File size: 2,713 Bytes
			
			| 1dc29e9 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | /*
 * Copyright (c) 2022-2024, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#pragma once
#include <cassert>
#include <cmath>
#include <cstdint>
#include <cuda_fp16.h>
#include <cuda_runtime.h>
#include <cuda_runtime_api.h>
#include <iostream>
#include "cutlass/cutlass.h"
#include "cutlass_extensions/interleaved_numeric_conversion.h"
namespace tensorrt_llm
{
namespace kernels
{
__forceinline__ __device__ float copysignf_pos(float a, float b)
{
    float r;
    r = __int_as_float(__float_as_int(a) | (__float_as_int(b) & 0x80000000));
    return r;
}
__inline__ __device__ float tanh_opt(float x)
{
#if (__CUDA_ARCH__ >= 750 && CUDART_VERSION >= 11000)
    float r;
    asm("tanh.approx.f32 %0,%1; \n\t" : "=f"(r) : "f"(x));
    return r;
#else
    const float exp_val = -1.f * fabs(2 * x);
    return copysignf_pos((1.0f - __expf(exp_val)) / (__expf(exp_val) + 1.0f), x);
#endif
}
template <typename T>
struct GeluActivation
{
    static __device__ __forceinline__ T apply(const T& val)
    {
        const float cdf = 0.5f * (1.0f + tanh_opt((0.7978845608028654f * (val + 0.044715f * val * val * val))));
        return val * cdf;
    }
};
template <typename T>
struct ReluActivation
{
    static __device__ __forceinline__ T apply(const T& val)
    {
        return val > static_cast<T>(0.0f) ? val : static_cast<T>(0.0f);
    }
};
template <typename T>
struct IdentityActivation
{
    static __device__ __forceinline__ T apply(const T& val)
    {
        return val;
    }
};
template <typename VecType, typename T0, typename T1>
__device__ __forceinline__ void load(T0* dst, T1* src, size_t offset = 0)
{
    *reinterpret_cast<VecType*>(dst) = *(reinterpret_cast<const VecType*>(src) + offset);
}
template <typename AssignType, typename T>
__device__ __forceinline__ void assign(T* dst, const AssignType& val)
{
    *reinterpret_cast<AssignType*>(dst) = val;
}
template <typename VecType, typename T0, typename T1>
__device__ __forceinline__ void store(T0* src, T1* dst, size_t offset = 0)
{
    *(reinterpret_cast<VecType*>(dst) + offset) = *reinterpret_cast<const VecType*>(src);
}
} // namespace kernels
} // namespace tensorrt_llm
 | 
