor` (`float`, *optional*):
|
| 81 |
+
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
| 82 |
+
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
| 83 |
+
`factor` field to infer the suggested value.
|
| 84 |
+
`beta_fast` (`float`, *optional*):
|
| 85 |
+
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
| 86 |
+
ramp function. If unspecified, it defaults to 32.
|
| 87 |
+
`beta_slow` (`float`, *optional*):
|
| 88 |
+
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
| 89 |
+
ramp function. If unspecified, it defaults to 1.
|
| 90 |
+
`short_factor` (`List[float]`, *optional*):
|
| 91 |
+
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
| 92 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 93 |
+
size divided by the number of attention heads divided by 2
|
| 94 |
+
`long_factor` (`List[float]`, *optional*):
|
| 95 |
+
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
| 96 |
+
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
| 97 |
+
size divided by the number of attention heads divided by 2
|
| 98 |
+
`low_freq_factor` (`float`, *optional*):
|
| 99 |
+
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
| 100 |
+
`high_freq_factor` (`float`, *optional*):
|
| 101 |
+
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
| 102 |
+
embed_dropout (`float`, *optional*, defaults to 0.0):
|
| 103 |
+
The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.
|
| 104 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
| 105 |
+
The dropout ratio for the attention probabilities.
|
| 106 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-05):
|
| 107 |
+
The epsilon used by the layer normalization layers.
|
| 108 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 109 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 110 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
| 111 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 112 |
+
relevant if ``config.is_decoder=True``.
|
| 113 |
+
bos_token_id (`int`, *optional*, defaults to 0):
|
| 114 |
+
Beginning of stream token id.
|
| 115 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
| 116 |
+
End of stream token id.
|
| 117 |
+
|
| 118 |
+
Example:
|
| 119 |
+
|
| 120 |
+
```python
|
| 121 |
+
>>> from transformers import EXAONEModel, ExaoneConfig
|
| 122 |
+
|
| 123 |
+
>>> # Initializing a EXAONE configuration
|
| 124 |
+
>>> configuration = ExaoneConfig()
|
| 125 |
+
|
| 126 |
+
>>> # Initializing a model from configuration
|
| 127 |
+
>>> model = EXAONEModel(configuration)
|
| 128 |
+
|
| 129 |
+
>>> # Accessing the model configuration
|
| 130 |
+
>>> configuration = model.config
|
| 131 |
+
```"""
|
| 132 |
+
|
| 133 |
+
model_type = "exaone"
|
| 134 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 135 |
+
attribute_map = {"num_hidden_layers": "num_layers"}
|
| 136 |
+
|
| 137 |
+
def __init__(
|
| 138 |
+
self,
|
| 139 |
+
vocab_size=102400,
|
| 140 |
+
max_position_embeddings=2048,
|
| 141 |
+
hidden_size=2048,
|
| 142 |
+
num_layers=32,
|
| 143 |
+
num_attention_heads=32,
|
| 144 |
+
num_key_value_heads=None,
|
| 145 |
+
intermediate_size=None,
|
| 146 |
+
activation_function="silu",
|
| 147 |
+
rope_theta=10000.0,
|
| 148 |
+
rope_scaling=None,
|
| 149 |
+
embed_dropout=0.0,
|
| 150 |
+
attention_dropout=0.0,
|
| 151 |
+
layer_norm_epsilon=1e-5,
|
| 152 |
+
initializer_range=0.02,
|
| 153 |
+
use_cache=True,
|
| 154 |
+
bos_token_id=0,
|
| 155 |
+
eos_token_id=2,
|
| 156 |
+
**kwargs,
|
| 157 |
+
):
|
| 158 |
+
self.vocab_size = vocab_size
|
| 159 |
+
self.max_position_embeddings = max_position_embeddings
|
| 160 |
+
self.hidden_size = hidden_size
|
| 161 |
+
self.num_layers = num_layers
|
| 162 |
+
self.num_attention_heads = num_attention_heads
|
| 163 |
+
self.num_layers = num_layers
|
| 164 |
+
if num_key_value_heads is None:
|
| 165 |
+
num_key_value_heads = num_attention_heads
|
| 166 |
+
self.num_key_value_heads = num_key_value_heads
|
| 167 |
+
if intermediate_size:
|
| 168 |
+
self.intermediate_size = intermediate_size
|
| 169 |
+
else:
|
| 170 |
+
self.intermediate_size = hidden_size * 4
|
| 171 |
+
self.activation_function = activation_function
|
| 172 |
+
self.embed_dropout = embed_dropout
|
| 173 |
+
self.attention_dropout = attention_dropout
|
| 174 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
| 175 |
+
self.initializer_range = initializer_range
|
| 176 |
+
self.use_cache = use_cache
|
| 177 |
+
self.rope_theta = rope_theta
|
| 178 |
+
self.rope_scaling = rope_scaling
|
| 179 |
+
|
| 180 |
+
self.bos_token_id = bos_token_id
|
| 181 |
+
self.eos_token_id = eos_token_id
|
| 182 |
+
|
| 183 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 1,
|
| 4 |
+
"eos_token_id": 361,
|
| 5 |
+
"pad_token_id": 0,
|
| 6 |
+
"transformers_version": "4.55.2"
|
| 7 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e200e0a191dc47b1e5fcfd45ebabe4e7e36a3959d34426e14b2af84f999e4a86
|
| 3 |
+
size 1640775056
|
modeling_exaone.py
ADDED
|
@@ -0,0 +1,1394 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2021 The LG AI Research EXAONE Lab.
|
| 3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
| 6 |
+
# and OPT implementations in this library. It has been modified from its
|
| 7 |
+
# original forms to accommodate minor architectural differences compared
|
| 8 |
+
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
| 9 |
+
#
|
| 10 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 11 |
+
# you may not use this file except in compliance with the License.
|
| 12 |
+
# You may obtain a copy of the License at
|
| 13 |
+
#
|
| 14 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 15 |
+
#
|
| 16 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 17 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 18 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 19 |
+
# See the License for the specific language governing permissions and
|
| 20 |
+
# limitations under the License.
|
| 21 |
+
"""LG AI Research EXAONE Lab"""
|
| 22 |
+
|
| 23 |
+
import math
|
| 24 |
+
from typing import Optional, Tuple, Union
|
| 25 |
+
|
| 26 |
+
import torch
|
| 27 |
+
import torch.utils.checkpoint
|
| 28 |
+
from packaging import version
|
| 29 |
+
from torch import nn
|
| 30 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 31 |
+
|
| 32 |
+
from transformers.activations import ACT2FN
|
| 33 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
| 34 |
+
from transformers.generation import GenerationMixin
|
| 35 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 36 |
+
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
| 37 |
+
from transformers.modeling_outputs import (
|
| 38 |
+
BaseModelOutputWithPast,
|
| 39 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
| 40 |
+
CausalLMOutputWithPast,
|
| 41 |
+
QuestionAnsweringModelOutput,
|
| 42 |
+
SequenceClassifierOutputWithPast,
|
| 43 |
+
)
|
| 44 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS
|
| 45 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 46 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
| 47 |
+
from transformers.utils import (
|
| 48 |
+
add_code_sample_docstrings,
|
| 49 |
+
add_start_docstrings,
|
| 50 |
+
add_start_docstrings_to_model_forward,
|
| 51 |
+
is_flash_attn_2_available,
|
| 52 |
+
logging,
|
| 53 |
+
)
|
| 54 |
+
from .configuration_exaone import ExaoneConfig
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
if is_flash_attn_2_available():
|
| 58 |
+
try:
|
| 59 |
+
import flash_attn
|
| 60 |
+
|
| 61 |
+
if version.parse(flash_attn.__version__) > version.parse("2.4.2"):
|
| 62 |
+
from flash_attn.ops.triton.layer_norm import rms_norm_fn
|
| 63 |
+
else:
|
| 64 |
+
from flash_attn.ops.triton.layernorm import rms_norm_fn
|
| 65 |
+
except ImportError:
|
| 66 |
+
pass
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
logger = logging.get_logger(__name__)
|
| 70 |
+
|
| 71 |
+
_CHECKPOINT_FOR_DOC = "exaone"
|
| 72 |
+
_CONFIG_FOR_DOC = "ExaoneConfig"
|
| 73 |
+
|
| 74 |
+
EXAONE_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
| 75 |
+
"exaone",
|
| 76 |
+
]
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
@torch.jit.script
|
| 80 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 81 |
+
"""
|
| 82 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 83 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 84 |
+
"""
|
| 85 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 86 |
+
if n_rep == 1:
|
| 87 |
+
return hidden_states
|
| 88 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 89 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
|
| 93 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 94 |
+
|
| 95 |
+
Args:
|
| 96 |
+
q (`torch.Tensor`): The query tensor.
|
| 97 |
+
k (`torch.Tensor`): The key tensor.
|
| 98 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 99 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 100 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 101 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 102 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 103 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 104 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 105 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 106 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 107 |
+
Returns:
|
| 108 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 109 |
+
"""
|
| 110 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 111 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 112 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 113 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 114 |
+
return q_embed, k_embed
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
def rotate_half(x):
|
| 118 |
+
"""Rotates half the hidden dims of the input."""
|
| 119 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 120 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 121 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def _prepare_4d_causal_attention_mask_with_cache_position(
|
| 125 |
+
attention_mask: torch.Tensor,
|
| 126 |
+
sequence_length: int,
|
| 127 |
+
target_length: int,
|
| 128 |
+
dtype: torch.dtype,
|
| 129 |
+
device: torch.device,
|
| 130 |
+
min_dtype: float,
|
| 131 |
+
cache_position: torch.Tensor,
|
| 132 |
+
batch_size: int,
|
| 133 |
+
):
|
| 134 |
+
"""
|
| 135 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 136 |
+
`(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing.
|
| 137 |
+
|
| 138 |
+
Args:
|
| 139 |
+
attention_mask (`torch.Tensor`):
|
| 140 |
+
A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`.
|
| 141 |
+
sequence_length (`int`):
|
| 142 |
+
The sequence length being processed.
|
| 143 |
+
target_length (`int`):
|
| 144 |
+
The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet.
|
| 145 |
+
dtype (`torch.dtype`):
|
| 146 |
+
The dtype to use for the 4D attention mask.
|
| 147 |
+
device (`torch.device`):
|
| 148 |
+
The device to plcae the 4D attention mask on.
|
| 149 |
+
min_dtype (`float`):
|
| 150 |
+
The minimum value representable with the dtype `dtype`.
|
| 151 |
+
cache_position (`torch.Tensor`):
|
| 152 |
+
Indices depicting the position of the input sequence tokens in the sequence.
|
| 153 |
+
batch_size (`torch.Tensor`):
|
| 154 |
+
Batch size.
|
| 155 |
+
"""
|
| 156 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 157 |
+
# In this case we assume that the mask comes already in inverted form and requires no inversion or slicing.
|
| 158 |
+
causal_mask = attention_mask
|
| 159 |
+
else:
|
| 160 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
| 161 |
+
if sequence_length != 1:
|
| 162 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 163 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
| 164 |
+
causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1)
|
| 165 |
+
if attention_mask is not None:
|
| 166 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 167 |
+
mask_length = attention_mask.shape[-1]
|
| 168 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
| 169 |
+
padding_mask = padding_mask == 0
|
| 170 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 171 |
+
padding_mask, min_dtype
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
return causal_mask
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
class ExaoneRMSNorm(torch.nn.Module):
|
| 178 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 179 |
+
super().__init__()
|
| 180 |
+
self.eps = eps
|
| 181 |
+
self.weight = torch.nn.Parameter(torch.ones(hidden_size))
|
| 182 |
+
|
| 183 |
+
def forward(self, hidden_states):
|
| 184 |
+
input_dtype = hidden_states.dtype
|
| 185 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 186 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 187 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.eps)
|
| 188 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
class ExaoneTritonRMSNorm(torch.nn.Module):
|
| 192 |
+
def __init__(
|
| 193 |
+
self,
|
| 194 |
+
hidden_size: int = 0,
|
| 195 |
+
eps: float = 1e-5,
|
| 196 |
+
):
|
| 197 |
+
super().__init__()
|
| 198 |
+
self.eps = eps
|
| 199 |
+
self.drop = None
|
| 200 |
+
self.weight = torch.nn.Parameter(torch.empty(hidden_size))
|
| 201 |
+
self.register_parameter("bias", None)
|
| 202 |
+
self.reset_parameters()
|
| 203 |
+
|
| 204 |
+
def reset_parameters(self):
|
| 205 |
+
torch.nn.init.ones_(self.weight)
|
| 206 |
+
|
| 207 |
+
def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
|
| 208 |
+
return rms_norm_fn(
|
| 209 |
+
x,
|
| 210 |
+
self.weight,
|
| 211 |
+
self.bias,
|
| 212 |
+
residual=residual,
|
| 213 |
+
eps=self.eps,
|
| 214 |
+
dropout_p=self.drop.p if self.drop is not None and self.training else 0.0,
|
| 215 |
+
prenorm=prenorm,
|
| 216 |
+
residual_in_fp32=residual_in_fp32,
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
ALL_LAYERNORM_LAYERS.append(ExaoneRMSNorm)
|
| 221 |
+
ALL_LAYERNORM_LAYERS.append(ExaoneTritonRMSNorm)
|
| 222 |
+
|
| 223 |
+
|
| 224 |
+
class ExaoneRotaryEmbedding(nn.Module):
|
| 225 |
+
def __init__(self, config: ExaoneConfig, device=None):
|
| 226 |
+
super().__init__()
|
| 227 |
+
if config.rope_scaling is not None:
|
| 228 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 229 |
+
else:
|
| 230 |
+
self.rope_type = "default"
|
| 231 |
+
self.rope_theta = config.rope_theta
|
| 232 |
+
self.max_seq_len = config.max_position_embeddings
|
| 233 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 234 |
+
|
| 235 |
+
self.config = config
|
| 236 |
+
if self.rope_type not in ROPE_INIT_FUNCTIONS:
|
| 237 |
+
raise KeyError(f"The EXAONE model does not support RoPE type: {self.rope_type}")
|
| 238 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 239 |
+
|
| 240 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
| 241 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 242 |
+
self.original_inv_freq = self.inv_freq
|
| 243 |
+
|
| 244 |
+
def _update_freq(self, position_ids, device):
|
| 245 |
+
"""
|
| 246 |
+
dynamic RoPE layers should recompute `inv_freq` in the following situations:
|
| 247 |
+
1 - growing beyond the cached sequence length (allow scaling)
|
| 248 |
+
2 - the current sequence length is in the original scale (avoid losing precision with small sequences)
|
| 249 |
+
"""
|
| 250 |
+
seq_len = torch.max(position_ids) + 1
|
| 251 |
+
if seq_len > self.max_seq_len: # expand to seq_len
|
| 252 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device, seq_len=seq_len)
|
| 253 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 254 |
+
self.max_seq_len = seq_len
|
| 255 |
+
|
| 256 |
+
if seq_len < self.original_max_seq_len and self.max_seq_len > self.original_max_seq_len: # reset to original
|
| 257 |
+
self.register_buffer("inv_freq", self.original_inv_freq, persistent=False)
|
| 258 |
+
self.max_seq_len = self.original_max_seq_len
|
| 259 |
+
|
| 260 |
+
@torch.no_grad()
|
| 261 |
+
def forward(self, x, position_ids):
|
| 262 |
+
if "dynamic" in self.rope_type:
|
| 263 |
+
self._update_freq(position_ids, device=x.device)
|
| 264 |
+
|
| 265 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 266 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 267 |
+
|
| 268 |
+
device_type = x.device.type
|
| 269 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 270 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 271 |
+
freqs = (inv_freq_expanded @ position_ids_expanded).transpose(1, 2)
|
| 272 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 273 |
+
cos, sin = emb.cos(), emb.sin()
|
| 274 |
+
|
| 275 |
+
cos, sin = cos * self.attention_scaling, sin * self.attention_scaling
|
| 276 |
+
return cos.to(x.dtype), sin.to(x.dtype)
|
| 277 |
+
|
| 278 |
+
|
| 279 |
+
class ExaoneSelfAttention(nn.Module):
|
| 280 |
+
def __init__(self, config: ExaoneConfig, layer_idx: Optional[int] = None):
|
| 281 |
+
super().__init__()
|
| 282 |
+
self.config = config
|
| 283 |
+
self.layer_idx = layer_idx
|
| 284 |
+
self.embed_dim = config.hidden_size
|
| 285 |
+
self.num_heads = config.num_attention_heads
|
| 286 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 287 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 288 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 289 |
+
self.attention_dropout_rate = config.attention_dropout
|
| 290 |
+
|
| 291 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
| 292 |
+
raise ValueError(
|
| 293 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
|
| 294 |
+
)
|
| 295 |
+
|
| 296 |
+
self.rotary = ExaoneRotaryEmbedding(config)
|
| 297 |
+
|
| 298 |
+
self.k_proj = nn.Linear(self.embed_dim, self.num_key_value_heads * self.head_dim, bias=False)
|
| 299 |
+
self.v_proj = nn.Linear(self.embed_dim, self.num_key_value_heads * self.head_dim, bias=False)
|
| 300 |
+
self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=False)
|
| 301 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
| 302 |
+
|
| 303 |
+
def forward(
|
| 304 |
+
self,
|
| 305 |
+
hidden_states: torch.Tensor,
|
| 306 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 307 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 308 |
+
past_key_value: Optional[Cache] = None,
|
| 309 |
+
output_attentions: Optional[bool] = False,
|
| 310 |
+
use_cache: Optional[bool] = False,
|
| 311 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 312 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 313 |
+
**kwargs,
|
| 314 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 315 |
+
bsz, q_len, _ = hidden_states.size()
|
| 316 |
+
query_states = self.q_proj(hidden_states)
|
| 317 |
+
key_states = self.k_proj(hidden_states)
|
| 318 |
+
value_states = self.v_proj(hidden_states)
|
| 319 |
+
|
| 320 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 321 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 322 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 323 |
+
|
| 324 |
+
if position_embeddings is None:
|
| 325 |
+
cos, sin = self.rotary(value_states, position_ids=position_ids)
|
| 326 |
+
else:
|
| 327 |
+
cos, sin = position_embeddings
|
| 328 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 329 |
+
|
| 330 |
+
if past_key_value is not None:
|
| 331 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 332 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 333 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 334 |
+
|
| 335 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 336 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 337 |
+
|
| 338 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 339 |
+
|
| 340 |
+
if attention_mask is not None:
|
| 341 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 342 |
+
attn_weights = attn_weights + causal_mask
|
| 343 |
+
|
| 344 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
| 345 |
+
attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout_rate, training=self.training)
|
| 346 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
| 347 |
+
|
| 348 |
+
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
| 349 |
+
raise ValueError(
|
| 350 |
+
f"Attention outputs should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
|
| 351 |
+
f" {attn_output.size()}"
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 355 |
+
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
|
| 356 |
+
|
| 357 |
+
attn_output = self.out_proj(attn_output)
|
| 358 |
+
|
| 359 |
+
if not output_attentions:
|
| 360 |
+
attn_weights = None
|
| 361 |
+
|
| 362 |
+
return attn_output, attn_weights, past_key_value
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
class ExaoneFlashAttention(ExaoneSelfAttention):
|
| 366 |
+
def __init__(self, *args, **kwargs):
|
| 367 |
+
super().__init__(*args, **kwargs)
|
| 368 |
+
|
| 369 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 370 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 371 |
+
|
| 372 |
+
def forward(
|
| 373 |
+
self,
|
| 374 |
+
hidden_states: torch.Tensor,
|
| 375 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 376 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 377 |
+
past_key_value: Optional[Cache] = None,
|
| 378 |
+
output_attentions: Optional[bool] = False,
|
| 379 |
+
use_cache: Optional[bool] = False,
|
| 380 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 381 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 382 |
+
**kwargs,
|
| 383 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 384 |
+
if isinstance(past_key_value, StaticCache):
|
| 385 |
+
raise ValueError(
|
| 386 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
| 387 |
+
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
output_attentions = False
|
| 391 |
+
|
| 392 |
+
bsz, q_len, h_size = hidden_states.size()
|
| 393 |
+
|
| 394 |
+
query_states = self.q_proj(hidden_states)
|
| 395 |
+
key_states = self.k_proj(hidden_states)
|
| 396 |
+
value_states = self.v_proj(hidden_states)
|
| 397 |
+
|
| 398 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 399 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 400 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 401 |
+
|
| 402 |
+
if position_embeddings is None:
|
| 403 |
+
cos, sin = self.rotary(value_states, position_ids=position_ids)
|
| 404 |
+
else:
|
| 405 |
+
cos, sin = position_embeddings
|
| 406 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 407 |
+
|
| 408 |
+
if past_key_value is not None:
|
| 409 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 410 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 411 |
+
# Only update cache as shape of [bsz, n_head, q_len, head_dim]
|
| 412 |
+
# TODO: need to be fixed when transformers' KV cache layout is changed
|
| 413 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 414 |
+
|
| 415 |
+
query_states = query_states.transpose(1, 2)
|
| 416 |
+
key_states = key_states.transpose(1, 2)
|
| 417 |
+
value_states = value_states.transpose(1, 2)
|
| 418 |
+
|
| 419 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 420 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 421 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 422 |
+
input_dtype = query_states.dtype
|
| 423 |
+
if input_dtype == torch.float32:
|
| 424 |
+
if torch.is_autocast_enabled():
|
| 425 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 426 |
+
# Handle the case where the model is quantized
|
| 427 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 428 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 429 |
+
else:
|
| 430 |
+
target_dtype = self.q_proj.weight.dtype
|
| 431 |
+
|
| 432 |
+
logger.warning_once(
|
| 433 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 434 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 435 |
+
f" {target_dtype}."
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
query_states = query_states.to(target_dtype)
|
| 439 |
+
key_states = key_states.to(target_dtype)
|
| 440 |
+
value_states = value_states.to(target_dtype)
|
| 441 |
+
|
| 442 |
+
dropout_rate = self.attention_dropout_rate if self.training else 0.0
|
| 443 |
+
|
| 444 |
+
attn_output = _flash_attention_forward(
|
| 445 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate, is_causal=True
|
| 446 |
+
)
|
| 447 |
+
|
| 448 |
+
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
|
| 449 |
+
attn_output = self.out_proj(attn_output)
|
| 450 |
+
|
| 451 |
+
if not output_attentions:
|
| 452 |
+
attn_weights = None
|
| 453 |
+
|
| 454 |
+
return attn_output, attn_weights, past_key_value
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
class ExaoneSdpaAttention(ExaoneSelfAttention):
|
| 458 |
+
def __init__(self, *args, **kwargs):
|
| 459 |
+
super().__init__(*args, **kwargs)
|
| 460 |
+
|
| 461 |
+
def forward(
|
| 462 |
+
self,
|
| 463 |
+
hidden_states: torch.Tensor,
|
| 464 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 465 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 466 |
+
past_key_value: Optional[Cache] = None,
|
| 467 |
+
output_attentions: Optional[bool] = False,
|
| 468 |
+
use_cache: Optional[bool] = False,
|
| 469 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 470 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 471 |
+
**kwargs,
|
| 472 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 473 |
+
if output_attentions:
|
| 474 |
+
logger.warning_once(
|
| 475 |
+
"ExaoneModel is using ExaoneSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 476 |
+
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 477 |
+
)
|
| 478 |
+
return super().forward(
|
| 479 |
+
hidden_states=hidden_states,
|
| 480 |
+
attention_mask=attention_mask,
|
| 481 |
+
position_ids=position_ids,
|
| 482 |
+
past_key_value=past_key_value,
|
| 483 |
+
output_attentions=output_attentions,
|
| 484 |
+
use_cache=use_cache,
|
| 485 |
+
cache_position=cache_position,
|
| 486 |
+
position_embeddings=position_embeddings,
|
| 487 |
+
**kwargs,
|
| 488 |
+
)
|
| 489 |
+
|
| 490 |
+
bsz, q_len, _ = hidden_states.size()
|
| 491 |
+
|
| 492 |
+
query_states = self.q_proj(hidden_states)
|
| 493 |
+
key_states = self.k_proj(hidden_states)
|
| 494 |
+
value_states = self.v_proj(hidden_states)
|
| 495 |
+
|
| 496 |
+
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
| 497 |
+
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 498 |
+
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
| 499 |
+
|
| 500 |
+
if position_embeddings is None:
|
| 501 |
+
cos, sin = self.rotary(value_states, position_ids=position_ids)
|
| 502 |
+
else:
|
| 503 |
+
cos, sin = position_embeddings
|
| 504 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 505 |
+
|
| 506 |
+
if past_key_value is not None:
|
| 507 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 508 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 509 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 510 |
+
|
| 511 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 512 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 513 |
+
|
| 514 |
+
causal_mask = attention_mask
|
| 515 |
+
if attention_mask is not None:
|
| 516 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
| 517 |
+
|
| 518 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
| 519 |
+
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 520 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
| 521 |
+
query_states = query_states.contiguous()
|
| 522 |
+
key_states = key_states.contiguous()
|
| 523 |
+
value_states = value_states.contiguous()
|
| 524 |
+
|
| 525 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of an inline conditional assignment
|
| 526 |
+
# in SDPA to support both torch.compile's dynamic shapes and full graph options. An inline conditional prevents dynamic shapes from compiling.
|
| 527 |
+
is_causal = True if causal_mask is None and q_len > 1 else False
|
| 528 |
+
|
| 529 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 530 |
+
query_states,
|
| 531 |
+
key_states,
|
| 532 |
+
value_states,
|
| 533 |
+
attn_mask=causal_mask,
|
| 534 |
+
dropout_p=self.attention_dropout_rate if self.training else 0.0,
|
| 535 |
+
is_causal=is_causal,
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 539 |
+
attn_output = attn_output.reshape(bsz, q_len, self.embed_dim).contiguous()
|
| 540 |
+
|
| 541 |
+
attn_output = self.out_proj(attn_output)
|
| 542 |
+
|
| 543 |
+
return attn_output, None, past_key_value
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
class ExaoneAttention(nn.Module):
|
| 547 |
+
def __init__(self, config, layer_id=0):
|
| 548 |
+
super().__init__()
|
| 549 |
+
self.layer_id = layer_id
|
| 550 |
+
if "flash" in config._attn_implementation:
|
| 551 |
+
self.attention = ExaoneFlashAttention(config, self.layer_id)
|
| 552 |
+
elif "sdpa" in config._attn_implementation:
|
| 553 |
+
self.attention = ExaoneSdpaAttention(config, self.layer_id)
|
| 554 |
+
else:
|
| 555 |
+
self.attention = ExaoneSelfAttention(config, self.layer_id)
|
| 556 |
+
|
| 557 |
+
def forward(
|
| 558 |
+
self,
|
| 559 |
+
hidden_states: torch.Tensor,
|
| 560 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 561 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 562 |
+
past_key_value: Optional[Cache] = None,
|
| 563 |
+
output_attentions: Optional[bool] = False,
|
| 564 |
+
use_cache: Optional[bool] = False,
|
| 565 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 566 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 567 |
+
**kwargs,
|
| 568 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 569 |
+
return self.attention(
|
| 570 |
+
hidden_states=hidden_states,
|
| 571 |
+
attention_mask=attention_mask,
|
| 572 |
+
position_ids=position_ids,
|
| 573 |
+
past_key_value=past_key_value,
|
| 574 |
+
output_attentions=output_attentions,
|
| 575 |
+
use_cache=use_cache,
|
| 576 |
+
cache_position=cache_position,
|
| 577 |
+
position_embeddings=position_embeddings,
|
| 578 |
+
**kwargs,
|
| 579 |
+
)
|
| 580 |
+
|
| 581 |
+
|
| 582 |
+
class ExaoneGatedMLP(nn.Module):
|
| 583 |
+
def __init__(self, intermediate_size, config):
|
| 584 |
+
super().__init__()
|
| 585 |
+
self.config = config
|
| 586 |
+
embed_dim = config.hidden_size
|
| 587 |
+
self.c_fc_0 = nn.Linear(embed_dim, intermediate_size, bias=False)
|
| 588 |
+
self.c_fc_1 = nn.Linear(embed_dim, intermediate_size, bias=False)
|
| 589 |
+
self.c_proj = nn.Linear(intermediate_size, embed_dim, bias=False)
|
| 590 |
+
self.act = ACT2FN[config.activation_function]
|
| 591 |
+
|
| 592 |
+
def forward(self, hidden_states):
|
| 593 |
+
output_proj = self.c_proj(self.act(self.c_fc_0(hidden_states)) * self.c_fc_1(hidden_states))
|
| 594 |
+
return output_proj
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
class ExaoneBlock(nn.Module):
|
| 598 |
+
def __init__(self, config, layer_id):
|
| 599 |
+
super().__init__()
|
| 600 |
+
self.config = config
|
| 601 |
+
hidden_size = config.hidden_size
|
| 602 |
+
inner_dim = config.intermediate_size if config.intermediate_size is not None else 4 * hidden_size
|
| 603 |
+
self.ln_1 = ExaoneRMSNorm(hidden_size=hidden_size, eps=config.layer_norm_epsilon)
|
| 604 |
+
self.attn = ExaoneAttention(config, layer_id)
|
| 605 |
+
self.ln_2 = ExaoneRMSNorm(hidden_size=hidden_size, eps=config.layer_norm_epsilon)
|
| 606 |
+
self.mlp = ExaoneGatedMLP(inner_dim, config)
|
| 607 |
+
|
| 608 |
+
def forward(
|
| 609 |
+
self,
|
| 610 |
+
hidden_states: torch.Tensor,
|
| 611 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 612 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 613 |
+
past_key_value: Optional[Cache] = None,
|
| 614 |
+
output_attentions: Optional[bool] = False,
|
| 615 |
+
use_cache: Optional[bool] = False,
|
| 616 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 617 |
+
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 618 |
+
**kwargs,
|
| 619 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 620 |
+
residual = hidden_states
|
| 621 |
+
hidden_states = self.ln_1(hidden_states)
|
| 622 |
+
|
| 623 |
+
hidden_states, self_attn_weights, present_key_value = self.attn(
|
| 624 |
+
hidden_states=hidden_states,
|
| 625 |
+
attention_mask=attention_mask,
|
| 626 |
+
position_ids=position_ids,
|
| 627 |
+
past_key_value=past_key_value,
|
| 628 |
+
output_attentions=output_attentions,
|
| 629 |
+
use_cache=use_cache,
|
| 630 |
+
cache_position=cache_position,
|
| 631 |
+
position_embeddings=position_embeddings,
|
| 632 |
+
**kwargs,
|
| 633 |
+
)
|
| 634 |
+
# residual connection
|
| 635 |
+
hidden_states = residual + hidden_states
|
| 636 |
+
|
| 637 |
+
residual = hidden_states
|
| 638 |
+
hidden_states = self.ln_2(hidden_states)
|
| 639 |
+
hidden_states = self.mlp(hidden_states)
|
| 640 |
+
|
| 641 |
+
hidden_states = residual + hidden_states
|
| 642 |
+
|
| 643 |
+
outputs = (hidden_states,)
|
| 644 |
+
|
| 645 |
+
if output_attentions:
|
| 646 |
+
outputs += (self_attn_weights,)
|
| 647 |
+
|
| 648 |
+
if use_cache:
|
| 649 |
+
outputs += (present_key_value,)
|
| 650 |
+
|
| 651 |
+
return outputs
|
| 652 |
+
|
| 653 |
+
|
| 654 |
+
class ExaonePreTrainedModel(PreTrainedModel):
|
| 655 |
+
"""
|
| 656 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 657 |
+
models.
|
| 658 |
+
"""
|
| 659 |
+
|
| 660 |
+
config_class = ExaoneConfig
|
| 661 |
+
base_model_prefix = "transformer"
|
| 662 |
+
supports_gradient_checkpointing = True
|
| 663 |
+
_no_split_modules = ["ExaoneBlock"]
|
| 664 |
+
_skip_keys_device_placement = "past_key_values"
|
| 665 |
+
_supports_flash_attn_2 = True
|
| 666 |
+
_supports_sdpa = True
|
| 667 |
+
_supports_cache_class = True
|
| 668 |
+
|
| 669 |
+
def __init__(self, *inputs, **kwargs):
|
| 670 |
+
super().__init__(*inputs, **kwargs)
|
| 671 |
+
|
| 672 |
+
def _init_weights(self, module):
|
| 673 |
+
"""Initialize the weights."""
|
| 674 |
+
if isinstance(module, (nn.Linear,)):
|
| 675 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 676 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 677 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 678 |
+
if module.bias is not None:
|
| 679 |
+
module.bias.data.zero_()
|
| 680 |
+
elif isinstance(module, nn.Embedding):
|
| 681 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 682 |
+
if module.padding_idx is not None:
|
| 683 |
+
module.weight.data[module.padding_idx].zero_()
|
| 684 |
+
elif isinstance(module, ExaoneRMSNorm):
|
| 685 |
+
module.weight.data.fill_(1.0)
|
| 686 |
+
|
| 687 |
+
|
| 688 |
+
EXAONE_START_DOCSTRING = r"""
|
| 689 |
+
|
| 690 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
| 691 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
| 692 |
+
etc.)
|
| 693 |
+
|
| 694 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
| 695 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
| 696 |
+
and behavior.
|
| 697 |
+
|
| 698 |
+
Parameters:
|
| 699 |
+
config ([`ExaoneConfig`]): Model configuration class with all the parameters of the model.
|
| 700 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
| 701 |
+
configuration. Check out the `PreTrainedModel.from_pretrained` method to load the model weights.
|
| 702 |
+
"""
|
| 703 |
+
|
| 704 |
+
EXAONE_INPUTS_DOCSTRING = r"""
|
| 705 |
+
Args:
|
| 706 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`, *optional*):
|
| 707 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
| 708 |
+
`past_key_values.get_seq_length()` (`sequence_length` of input past key value states). Indices of input
|
| 709 |
+
sequence tokens in the vocabulary.
|
| 710 |
+
|
| 711 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be
|
| 712 |
+
passed as `input_ids`.
|
| 713 |
+
|
| 714 |
+
`What are input IDs? <../glossary.html#input-ids>`__
|
| 715 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 716 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
| 717 |
+
|
| 718 |
+
- 1 for tokens that are **not masked**,
|
| 719 |
+
- 0 for tokens that are **masked**.
|
| 720 |
+
|
| 721 |
+
`What are attention masks? <../glossary.html#attention-mask>`__
|
| 722 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 723 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
| 724 |
+
config.max_position_embeddings - 1]`.
|
| 725 |
+
|
| 726 |
+
`What are position IDs? <../glossary.html#position-ids>`_
|
| 727 |
+
past_key_values (`Cache`, *optional*):
|
| 728 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
| 729 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. This typically consists
|
| 730 |
+
in the `past_key_values` returned by the model at a previous stage of decoding, when `use_cache=True` or
|
| 731 |
+
`config.use_cache=True`.
|
| 732 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
| 733 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
| 734 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated
|
| 735 |
+
vectors than the model's internal embedding lookup matrix.
|
| 736 |
+
|
| 737 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
| 738 |
+
`past_key_values`).
|
| 739 |
+
use_cache (`bool`, *optional*):
|
| 740 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up
|
| 741 |
+
decoding (see `past_key_values`).
|
| 742 |
+
output_attentions (`bool`, *optional*):
|
| 743 |
+
Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under returned
|
| 744 |
+
tensors for more detail.
|
| 745 |
+
output_hidden_states (`bool`, *optional*):
|
| 746 |
+
Whether or not to return the hidden states of all layers. See ``hidden_states`` under returned tensors for
|
| 747 |
+
more detail.
|
| 748 |
+
return_dict (`bool`, *optional*):
|
| 749 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 750 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 751 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 752 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
| 753 |
+
the complete sequence length.
|
| 754 |
+
"""
|
| 755 |
+
|
| 756 |
+
|
| 757 |
+
@add_start_docstrings(
|
| 758 |
+
"The bare EXAONE Model transformer outputting raw hidden-states without any specific head on top.",
|
| 759 |
+
EXAONE_START_DOCSTRING,
|
| 760 |
+
)
|
| 761 |
+
class ExaoneModel(ExaonePreTrainedModel):
|
| 762 |
+
def __init__(self, config):
|
| 763 |
+
super().__init__(config)
|
| 764 |
+
self.config = config
|
| 765 |
+
self.embed_dim = config.hidden_size
|
| 766 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim, self.config.pad_token_id)
|
| 767 |
+
self.drop = nn.Dropout(float(config.embed_dropout))
|
| 768 |
+
self.h = nn.ModuleList([ExaoneBlock(config, layer_id=i) for i in range(config.num_layers)])
|
| 769 |
+
self.ln_f = ExaoneRMSNorm(hidden_size=self.embed_dim, eps=config.layer_norm_epsilon)
|
| 770 |
+
self.rotary = ExaoneRotaryEmbedding(config)
|
| 771 |
+
self.gradient_checkpointing = False
|
| 772 |
+
# Initialize weights and apply final processing
|
| 773 |
+
self.post_init()
|
| 774 |
+
|
| 775 |
+
def get_input_embeddings(self):
|
| 776 |
+
return self.wte
|
| 777 |
+
|
| 778 |
+
def set_input_embeddings(self, new_embeddings):
|
| 779 |
+
self.wte = new_embeddings
|
| 780 |
+
|
| 781 |
+
@add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
|
| 782 |
+
@add_code_sample_docstrings(
|
| 783 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 784 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
| 785 |
+
config_class=_CONFIG_FOR_DOC,
|
| 786 |
+
)
|
| 787 |
+
def forward(
|
| 788 |
+
self,
|
| 789 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 790 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 791 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 792 |
+
past_key_values: Optional[Cache] = None,
|
| 793 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 794 |
+
use_cache: Optional[bool] = None,
|
| 795 |
+
output_attentions: Optional[bool] = None,
|
| 796 |
+
output_hidden_states: Optional[bool] = None,
|
| 797 |
+
return_dict: Optional[bool] = None,
|
| 798 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 799 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
|
| 800 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 801 |
+
output_hidden_states = (
|
| 802 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 803 |
+
)
|
| 804 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 805 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 806 |
+
|
| 807 |
+
if self.gradient_checkpointing and self.training:
|
| 808 |
+
if use_cache:
|
| 809 |
+
logger.warning_once(
|
| 810 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 811 |
+
)
|
| 812 |
+
use_cache = False
|
| 813 |
+
|
| 814 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 815 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 816 |
+
elif input_ids is not None:
|
| 817 |
+
batch_size, seq_length = input_ids.shape[:2]
|
| 818 |
+
elif inputs_embeds is not None:
|
| 819 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
| 820 |
+
else:
|
| 821 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 822 |
+
|
| 823 |
+
return_legacy_cache = False
|
| 824 |
+
if (
|
| 825 |
+
use_cache and not isinstance(past_key_values, Cache) and not self.training
|
| 826 |
+
): # kept for BC (non `Cache` `past_key_values` inputs)
|
| 827 |
+
return_legacy_cache = True
|
| 828 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 829 |
+
logger.warning_once(
|
| 830 |
+
"We detected that you are passing `past_key_values` as a tuple and this is deprecated and will be removed in v4.43. "
|
| 831 |
+
"Please use an appropriate `Cache` class (https://huggingface.co/docs/transformers/v4.41.3/en/internal/generation_utils#transformers.Cache)"
|
| 832 |
+
)
|
| 833 |
+
|
| 834 |
+
if inputs_embeds is None:
|
| 835 |
+
inputs_embeds = self.wte(input_ids)
|
| 836 |
+
|
| 837 |
+
if cache_position is None:
|
| 838 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 839 |
+
cache_position = torch.arange(
|
| 840 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 841 |
+
)
|
| 842 |
+
if position_ids is None:
|
| 843 |
+
position_ids = cache_position.unsqueeze(0)
|
| 844 |
+
|
| 845 |
+
causal_mask = self._update_causal_mask(
|
| 846 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 847 |
+
)
|
| 848 |
+
|
| 849 |
+
hidden_states = inputs_embeds
|
| 850 |
+
hidden_states = self.drop(hidden_states)
|
| 851 |
+
|
| 852 |
+
position_embeddings = self.rotary(hidden_states, position_ids)
|
| 853 |
+
|
| 854 |
+
all_hidden_states = () if output_hidden_states else None
|
| 855 |
+
all_self_attns = () if output_attentions else None
|
| 856 |
+
next_decoder_cache = None
|
| 857 |
+
|
| 858 |
+
for block in self.h:
|
| 859 |
+
if output_hidden_states:
|
| 860 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 861 |
+
|
| 862 |
+
if self.gradient_checkpointing and self.training:
|
| 863 |
+
outputs = self._gradient_checkpointing_func(
|
| 864 |
+
block.__call__,
|
| 865 |
+
hidden_states,
|
| 866 |
+
causal_mask,
|
| 867 |
+
position_ids,
|
| 868 |
+
past_key_values,
|
| 869 |
+
output_attentions,
|
| 870 |
+
use_cache,
|
| 871 |
+
cache_position,
|
| 872 |
+
position_embeddings,
|
| 873 |
+
)
|
| 874 |
+
else:
|
| 875 |
+
outputs = block(
|
| 876 |
+
hidden_states,
|
| 877 |
+
attention_mask=causal_mask,
|
| 878 |
+
position_ids=position_ids,
|
| 879 |
+
past_key_value=past_key_values,
|
| 880 |
+
output_attentions=output_attentions,
|
| 881 |
+
use_cache=use_cache,
|
| 882 |
+
cache_position=cache_position,
|
| 883 |
+
position_embeddings=position_embeddings,
|
| 884 |
+
)
|
| 885 |
+
|
| 886 |
+
hidden_states = outputs[0]
|
| 887 |
+
if use_cache:
|
| 888 |
+
next_decoder_cache = outputs[2 if output_attentions else 1]
|
| 889 |
+
|
| 890 |
+
if output_attentions:
|
| 891 |
+
all_self_attns += (outputs[1],)
|
| 892 |
+
|
| 893 |
+
hidden_states = self.ln_f(hidden_states)
|
| 894 |
+
# Add last hidden state
|
| 895 |
+
if output_hidden_states:
|
| 896 |
+
all_hidden_states += (hidden_states,)
|
| 897 |
+
|
| 898 |
+
next_cache = None
|
| 899 |
+
if use_cache:
|
| 900 |
+
next_cache = next_decoder_cache.to_legacy_cache() if return_legacy_cache else next_decoder_cache
|
| 901 |
+
if not return_dict:
|
| 902 |
+
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 903 |
+
|
| 904 |
+
return BaseModelOutputWithPast(
|
| 905 |
+
last_hidden_state=hidden_states,
|
| 906 |
+
past_key_values=next_cache,
|
| 907 |
+
hidden_states=all_hidden_states,
|
| 908 |
+
attentions=all_self_attns,
|
| 909 |
+
)
|
| 910 |
+
|
| 911 |
+
def _update_causal_mask(
|
| 912 |
+
self,
|
| 913 |
+
attention_mask: torch.Tensor,
|
| 914 |
+
input_tensor: torch.Tensor,
|
| 915 |
+
cache_position: torch.Tensor,
|
| 916 |
+
past_key_values: Cache,
|
| 917 |
+
output_attentions: bool,
|
| 918 |
+
):
|
| 919 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
|
| 920 |
+
# KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
|
| 921 |
+
# (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
|
| 922 |
+
# `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
|
| 923 |
+
|
| 924 |
+
if self.config._attn_implementation == "flash_attention_2":
|
| 925 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
| 926 |
+
return attention_mask
|
| 927 |
+
return None
|
| 928 |
+
|
| 929 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 930 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 931 |
+
# to infer the attention mask.
|
| 932 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 933 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 934 |
+
|
| 935 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 936 |
+
if self.config._attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
| 937 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 938 |
+
attention_mask,
|
| 939 |
+
inputs_embeds=input_tensor,
|
| 940 |
+
past_key_values_length=past_seen_tokens,
|
| 941 |
+
is_training=self.training,
|
| 942 |
+
):
|
| 943 |
+
return None
|
| 944 |
+
|
| 945 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 946 |
+
min_dtype = torch.finfo(dtype).min
|
| 947 |
+
sequence_length = input_tensor.shape[1]
|
| 948 |
+
if using_static_cache:
|
| 949 |
+
target_length = past_key_values.get_max_length()
|
| 950 |
+
else:
|
| 951 |
+
target_length = (
|
| 952 |
+
attention_mask.shape[-1]
|
| 953 |
+
if isinstance(attention_mask, torch.Tensor)
|
| 954 |
+
else past_seen_tokens + sequence_length + 1
|
| 955 |
+
)
|
| 956 |
+
|
| 957 |
+
# In case the provided `attention` mask is 2D, we generate a causal mask here (4D).
|
| 958 |
+
causal_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
| 959 |
+
attention_mask,
|
| 960 |
+
sequence_length=sequence_length,
|
| 961 |
+
target_length=target_length,
|
| 962 |
+
dtype=dtype,
|
| 963 |
+
device=device,
|
| 964 |
+
min_dtype=min_dtype,
|
| 965 |
+
cache_position=cache_position,
|
| 966 |
+
batch_size=input_tensor.shape[0],
|
| 967 |
+
)
|
| 968 |
+
|
| 969 |
+
if (
|
| 970 |
+
self.config._attn_implementation == "sdpa"
|
| 971 |
+
and attention_mask is not None
|
| 972 |
+
and attention_mask.device.type == "cuda"
|
| 973 |
+
and not output_attentions
|
| 974 |
+
):
|
| 975 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 976 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 977 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 978 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype)
|
| 979 |
+
|
| 980 |
+
return causal_mask
|
| 981 |
+
|
| 982 |
+
|
| 983 |
+
@add_start_docstrings(
|
| 984 |
+
"""
|
| 985 |
+
The EXAONE Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
| 986 |
+
embeddings).
|
| 987 |
+
""",
|
| 988 |
+
EXAONE_START_DOCSTRING,
|
| 989 |
+
)
|
| 990 |
+
class ExaoneForCausalLM(ExaonePreTrainedModel, GenerationMixin):
|
| 991 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 992 |
+
|
| 993 |
+
def __init__(self, config):
|
| 994 |
+
super().__init__(config)
|
| 995 |
+
self.transformer = ExaoneModel(config)
|
| 996 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 997 |
+
self.config = config
|
| 998 |
+
# Initialize weights and apply final processing
|
| 999 |
+
self.post_init()
|
| 1000 |
+
|
| 1001 |
+
def get_output_embeddings(self):
|
| 1002 |
+
return self.lm_head
|
| 1003 |
+
|
| 1004 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1005 |
+
self.lm_head = new_embeddings
|
| 1006 |
+
|
| 1007 |
+
@add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
|
| 1008 |
+
@add_code_sample_docstrings(
|
| 1009 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1010 |
+
output_type=BaseModelOutputWithPast,
|
| 1011 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1012 |
+
)
|
| 1013 |
+
def forward(
|
| 1014 |
+
self,
|
| 1015 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1016 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1017 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1018 |
+
past_key_values: Optional[Cache] = None,
|
| 1019 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1020 |
+
labels: Optional[torch.Tensor] = None,
|
| 1021 |
+
use_cache: Optional[bool] = None,
|
| 1022 |
+
output_attentions: Optional[bool] = None,
|
| 1023 |
+
output_hidden_states: Optional[bool] = None,
|
| 1024 |
+
return_dict: Optional[bool] = None,
|
| 1025 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1026 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPast]:
|
| 1027 |
+
r"""
|
| 1028 |
+
Args:
|
| 1029 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1030 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
| 1031 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
| 1032 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
| 1033 |
+
|
| 1034 |
+
Example:
|
| 1035 |
+
|
| 1036 |
+
```python
|
| 1037 |
+
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 1038 |
+
|
| 1039 |
+
>>> model = AutoModelForCausalLM.from_pretrained("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct",
|
| 1040 |
+
trust_remote_code=True)
|
| 1041 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct")
|
| 1042 |
+
|
| 1043 |
+
>>> prompt = "Explain how wonderful you are"
|
| 1044 |
+
>>> messages = [
|
| 1045 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 1046 |
+
{"role": "user", "content": prompt}
|
| 1047 |
+
]
|
| 1048 |
+
>>> input_ids = tokenizer.apply_chat_template(
|
| 1049 |
+
messages,
|
| 1050 |
+
tokenize=True,
|
| 1051 |
+
add_generation_prompt=True,
|
| 1052 |
+
return_tensors="pt"
|
| 1053 |
+
)
|
| 1054 |
+
|
| 1055 |
+
>>> output = model.generate(input_ids, max_new_tokens=128)
|
| 1056 |
+
>>> tokenizer.decode(output[0], skip_special_tokens=True)
|
| 1057 |
+
"[|system|]You are a helpful assistant.\n[|user|]Explain how wonderful you are\n[|assistant|]Thank you for your kind words! I'm here to assist you with information, answer questions, and help you in any way I can. My goal is to provide accurate, helpful, and timely responses. Whether you need help with a specific task, want to learn something new, or just need someone to talk to, I'm here for you. How can I assist you today?"
|
| 1058 |
+
```
|
| 1059 |
+
"""
|
| 1060 |
+
|
| 1061 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 1062 |
+
output_hidden_states = (
|
| 1063 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1064 |
+
)
|
| 1065 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1066 |
+
transformer_outputs = self.transformer(
|
| 1067 |
+
input_ids,
|
| 1068 |
+
attention_mask=attention_mask,
|
| 1069 |
+
past_key_values=past_key_values,
|
| 1070 |
+
position_ids=position_ids,
|
| 1071 |
+
inputs_embeds=inputs_embeds,
|
| 1072 |
+
use_cache=use_cache,
|
| 1073 |
+
output_attentions=output_attentions,
|
| 1074 |
+
output_hidden_states=output_hidden_states,
|
| 1075 |
+
return_dict=return_dict,
|
| 1076 |
+
cache_position=cache_position,
|
| 1077 |
+
)
|
| 1078 |
+
hidden_states = transformer_outputs[0]
|
| 1079 |
+
lm_logits = self.lm_head(hidden_states)
|
| 1080 |
+
lm_logits = lm_logits.float()
|
| 1081 |
+
loss = None
|
| 1082 |
+
if labels is not None:
|
| 1083 |
+
lm_logits = lm_logits.to(torch.float32)
|
| 1084 |
+
|
| 1085 |
+
# Shift so that tokens < n predict n
|
| 1086 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 1087 |
+
shift_labels = labels[..., 1:].contiguous()
|
| 1088 |
+
# Flatten the tokens
|
| 1089 |
+
loss_fct = CrossEntropyLoss()
|
| 1090 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 1091 |
+
|
| 1092 |
+
lm_logits = lm_logits.to(hidden_states.dtype)
|
| 1093 |
+
loss = loss.to(hidden_states.dtype)
|
| 1094 |
+
|
| 1095 |
+
if not return_dict:
|
| 1096 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
| 1097 |
+
return ((loss,) + output) if loss is not None else output
|
| 1098 |
+
|
| 1099 |
+
return CausalLMOutputWithPast(
|
| 1100 |
+
loss=loss,
|
| 1101 |
+
logits=lm_logits,
|
| 1102 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1103 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1104 |
+
attentions=transformer_outputs.attentions,
|
| 1105 |
+
)
|
| 1106 |
+
|
| 1107 |
+
def prepare_inputs_for_generation(
|
| 1108 |
+
self,
|
| 1109 |
+
input_ids,
|
| 1110 |
+
past_key_values=None,
|
| 1111 |
+
attention_mask=None,
|
| 1112 |
+
inputs_embeds=None,
|
| 1113 |
+
cache_position=None,
|
| 1114 |
+
position_ids=None,
|
| 1115 |
+
use_cache=True,
|
| 1116 |
+
**kwargs,
|
| 1117 |
+
):
|
| 1118 |
+
# If we have cache: let's slice `input_ids` through `cache_position`, to keep only the unprocessed tokens
|
| 1119 |
+
# Exception 1: when passing input_embeds, input_ids may be missing entries
|
| 1120 |
+
# Exception 2: some generation methods do special slicing of input_ids, so we don't need to do it here
|
| 1121 |
+
if past_key_values is not None:
|
| 1122 |
+
if inputs_embeds is not None: # Exception 1
|
| 1123 |
+
input_ids = input_ids[:, -cache_position.shape[0] :]
|
| 1124 |
+
elif input_ids.shape[1] != cache_position.shape[0]: # Default case (the "else", a no op, is Exception 2)
|
| 1125 |
+
input_ids = input_ids[:, cache_position]
|
| 1126 |
+
|
| 1127 |
+
if attention_mask is not None and position_ids is None:
|
| 1128 |
+
# create position_ids on the fly for batch generation
|
| 1129 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1130 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
| 1131 |
+
if past_key_values:
|
| 1132 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 1133 |
+
|
| 1134 |
+
# This `clone` call is needed to avoid recapturing cuda graphs with `torch.compile`'s `mode="reduce-overhead`, as otherwise the input `position_ids` would have various stride during the decoding. Here, simply using `.contiguous()` is not sufficient as in the batch size = 1 case, `position_ids` is already contiguous but with varying stride which retriggers a capture.
|
| 1135 |
+
position_ids = position_ids.clone(memory_format=torch.contiguous_format)
|
| 1136 |
+
|
| 1137 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1138 |
+
if inputs_embeds is not None and cache_position[0] == 0:
|
| 1139 |
+
model_inputs = {"inputs_embeds": inputs_embeds, "input_ids": None}
|
| 1140 |
+
else:
|
| 1141 |
+
model_inputs = {"input_ids": input_ids, "inputs_embeds": None}
|
| 1142 |
+
|
| 1143 |
+
if isinstance(past_key_values, StaticCache) and attention_mask.ndim == 2:
|
| 1144 |
+
if inputs_embeds is not None:
|
| 1145 |
+
batch_size, sequence_length, _ = inputs_embeds.shape
|
| 1146 |
+
device = inputs_embeds.device
|
| 1147 |
+
else:
|
| 1148 |
+
batch_size, sequence_length = input_ids.shape
|
| 1149 |
+
device = input_ids.device
|
| 1150 |
+
|
| 1151 |
+
dtype = self.lm_head.weight.dtype
|
| 1152 |
+
min_dtype = torch.finfo(dtype).min
|
| 1153 |
+
|
| 1154 |
+
attention_mask = _prepare_4d_causal_attention_mask_with_cache_position(
|
| 1155 |
+
attention_mask,
|
| 1156 |
+
sequence_length=sequence_length,
|
| 1157 |
+
target_length=past_key_values.get_max_length(),
|
| 1158 |
+
dtype=dtype,
|
| 1159 |
+
device=device,
|
| 1160 |
+
min_dtype=min_dtype,
|
| 1161 |
+
cache_position=cache_position,
|
| 1162 |
+
batch_size=batch_size,
|
| 1163 |
+
)
|
| 1164 |
+
|
| 1165 |
+
model_inputs.update(
|
| 1166 |
+
{
|
| 1167 |
+
"position_ids": position_ids,
|
| 1168 |
+
"cache_position": cache_position,
|
| 1169 |
+
"past_key_values": past_key_values,
|
| 1170 |
+
"use_cache": use_cache,
|
| 1171 |
+
"attention_mask": attention_mask,
|
| 1172 |
+
}
|
| 1173 |
+
)
|
| 1174 |
+
return model_inputs
|
| 1175 |
+
|
| 1176 |
+
|
| 1177 |
+
@add_start_docstrings(
|
| 1178 |
+
"""
|
| 1179 |
+
The EXAONE Model transformer with a sequence classification head on top (linear layer).
|
| 1180 |
+
|
| 1181 |
+
[`ExaoneForSequenceClassification`] uses the last token in order to do the classification, as
|
| 1182 |
+
other causal models (e.g. GPT-1) do.
|
| 1183 |
+
|
| 1184 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1185 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each
|
| 1186 |
+
row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot
|
| 1187 |
+
guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take
|
| 1188 |
+
the last value in each row of the batch).
|
| 1189 |
+
""",
|
| 1190 |
+
EXAONE_START_DOCSTRING,
|
| 1191 |
+
)
|
| 1192 |
+
class ExaoneForSequenceClassification(ExaonePreTrainedModel):
|
| 1193 |
+
def __init__(self, config):
|
| 1194 |
+
super().__init__(config)
|
| 1195 |
+
self.num_labels = config.num_labels
|
| 1196 |
+
self.transformer = ExaoneModel(config)
|
| 1197 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
| 1198 |
+
|
| 1199 |
+
# Initialize weights and apply final processing
|
| 1200 |
+
self.post_init()
|
| 1201 |
+
|
| 1202 |
+
@add_start_docstrings_to_model_forward(EXAONE_INPUTS_DOCSTRING)
|
| 1203 |
+
@add_code_sample_docstrings(
|
| 1204 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
| 1205 |
+
output_type=SequenceClassifierOutputWithPast,
|
| 1206 |
+
config_class=_CONFIG_FOR_DOC,
|
| 1207 |
+
)
|
| 1208 |
+
def forward(
|
| 1209 |
+
self,
|
| 1210 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1211 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1212 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1213 |
+
past_key_values: Optional[Cache] = None,
|
| 1214 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1215 |
+
labels: Optional[torch.Tensor] = None,
|
| 1216 |
+
use_cache: Optional[bool] = None,
|
| 1217 |
+
output_attentions: Optional[bool] = None,
|
| 1218 |
+
output_hidden_states: Optional[bool] = None,
|
| 1219 |
+
return_dict: Optional[bool] = None,
|
| 1220 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]:
|
| 1221 |
+
r"""
|
| 1222 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1223 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1224 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1225 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1226 |
+
"""
|
| 1227 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1228 |
+
|
| 1229 |
+
transformer_outputs = self.transformer(
|
| 1230 |
+
input_ids,
|
| 1231 |
+
attention_mask=attention_mask,
|
| 1232 |
+
position_ids=position_ids,
|
| 1233 |
+
past_key_values=past_key_values,
|
| 1234 |
+
inputs_embeds=inputs_embeds,
|
| 1235 |
+
use_cache=use_cache,
|
| 1236 |
+
output_attentions=output_attentions,
|
| 1237 |
+
output_hidden_states=output_hidden_states,
|
| 1238 |
+
return_dict=return_dict,
|
| 1239 |
+
)
|
| 1240 |
+
hidden_states = transformer_outputs[0]
|
| 1241 |
+
logits = self.score(hidden_states)
|
| 1242 |
+
|
| 1243 |
+
if input_ids is not None:
|
| 1244 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
| 1245 |
+
else:
|
| 1246 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
| 1247 |
+
|
| 1248 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
| 1249 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
| 1250 |
+
if self.config.pad_token_id is None:
|
| 1251 |
+
sequence_lengths = -1
|
| 1252 |
+
else:
|
| 1253 |
+
if input_ids is not None:
|
| 1254 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1255 |
+
sequence_lengths = torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1
|
| 1256 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1257 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1258 |
+
else:
|
| 1259 |
+
sequence_lengths = -1
|
| 1260 |
+
logger.warning(
|
| 1261 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
| 1262 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
| 1263 |
+
)
|
| 1264 |
+
|
| 1265 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
| 1266 |
+
|
| 1267 |
+
loss = None
|
| 1268 |
+
if labels is not None:
|
| 1269 |
+
labels = labels.to(logits.device)
|
| 1270 |
+
if self.config.problem_type is None:
|
| 1271 |
+
if self.num_labels == 1:
|
| 1272 |
+
self.config.problem_type = "regression"
|
| 1273 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1274 |
+
self.config.problem_type = "single_label_classification"
|
| 1275 |
+
else:
|
| 1276 |
+
self.config.problem_type = "multi_label_classification"
|
| 1277 |
+
|
| 1278 |
+
if self.config.problem_type == "regression":
|
| 1279 |
+
loss_fct = MSELoss()
|
| 1280 |
+
if self.num_labels == 1:
|
| 1281 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 1282 |
+
else:
|
| 1283 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1284 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1285 |
+
loss_fct = CrossEntropyLoss()
|
| 1286 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
| 1287 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1288 |
+
loss_fct = BCEWithLogitsLoss()
|
| 1289 |
+
loss = loss_fct(pooled_logits, labels)
|
| 1290 |
+
if not return_dict:
|
| 1291 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
| 1292 |
+
return ((loss,) + output) if loss is not None else output
|
| 1293 |
+
|
| 1294 |
+
return SequenceClassifierOutputWithPast(
|
| 1295 |
+
loss=loss,
|
| 1296 |
+
logits=pooled_logits,
|
| 1297 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1298 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1299 |
+
attentions=transformer_outputs.attentions,
|
| 1300 |
+
)
|
| 1301 |
+
|
| 1302 |
+
|
| 1303 |
+
@add_start_docstrings(
|
| 1304 |
+
"""
|
| 1305 |
+
The EXAONE Model transformer with a span classification head on top for extractive question-answering tasks like
|
| 1306 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
| 1307 |
+
""",
|
| 1308 |
+
EXAONE_START_DOCSTRING,
|
| 1309 |
+
)
|
| 1310 |
+
class ExaoneForQuestionAnswering(ExaonePreTrainedModel):
|
| 1311 |
+
def __init__(self, config):
|
| 1312 |
+
super().__init__(config)
|
| 1313 |
+
self.num_labels = config.num_labels
|
| 1314 |
+
self.transformer = ExaoneModel(config)
|
| 1315 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
| 1316 |
+
|
| 1317 |
+
# Model parallel
|
| 1318 |
+
self.model_parallel = False
|
| 1319 |
+
self.device_map = None
|
| 1320 |
+
|
| 1321 |
+
# Initialize weights and apply final processing
|
| 1322 |
+
self.post_init()
|
| 1323 |
+
|
| 1324 |
+
def forward(
|
| 1325 |
+
self,
|
| 1326 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1327 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1328 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1329 |
+
past_key_values: Optional[Cache] = None,
|
| 1330 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1331 |
+
start_positions: Optional[torch.LongTensor] = None,
|
| 1332 |
+
end_positions: Optional[torch.LongTensor] = None,
|
| 1333 |
+
output_attentions: Optional[bool] = None,
|
| 1334 |
+
output_hidden_states: Optional[bool] = None,
|
| 1335 |
+
return_dict: Optional[bool] = None,
|
| 1336 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
| 1337 |
+
r"""
|
| 1338 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1339 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
| 1340 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the
|
| 1341 |
+
sequence are not taken into account for computing the loss.
|
| 1342 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1343 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
| 1344 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the
|
| 1345 |
+
sequence are not taken into account for computing the loss.
|
| 1346 |
+
"""
|
| 1347 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1348 |
+
|
| 1349 |
+
outputs = self.transformer(
|
| 1350 |
+
input_ids,
|
| 1351 |
+
attention_mask=attention_mask,
|
| 1352 |
+
position_ids=position_ids,
|
| 1353 |
+
past_key_values=past_key_values,
|
| 1354 |
+
inputs_embeds=inputs_embeds,
|
| 1355 |
+
output_attentions=output_attentions,
|
| 1356 |
+
output_hidden_states=output_hidden_states,
|
| 1357 |
+
return_dict=return_dict,
|
| 1358 |
+
)
|
| 1359 |
+
|
| 1360 |
+
sequence_output = outputs[0]
|
| 1361 |
+
|
| 1362 |
+
logits = self.qa_outputs(sequence_output)
|
| 1363 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
| 1364 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
| 1365 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
| 1366 |
+
|
| 1367 |
+
total_loss = None
|
| 1368 |
+
if start_positions is not None and end_positions is not None:
|
| 1369 |
+
# If we are on multi-GPU, split add a dimension
|
| 1370 |
+
if len(start_positions.size()) > 1:
|
| 1371 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
| 1372 |
+
if len(end_positions.size()) > 1:
|
| 1373 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
| 1374 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
| 1375 |
+
ignored_index = start_logits.size(1)
|
| 1376 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
| 1377 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
| 1378 |
+
|
| 1379 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
| 1380 |
+
start_loss = loss_fct(start_logits, start_positions)
|
| 1381 |
+
end_loss = loss_fct(end_logits, end_positions)
|
| 1382 |
+
total_loss = (start_loss + end_loss) / 2
|
| 1383 |
+
|
| 1384 |
+
if not return_dict:
|
| 1385 |
+
output = (start_logits, end_logits) + outputs[2:]
|
| 1386 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
| 1387 |
+
|
| 1388 |
+
return QuestionAnsweringModelOutput(
|
| 1389 |
+
loss=total_loss,
|
| 1390 |
+
start_logits=start_logits,
|
| 1391 |
+
end_logits=end_logits,
|
| 1392 |
+
hidden_states=outputs.hidden_states,
|
| 1393 |
+
attentions=outputs.attentions,
|
| 1394 |
+
)
|