Test build for Torch 2.7
Browse files- build/torch27-cxx11-cu126-x86_64-linux/flash_attn3/__init__.py +17 -0
- build/torch27-cxx11-cu126-x86_64-linux/flash_attn3/_flash_attn3_2e75662.abi3.so +3 -0
- build/torch27-cxx11-cu126-x86_64-linux/flash_attn3/_ops.py +9 -0
- build/torch27-cxx11-cu126-x86_64-linux/flash_attn3/flash_attn_interface.py +828 -0
build/torch27-cxx11-cu126-x86_64-linux/flash_attn3/__init__.py
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .flash_attn_interface import (
|
| 2 |
+
flash_attn_combine,
|
| 3 |
+
flash_attn_func,
|
| 4 |
+
flash_attn_qkvpacked_func,
|
| 5 |
+
flash_attn_varlen_func,
|
| 6 |
+
flash_attn_with_kvcache,
|
| 7 |
+
get_scheduler_metadata,
|
| 8 |
+
)
|
| 9 |
+
|
| 10 |
+
__all__ = [
|
| 11 |
+
"flash_attn_combine",
|
| 12 |
+
"flash_attn_func",
|
| 13 |
+
"flash_attn_qkvpacked_func",
|
| 14 |
+
"flash_attn_varlen_func",
|
| 15 |
+
"flash_attn_with_kvcache",
|
| 16 |
+
"get_scheduler_metadata",
|
| 17 |
+
]
|
build/torch27-cxx11-cu126-x86_64-linux/flash_attn3/_flash_attn3_2e75662.abi3.so
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c0302224ac29ba4773d926d4cb16c01c45a374c6dd61286aae1f423f2bf495ea
|
| 3 |
+
size 838459544
|
build/torch27-cxx11-cu126-x86_64-linux/flash_attn3/_ops.py
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from . import _flash_attn3_2e75662
|
| 3 |
+
ops = torch.ops._flash_attn3_2e75662
|
| 4 |
+
|
| 5 |
+
def add_op_namespace_prefix(op_name: str):
|
| 6 |
+
"""
|
| 7 |
+
Prefix op by namespace.
|
| 8 |
+
"""
|
| 9 |
+
return f"_flash_attn3_2e75662::{op_name}"
|
build/torch27-cxx11-cu126-x86_64-linux/flash_attn3/flash_attn_interface.py
ADDED
|
@@ -0,0 +1,828 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright (c) 2023, Tri Dao.
|
| 2 |
+
|
| 3 |
+
from typing import Optional, Union
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
import torch.nn as nn
|
| 7 |
+
|
| 8 |
+
from ._ops import ops as flash_attn_3_cuda
|
| 9 |
+
|
| 10 |
+
def maybe_contiguous(x):
|
| 11 |
+
return x.contiguous() if x is not None and x.stride(-1) != 1 else x
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def _flash_attn_forward(
|
| 15 |
+
q,
|
| 16 |
+
k,
|
| 17 |
+
v,
|
| 18 |
+
k_new,
|
| 19 |
+
v_new,
|
| 20 |
+
qv,
|
| 21 |
+
out,
|
| 22 |
+
cu_seqlens_q,
|
| 23 |
+
cu_seqlens_k,
|
| 24 |
+
cu_seqlens_k_new,
|
| 25 |
+
seqused_q,
|
| 26 |
+
seqused_k,
|
| 27 |
+
max_seqlen_q,
|
| 28 |
+
max_seqlen_k,
|
| 29 |
+
page_table,
|
| 30 |
+
kv_batch_idx,
|
| 31 |
+
leftpad_k,
|
| 32 |
+
rotary_cos,
|
| 33 |
+
rotary_sin,
|
| 34 |
+
seqlens_rotary,
|
| 35 |
+
q_descale,
|
| 36 |
+
k_descale,
|
| 37 |
+
v_descale,
|
| 38 |
+
softmax_scale,
|
| 39 |
+
causal,
|
| 40 |
+
window_size=(-1, -1),
|
| 41 |
+
attention_chunk=0,
|
| 42 |
+
softcap=0.0,
|
| 43 |
+
rotary_interleaved=True,
|
| 44 |
+
scheduler_metadata=None,
|
| 45 |
+
num_splits=1,
|
| 46 |
+
pack_gqa=None,
|
| 47 |
+
sm_margin=0):
|
| 48 |
+
q, k, k_new, v_new = [maybe_contiguous(x) for x in (q, k, k_new, v_new)]
|
| 49 |
+
v = v.contiguous() if v.stride(-1) != 1 and v.stride(-3) != 1 else v
|
| 50 |
+
cu_seqlens_q, cu_seqlens_k, cu_seqlens_k_new = [
|
| 51 |
+
maybe_contiguous(x) for x in (cu_seqlens_q, cu_seqlens_k, cu_seqlens_k_new)
|
| 52 |
+
]
|
| 53 |
+
seqused_q, seqused_k = [maybe_contiguous(x) for x in (seqused_q, seqused_k)]
|
| 54 |
+
page_table, kv_batch_idx, leftpad_k = [
|
| 55 |
+
maybe_contiguous(x) for x in (page_table, kv_batch_idx, leftpad_k)
|
| 56 |
+
]
|
| 57 |
+
rotary_cos, rotary_sin = [maybe_contiguous(x) for x in (rotary_cos, rotary_sin)]
|
| 58 |
+
seqlens_rotary = maybe_contiguous(seqlens_rotary)
|
| 59 |
+
out, softmax_lse, *rest = flash_attn_3_cuda.fwd(
|
| 60 |
+
q,
|
| 61 |
+
k,
|
| 62 |
+
v,
|
| 63 |
+
k_new,
|
| 64 |
+
v_new,
|
| 65 |
+
qv,
|
| 66 |
+
out,
|
| 67 |
+
cu_seqlens_q,
|
| 68 |
+
cu_seqlens_k,
|
| 69 |
+
cu_seqlens_k_new,
|
| 70 |
+
seqused_q,
|
| 71 |
+
seqused_k,
|
| 72 |
+
max_seqlen_q,
|
| 73 |
+
max_seqlen_k,
|
| 74 |
+
page_table,
|
| 75 |
+
kv_batch_idx,
|
| 76 |
+
leftpad_k,
|
| 77 |
+
rotary_cos,
|
| 78 |
+
rotary_sin,
|
| 79 |
+
seqlens_rotary,
|
| 80 |
+
q_descale,
|
| 81 |
+
k_descale,
|
| 82 |
+
v_descale,
|
| 83 |
+
softmax_scale,
|
| 84 |
+
causal,
|
| 85 |
+
window_size[0],
|
| 86 |
+
window_size[1],
|
| 87 |
+
attention_chunk,
|
| 88 |
+
softcap,
|
| 89 |
+
rotary_interleaved,
|
| 90 |
+
scheduler_metadata,
|
| 91 |
+
num_splits,
|
| 92 |
+
pack_gqa,
|
| 93 |
+
sm_margin,
|
| 94 |
+
)
|
| 95 |
+
return out, softmax_lse, *rest
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def _flash_attn_backward(
|
| 99 |
+
dout,
|
| 100 |
+
q,
|
| 101 |
+
k,
|
| 102 |
+
v,
|
| 103 |
+
out,
|
| 104 |
+
softmax_lse,
|
| 105 |
+
cu_seqlens_q,
|
| 106 |
+
cu_seqlens_k,
|
| 107 |
+
sequed_q,
|
| 108 |
+
sequed_k,
|
| 109 |
+
max_seqlen_q,
|
| 110 |
+
max_seqlen_k,
|
| 111 |
+
dq,
|
| 112 |
+
dk,
|
| 113 |
+
dv,
|
| 114 |
+
softmax_scale,
|
| 115 |
+
causal,
|
| 116 |
+
window_size=(-1, -1),
|
| 117 |
+
softcap=0.0,
|
| 118 |
+
deterministic=False,
|
| 119 |
+
sm_margin=0,
|
| 120 |
+
):
|
| 121 |
+
# dq, dk, dv are allocated by us so they should already be contiguous
|
| 122 |
+
dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
|
| 123 |
+
dq, dk, dv, softmax_d, *rest = flash_attn_3_cuda.bwd(
|
| 124 |
+
dout,
|
| 125 |
+
q,
|
| 126 |
+
k,
|
| 127 |
+
v,
|
| 128 |
+
out,
|
| 129 |
+
softmax_lse,
|
| 130 |
+
dq,
|
| 131 |
+
dk,
|
| 132 |
+
dv,
|
| 133 |
+
cu_seqlens_q,
|
| 134 |
+
cu_seqlens_k,
|
| 135 |
+
sequed_q,
|
| 136 |
+
sequed_k,
|
| 137 |
+
max_seqlen_q,
|
| 138 |
+
max_seqlen_k,
|
| 139 |
+
softmax_scale,
|
| 140 |
+
causal,
|
| 141 |
+
window_size[0],
|
| 142 |
+
window_size[1],
|
| 143 |
+
softcap,
|
| 144 |
+
deterministic,
|
| 145 |
+
sm_margin,
|
| 146 |
+
)
|
| 147 |
+
return dq, dk, dv, softmax_d
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
class FlashAttnQKVPackedFunc(torch.autograd.Function):
|
| 151 |
+
@staticmethod
|
| 152 |
+
def forward(
|
| 153 |
+
ctx,
|
| 154 |
+
qkv,
|
| 155 |
+
softmax_scale,
|
| 156 |
+
causal,
|
| 157 |
+
q_descale=None, k_descale=None, v_descale=None,
|
| 158 |
+
window_size=(-1, -1),
|
| 159 |
+
attention_chunk=0,
|
| 160 |
+
softcap=0.0,
|
| 161 |
+
deterministic=False,
|
| 162 |
+
num_heads_q=None,
|
| 163 |
+
sm_margin=0,
|
| 164 |
+
):
|
| 165 |
+
if softmax_scale is None:
|
| 166 |
+
softmax_scale = qkv.shape[-1] ** (-0.5)
|
| 167 |
+
if qkv.dim() == 5:
|
| 168 |
+
assert qkv.shape[-3] == 3
|
| 169 |
+
q, k, v = qkv.unbind(dim=-3)
|
| 170 |
+
else:
|
| 171 |
+
assert qkv.dim() == 4
|
| 172 |
+
assert num_heads_q is not None
|
| 173 |
+
num_heads_k = (qkv.shape[2] - num_heads_q) // 2
|
| 174 |
+
assert num_heads_k * 2 + num_heads_q == qkv.shape[2]
|
| 175 |
+
q, k, v = qkv.split([num_heads_q, num_heads_k, num_heads_k], dim=-2)
|
| 176 |
+
out, softmax_lse, *rest = _flash_attn_forward(
|
| 177 |
+
q,
|
| 178 |
+
k,
|
| 179 |
+
v,
|
| 180 |
+
None, None, # k_new, v_new
|
| 181 |
+
None, # qv
|
| 182 |
+
None, # out
|
| 183 |
+
None, None, None, # cu_seqlens_q/k/k_new
|
| 184 |
+
None, None, # seqused_q/k
|
| 185 |
+
None, None, # max_seqlen_q/k
|
| 186 |
+
None, None, None, # page_table, kv_batch_idx, leftpad_k,
|
| 187 |
+
None, None, None, # rotary_cos/sin, seqlens_rotary
|
| 188 |
+
q_descale, k_descale, v_descale,
|
| 189 |
+
softmax_scale,
|
| 190 |
+
causal=causal,
|
| 191 |
+
window_size=window_size,
|
| 192 |
+
attention_chunk=attention_chunk,
|
| 193 |
+
softcap=softcap,
|
| 194 |
+
sm_margin=sm_margin,
|
| 195 |
+
)
|
| 196 |
+
# ctx.save_for_backward(q, k, v, out_padded, softmax_lse)
|
| 197 |
+
ctx.save_for_backward(q, k, v, out, softmax_lse)
|
| 198 |
+
ctx.softmax_scale = softmax_scale
|
| 199 |
+
ctx.causal = causal
|
| 200 |
+
ctx.window_size = window_size
|
| 201 |
+
ctx.attention_chunk = attention_chunk
|
| 202 |
+
ctx.softcap = softcap
|
| 203 |
+
ctx.deterministic = deterministic
|
| 204 |
+
ctx.ndim = qkv.dim()
|
| 205 |
+
ctx.sm_margin = sm_margin
|
| 206 |
+
# return out, softmax_lse
|
| 207 |
+
return out
|
| 208 |
+
|
| 209 |
+
@staticmethod
|
| 210 |
+
def backward(ctx, dout, *args):
|
| 211 |
+
q, k, v, out, softmax_lse = ctx.saved_tensors
|
| 212 |
+
assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
|
| 213 |
+
if ctx.ndim == 5:
|
| 214 |
+
qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
|
| 215 |
+
dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
|
| 216 |
+
dq, dk, dv = dqkv.unbind(dim=-3)
|
| 217 |
+
else:
|
| 218 |
+
num_heads_q = q.shape[2]
|
| 219 |
+
num_heads_k = k.shape[2]
|
| 220 |
+
qkv_shape = q.shape[:-2] + (num_heads_q + num_heads_k * 2, *q.shape[-1:])
|
| 221 |
+
dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
|
| 222 |
+
dq, dk, dv = dqkv.split([num_heads_q, num_heads_k, num_heads_k], dim=-2)
|
| 223 |
+
_flash_attn_backward(
|
| 224 |
+
dout,
|
| 225 |
+
q,
|
| 226 |
+
k,
|
| 227 |
+
v,
|
| 228 |
+
out,
|
| 229 |
+
softmax_lse,
|
| 230 |
+
None, None, # cu_seqlens_q, cu_seqlens_k,
|
| 231 |
+
None, None, # sequed_q, sequed_k,
|
| 232 |
+
None, None, # max_seqlen_q, max_seqlen_k,
|
| 233 |
+
dq,
|
| 234 |
+
dk,
|
| 235 |
+
dv,
|
| 236 |
+
ctx.softmax_scale,
|
| 237 |
+
ctx.causal,
|
| 238 |
+
ctx.window_size,
|
| 239 |
+
ctx.softcap,
|
| 240 |
+
ctx.deterministic,
|
| 241 |
+
ctx.sm_margin,
|
| 242 |
+
)
|
| 243 |
+
dqkv = dqkv[..., : dout.shape[-1]] # We could have padded the head dimension
|
| 244 |
+
return dqkv, None, None, None, None, None, None, None, None, None, None, None
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
class FlashAttnFunc(torch.autograd.Function):
|
| 248 |
+
|
| 249 |
+
@staticmethod
|
| 250 |
+
def forward(
|
| 251 |
+
ctx,
|
| 252 |
+
q,
|
| 253 |
+
k,
|
| 254 |
+
v,
|
| 255 |
+
softmax_scale,
|
| 256 |
+
causal,
|
| 257 |
+
qv=None,
|
| 258 |
+
q_descale=None, k_descale=None, v_descale=None,
|
| 259 |
+
window_size=(-1, -1),
|
| 260 |
+
attention_chunk=0,
|
| 261 |
+
softcap=0.0,
|
| 262 |
+
num_splits=1,
|
| 263 |
+
pack_gqa=None,
|
| 264 |
+
deterministic=False,
|
| 265 |
+
sm_margin=0,
|
| 266 |
+
):
|
| 267 |
+
if softmax_scale is None:
|
| 268 |
+
softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
|
| 269 |
+
# out, q, k, v, out_padded, softmax_lse = _flash_attn_forward(
|
| 270 |
+
out, softmax_lse, *rest = _flash_attn_forward(
|
| 271 |
+
q,
|
| 272 |
+
k,
|
| 273 |
+
v,
|
| 274 |
+
None, None, # k_new, v_new
|
| 275 |
+
qv, # qv
|
| 276 |
+
None, # out
|
| 277 |
+
None, None, None, # cu_seqlens_q/k/k_new
|
| 278 |
+
None, None, # seqused_q/k
|
| 279 |
+
None, None, # max_seqlen_q/k
|
| 280 |
+
None, None, None, # page_table, kv_batch_idx, leftpad_k,
|
| 281 |
+
None, None, None, # rotary_cos/sin, seqlens_rotary
|
| 282 |
+
q_descale, k_descale, v_descale,
|
| 283 |
+
softmax_scale,
|
| 284 |
+
causal=causal,
|
| 285 |
+
window_size=window_size,
|
| 286 |
+
attention_chunk=attention_chunk,
|
| 287 |
+
softcap=softcap,
|
| 288 |
+
num_splits=num_splits,
|
| 289 |
+
pack_gqa=pack_gqa,
|
| 290 |
+
sm_margin=sm_margin,
|
| 291 |
+
)
|
| 292 |
+
# ctx.save_for_backward(q, k, v, out_padded, softmax_lse)
|
| 293 |
+
ctx.save_for_backward(q, k, v, out, softmax_lse)
|
| 294 |
+
ctx.softmax_scale = softmax_scale
|
| 295 |
+
ctx.causal = causal
|
| 296 |
+
ctx.window_size = window_size
|
| 297 |
+
ctx.attention_chunk = attention_chunk
|
| 298 |
+
ctx.softcap = softcap
|
| 299 |
+
ctx.deterministic = deterministic
|
| 300 |
+
ctx.sm_margin = sm_margin
|
| 301 |
+
return out, softmax_lse
|
| 302 |
+
|
| 303 |
+
@staticmethod
|
| 304 |
+
def backward(ctx, dout, *args):
|
| 305 |
+
q, k, v, out, softmax_lse = ctx.saved_tensors
|
| 306 |
+
assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
|
| 307 |
+
dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
|
| 308 |
+
_flash_attn_backward(
|
| 309 |
+
dout,
|
| 310 |
+
q,
|
| 311 |
+
k,
|
| 312 |
+
v,
|
| 313 |
+
out,
|
| 314 |
+
softmax_lse,
|
| 315 |
+
None, None, # cu_seqlens_q, cu_seqlens_k,
|
| 316 |
+
None, None, # sequed_q, sequed_k,
|
| 317 |
+
None, None, # max_seqlen_q, max_seqlen_k,
|
| 318 |
+
dq,
|
| 319 |
+
dk,
|
| 320 |
+
dv,
|
| 321 |
+
ctx.softmax_scale,
|
| 322 |
+
ctx.causal,
|
| 323 |
+
ctx.window_size,
|
| 324 |
+
ctx.softcap,
|
| 325 |
+
ctx.deterministic,
|
| 326 |
+
ctx.sm_margin,
|
| 327 |
+
)
|
| 328 |
+
dq = dq[..., : q.shape[-1]] # We could have padded the head dimension
|
| 329 |
+
dk = dk[..., : k.shape[-1]]
|
| 330 |
+
dv = dv[..., : v.shape[-1]]
|
| 331 |
+
return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None, None, None
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
class FlashAttnVarlenFunc(torch.autograd.Function):
|
| 335 |
+
|
| 336 |
+
@staticmethod
|
| 337 |
+
def forward(
|
| 338 |
+
ctx,
|
| 339 |
+
q,
|
| 340 |
+
k,
|
| 341 |
+
v,
|
| 342 |
+
cu_seqlens_q,
|
| 343 |
+
cu_seqlens_k,
|
| 344 |
+
seqused_q,
|
| 345 |
+
seqused_k,
|
| 346 |
+
max_seqlen_q,
|
| 347 |
+
max_seqlen_k,
|
| 348 |
+
softmax_scale,
|
| 349 |
+
causal,
|
| 350 |
+
qv=None,
|
| 351 |
+
q_descale=None, k_descale=None, v_descale=None,
|
| 352 |
+
window_size=(-1, -1),
|
| 353 |
+
attention_chunk=0,
|
| 354 |
+
softcap=0.0,
|
| 355 |
+
num_splits=1,
|
| 356 |
+
pack_gqa=None,
|
| 357 |
+
deterministic=False,
|
| 358 |
+
sm_margin=0,
|
| 359 |
+
):
|
| 360 |
+
if softmax_scale is None:
|
| 361 |
+
softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
|
| 362 |
+
# out, q, k, v, out_padded, softmax_lse = _flash_attn_varlen_forward(
|
| 363 |
+
out, softmax_lse, *rest = _flash_attn_forward(
|
| 364 |
+
q,
|
| 365 |
+
k,
|
| 366 |
+
v,
|
| 367 |
+
None, None, # k_new, v_new
|
| 368 |
+
qv, # qv
|
| 369 |
+
None, # out
|
| 370 |
+
cu_seqlens_q,
|
| 371 |
+
cu_seqlens_k,
|
| 372 |
+
None, # cu_seqlens_k_new
|
| 373 |
+
seqused_q,
|
| 374 |
+
seqused_k,
|
| 375 |
+
max_seqlen_q,
|
| 376 |
+
max_seqlen_k,
|
| 377 |
+
None, None, None, # page_table, kv_batch_idx, leftpad_k,
|
| 378 |
+
None, None, None, # rotary_cos/sin, seqlens_rotary
|
| 379 |
+
q_descale, k_descale, v_descale,
|
| 380 |
+
softmax_scale,
|
| 381 |
+
causal=causal,
|
| 382 |
+
window_size=window_size,
|
| 383 |
+
attention_chunk=attention_chunk,
|
| 384 |
+
softcap=softcap,
|
| 385 |
+
num_splits=num_splits,
|
| 386 |
+
pack_gqa=pack_gqa,
|
| 387 |
+
sm_margin=sm_margin,
|
| 388 |
+
)
|
| 389 |
+
# ctx.save_for_backward(q, k, v, out_padded, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k)
|
| 390 |
+
ctx.save_for_backward(q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k)
|
| 391 |
+
ctx.max_seqlen_q = max_seqlen_q
|
| 392 |
+
ctx.max_seqlen_k = max_seqlen_k
|
| 393 |
+
ctx.softmax_scale = softmax_scale
|
| 394 |
+
ctx.causal = causal
|
| 395 |
+
ctx.window_size = window_size
|
| 396 |
+
ctx.attention_chunk = attention_chunk
|
| 397 |
+
ctx.softcap = softcap
|
| 398 |
+
ctx.deterministic = deterministic
|
| 399 |
+
ctx.sm_margin = sm_margin
|
| 400 |
+
return out, softmax_lse
|
| 401 |
+
|
| 402 |
+
@staticmethod
|
| 403 |
+
def backward(ctx, dout, *args):
|
| 404 |
+
q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, seqused_q, seqused_k = ctx.saved_tensors
|
| 405 |
+
assert ctx.attention_chunk == 0, "FA3 backward does not support attention_chunk"
|
| 406 |
+
dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
|
| 407 |
+
_flash_attn_backward(
|
| 408 |
+
dout,
|
| 409 |
+
q,
|
| 410 |
+
k,
|
| 411 |
+
v,
|
| 412 |
+
out,
|
| 413 |
+
softmax_lse,
|
| 414 |
+
cu_seqlens_q,
|
| 415 |
+
cu_seqlens_k,
|
| 416 |
+
seqused_q,
|
| 417 |
+
seqused_k,
|
| 418 |
+
ctx.max_seqlen_q,
|
| 419 |
+
ctx.max_seqlen_k,
|
| 420 |
+
dq,
|
| 421 |
+
dk,
|
| 422 |
+
dv,
|
| 423 |
+
ctx.softmax_scale,
|
| 424 |
+
ctx.causal,
|
| 425 |
+
ctx.window_size,
|
| 426 |
+
ctx.softcap,
|
| 427 |
+
ctx.deterministic,
|
| 428 |
+
ctx.sm_margin,
|
| 429 |
+
)
|
| 430 |
+
dq = dq[..., : q.shape[-1]] # We could have padded the head dimension
|
| 431 |
+
dk = dk[..., : k.shape[-1]]
|
| 432 |
+
dv = dv[..., : v.shape[-1]]
|
| 433 |
+
return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None
|
| 434 |
+
|
| 435 |
+
|
| 436 |
+
def flash_attn_qkvpacked_func(
|
| 437 |
+
qkv,
|
| 438 |
+
softmax_scale=None,
|
| 439 |
+
causal=False,
|
| 440 |
+
q_descale=None, k_descale=None, v_descale=None,
|
| 441 |
+
window_size=(-1, -1),
|
| 442 |
+
attention_chunk=0,
|
| 443 |
+
softcap=0.0,
|
| 444 |
+
deterministic=False,
|
| 445 |
+
num_heads_q=None,
|
| 446 |
+
sm_margin=0,
|
| 447 |
+
):
|
| 448 |
+
"""dropout_p should be set to 0.0 during evaluation
|
| 449 |
+
If Q, K, V are already stacked into 1 tensor, this function will be faster than
|
| 450 |
+
calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
|
| 451 |
+
of the gradients of Q, K, V.
|
| 452 |
+
For multi-query and grouped-query attention (MQA/GQA), please see
|
| 453 |
+
flash_attn_kvpacked_func and flash_attn_func.
|
| 454 |
+
|
| 455 |
+
If window_size != (-1, -1), implements sliding window local attention. Query at position i
|
| 456 |
+
will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive.
|
| 457 |
+
|
| 458 |
+
Arguments:
|
| 459 |
+
qkv: (batch_size, seqlen, 3, nheads, headdim)
|
| 460 |
+
dropout_p: float. Dropout probability.
|
| 461 |
+
softmax_scale: float. The scaling of QK^T before applying softmax.
|
| 462 |
+
Default to 1 / sqrt(headdim).
|
| 463 |
+
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
|
| 464 |
+
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
|
| 465 |
+
softcap: float. Anything > 0 activates softcapping attention.
|
| 466 |
+
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i - j|) is added to
|
| 467 |
+
the attention score of query i and key j.
|
| 468 |
+
deterministic: bool. Whether to use the deterministic implementation of the backward pass,
|
| 469 |
+
which is slightly slower and uses more memory. The forward pass is always deterministic.
|
| 470 |
+
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
|
| 471 |
+
testing only. The returned probabilities are not guaranteed to be correct
|
| 472 |
+
(they might not have the right scaling).
|
| 473 |
+
Return:
|
| 474 |
+
out: (batch_size, seqlen, nheads, headdim).
|
| 475 |
+
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
|
| 476 |
+
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
|
| 477 |
+
normalization factor).
|
| 478 |
+
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
|
| 479 |
+
The output of softmax (possibly with different scaling). It also encodes the dropout
|
| 480 |
+
pattern (negative means that location was dropped, nonnegative means it was kept).
|
| 481 |
+
"""
|
| 482 |
+
return FlashAttnQKVPackedFunc.apply(
|
| 483 |
+
qkv,
|
| 484 |
+
softmax_scale,
|
| 485 |
+
causal,
|
| 486 |
+
q_descale, k_descale, v_descale,
|
| 487 |
+
window_size,
|
| 488 |
+
attention_chunk,
|
| 489 |
+
softcap,
|
| 490 |
+
deterministic,
|
| 491 |
+
num_heads_q,
|
| 492 |
+
sm_margin,
|
| 493 |
+
)
|
| 494 |
+
|
| 495 |
+
|
| 496 |
+
def flash_attn_func(
|
| 497 |
+
q,
|
| 498 |
+
k,
|
| 499 |
+
v,
|
| 500 |
+
softmax_scale=None,
|
| 501 |
+
causal=False,
|
| 502 |
+
qv=None,
|
| 503 |
+
q_descale=None, k_descale=None, v_descale=None,
|
| 504 |
+
window_size=(-1, -1),
|
| 505 |
+
attention_chunk=0,
|
| 506 |
+
softcap=0.0,
|
| 507 |
+
num_splits=1,
|
| 508 |
+
pack_gqa=None,
|
| 509 |
+
deterministic=False,
|
| 510 |
+
sm_margin=0,
|
| 511 |
+
):
|
| 512 |
+
"""dropout_p should be set to 0.0 during evaluation
|
| 513 |
+
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
|
| 514 |
+
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
|
| 515 |
+
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
|
| 516 |
+
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
|
| 517 |
+
|
| 518 |
+
If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
|
| 519 |
+
For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
|
| 520 |
+
1 1 1 1 0
|
| 521 |
+
1 1 1 1 1
|
| 522 |
+
If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
|
| 523 |
+
0 0
|
| 524 |
+
0 0
|
| 525 |
+
0 0
|
| 526 |
+
1 0
|
| 527 |
+
1 1
|
| 528 |
+
If the row of the mask is all zero, the output will be zero.
|
| 529 |
+
|
| 530 |
+
If window_size != (-1, -1), implements sliding window local attention. Query at position i
|
| 531 |
+
will only attend to keys between
|
| 532 |
+
[i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
|
| 533 |
+
|
| 534 |
+
Arguments:
|
| 535 |
+
q: (batch_size, seqlen, nheads, headdim)
|
| 536 |
+
k: (batch_size, seqlen, nheads_k, headdim)
|
| 537 |
+
v: (batch_size, seqlen, nheads_k, headdim)
|
| 538 |
+
dropout_p: float. Dropout probability.
|
| 539 |
+
softmax_scale: float. The scaling of QK^T before applying softmax.
|
| 540 |
+
Default to 1 / sqrt(headdim).
|
| 541 |
+
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
|
| 542 |
+
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
|
| 543 |
+
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
|
| 544 |
+
(-alibi_slope * |i + seqlen_k - seqlen_q - j|)
|
| 545 |
+
is added to the attention score of query i and key j.
|
| 546 |
+
deterministic: bool. Whether to use the deterministic implementation of the backward pass,
|
| 547 |
+
which is slightly slower and uses more memory. The forward pass is always deterministic.
|
| 548 |
+
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
|
| 549 |
+
testing only. The returned probabilities are not guaranteed to be correct
|
| 550 |
+
(they might not have the right scaling).
|
| 551 |
+
Return:
|
| 552 |
+
out: (batch_size, seqlen, nheads, headdim).
|
| 553 |
+
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
|
| 554 |
+
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
|
| 555 |
+
normalization factor).
|
| 556 |
+
"""
|
| 557 |
+
return FlashAttnFunc.apply(
|
| 558 |
+
q,
|
| 559 |
+
k,
|
| 560 |
+
v,
|
| 561 |
+
softmax_scale,
|
| 562 |
+
causal,
|
| 563 |
+
qv,
|
| 564 |
+
q_descale, k_descale, v_descale,
|
| 565 |
+
window_size,
|
| 566 |
+
attention_chunk,
|
| 567 |
+
softcap,
|
| 568 |
+
num_splits,
|
| 569 |
+
pack_gqa,
|
| 570 |
+
deterministic,
|
| 571 |
+
sm_margin,
|
| 572 |
+
)
|
| 573 |
+
|
| 574 |
+
|
| 575 |
+
def flash_attn_varlen_func(
|
| 576 |
+
q,
|
| 577 |
+
k,
|
| 578 |
+
v,
|
| 579 |
+
cu_seqlens_q,
|
| 580 |
+
cu_seqlens_k,
|
| 581 |
+
max_seqlen_q,
|
| 582 |
+
max_seqlen_k,
|
| 583 |
+
seqused_q=None,
|
| 584 |
+
seqused_k=None,
|
| 585 |
+
softmax_scale=None,
|
| 586 |
+
causal=False,
|
| 587 |
+
qv=None,
|
| 588 |
+
q_descale=None, k_descale=None, v_descale=None,
|
| 589 |
+
window_size=(-1, -1),
|
| 590 |
+
attention_chunk=0,
|
| 591 |
+
softcap=0.0,
|
| 592 |
+
num_splits=1,
|
| 593 |
+
pack_gqa=None,
|
| 594 |
+
deterministic=False,
|
| 595 |
+
sm_margin=0,
|
| 596 |
+
):
|
| 597 |
+
return FlashAttnVarlenFunc.apply(
|
| 598 |
+
q,
|
| 599 |
+
k,
|
| 600 |
+
v,
|
| 601 |
+
cu_seqlens_q,
|
| 602 |
+
cu_seqlens_k,
|
| 603 |
+
seqused_q,
|
| 604 |
+
seqused_k,
|
| 605 |
+
max_seqlen_q,
|
| 606 |
+
max_seqlen_k,
|
| 607 |
+
softmax_scale,
|
| 608 |
+
causal,
|
| 609 |
+
qv,
|
| 610 |
+
q_descale, k_descale, v_descale,
|
| 611 |
+
window_size,
|
| 612 |
+
attention_chunk,
|
| 613 |
+
softcap,
|
| 614 |
+
num_splits,
|
| 615 |
+
pack_gqa,
|
| 616 |
+
deterministic,
|
| 617 |
+
sm_margin,
|
| 618 |
+
)
|
| 619 |
+
|
| 620 |
+
|
| 621 |
+
def flash_attn_combine(out_partial, lse_partial, out=None, out_dtype=None):
|
| 622 |
+
return flash_attn_3_cuda.fwd_combine(out_partial, lse_partial, out, out_dtype)
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
def flash_attn_with_kvcache(
|
| 626 |
+
q,
|
| 627 |
+
k_cache,
|
| 628 |
+
v_cache,
|
| 629 |
+
k=None,
|
| 630 |
+
v=None,
|
| 631 |
+
qv=None,
|
| 632 |
+
rotary_cos=None,
|
| 633 |
+
rotary_sin=None,
|
| 634 |
+
cache_seqlens: Optional[Union[(int, torch.Tensor)]] = None,
|
| 635 |
+
cache_batch_idx: Optional[torch.Tensor] = None,
|
| 636 |
+
cache_leftpad: Optional[torch.Tensor] = None,
|
| 637 |
+
page_table: Optional[torch.Tensor] = None,
|
| 638 |
+
cu_seqlens_q: Optional[torch.Tensor] = None,
|
| 639 |
+
cu_seqlens_k_new: Optional[torch.Tensor] = None,
|
| 640 |
+
max_seqlen_q: Optional[int] = None,
|
| 641 |
+
rotary_seqlens: Optional[torch.Tensor] = None,
|
| 642 |
+
q_descale: Optional[torch.Tensor] = None,
|
| 643 |
+
k_descale: Optional[torch.Tensor] = None,
|
| 644 |
+
v_descale: Optional[torch.Tensor] = None,
|
| 645 |
+
softmax_scale=None,
|
| 646 |
+
causal=False,
|
| 647 |
+
window_size=(-1, -1), # -1 means infinite context window
|
| 648 |
+
attention_chunk=0,
|
| 649 |
+
softcap=0.0, # 0.0 means deactivated
|
| 650 |
+
rotary_interleaved=True,
|
| 651 |
+
scheduler_metadata=None,
|
| 652 |
+
num_splits=0, # Can be tuned for speed
|
| 653 |
+
pack_gqa=None, # Can be tuned for speed
|
| 654 |
+
sm_margin=0, # Can be tuned if some SMs are used for communication
|
| 655 |
+
return_softmax_lse=False,
|
| 656 |
+
):
|
| 657 |
+
"""
|
| 658 |
+
If k and v are not None, k_cache and v_cache will be updated *inplace* with the new values from
|
| 659 |
+
k and v. This is useful for incremental decoding: you can pass in the cached keys/values from
|
| 660 |
+
the previous step, and update them with the new keys/values from the current step, and do
|
| 661 |
+
attention with the updated cache, all in 1 kernel.
|
| 662 |
+
|
| 663 |
+
If you pass in k / v, you must make sure that the cache is large enough to hold the new values.
|
| 664 |
+
For example, the KV cache could be pre-allocated with the max sequence length, and you can use
|
| 665 |
+
cache_seqlens to keep track of the current sequence lengths of each sequence in the batch.
|
| 666 |
+
|
| 667 |
+
Also apply rotary embedding if rotary_cos and rotary_sin are passed in. The key @k will be
|
| 668 |
+
rotated by rotary_cos and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
|
| 669 |
+
If causal or local (i.e., window_size != (-1, -1)), the query @q will be rotated by rotary_cos
|
| 670 |
+
and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
|
| 671 |
+
If not causal and not local, the query @q will be rotated by rotary_cos and rotary_sin at
|
| 672 |
+
indices cache_seqlens only (i.e. we consider all tokens in @q to be at position cache_seqlens).
|
| 673 |
+
|
| 674 |
+
See tests/test_flash_attn.py::test_flash_attn_kvcache for examples of how to use this function.
|
| 675 |
+
|
| 676 |
+
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
|
| 677 |
+
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
|
| 678 |
+
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
|
| 679 |
+
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
|
| 680 |
+
|
| 681 |
+
If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
|
| 682 |
+
For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
|
| 683 |
+
1 1 1 1 0
|
| 684 |
+
1 1 1 1 1
|
| 685 |
+
If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
|
| 686 |
+
0 0
|
| 687 |
+
0 0
|
| 688 |
+
0 0
|
| 689 |
+
1 0
|
| 690 |
+
1 1
|
| 691 |
+
If the row of the mask is all zero, the output will be zero.
|
| 692 |
+
|
| 693 |
+
If window_size != (-1, -1), implements sliding window local attention. Query at position i
|
| 694 |
+
will only attend to keys between
|
| 695 |
+
[i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
|
| 696 |
+
|
| 697 |
+
Note: Does not support backward pass.
|
| 698 |
+
|
| 699 |
+
Arguments:
|
| 700 |
+
q: (batch_size, seqlen, nheads, headdim)
|
| 701 |
+
k_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no page_table,
|
| 702 |
+
or (num_blocks, page_block_size, nheads_k, headdim) if there's a page_table (i.e. paged KV cache)
|
| 703 |
+
page_block_size must be a multiple of 256.
|
| 704 |
+
v_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim_v) if there's no page_table,
|
| 705 |
+
or (num_blocks, page_block_size, nheads_k, headdim_v) if there's a page_table (i.e. paged KV cache)
|
| 706 |
+
k [optional]: (batch_size, seqlen_new, nheads_k, headdim). If not None, we concatenate
|
| 707 |
+
k with k_cache, starting at the indices specified by cache_seqlens.
|
| 708 |
+
v [optional]: (batch_size, seqlen_new, nheads_k, headdim_v). Similar to k.
|
| 709 |
+
qv [optional]: (batch_size, seqlen, nheads, headdim_v)
|
| 710 |
+
rotary_cos [optional]: (seqlen_ro, rotary_dim / 2). If not None, we apply rotary embedding
|
| 711 |
+
to k and q. Only applicable if k and v are passed in. rotary_dim must be divisible by 16.
|
| 712 |
+
rotary_sin [optional]: (seqlen_ro, rotary_dim / 2). Similar to rotary_cos.
|
| 713 |
+
cache_seqlens: int, or (batch_size,), dtype torch.int32. The sequence lengths of the
|
| 714 |
+
KV cache.
|
| 715 |
+
cache_batch_idx: (batch_size,), dtype torch.int32. The indices used to index into the KV cache.
|
| 716 |
+
If None, we assume that the batch indices are [0, 1, 2, ..., batch_size - 1].
|
| 717 |
+
If the indices are not distinct, and k and v are provided, the values updated in the cache
|
| 718 |
+
might come from any of the duplicate indices.
|
| 719 |
+
cache_leftpad: (batch_size,), dtype torch.int32. The index that the KV cache starts. If None, assume 0.
|
| 720 |
+
page_table [optional]: (batch_size, max_num_blocks_per_seq), dtype torch.int32.
|
| 721 |
+
softmax_scale: float. The scaling of QK^T before applying softmax.
|
| 722 |
+
Default to 1 / sqrt(headdim).
|
| 723 |
+
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
|
| 724 |
+
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
|
| 725 |
+
softcap: float. Anything > 0 activates softcapping attention.
|
| 726 |
+
rotary_interleaved: bool. Only applicable if rotary_cos and rotary_sin are passed in.
|
| 727 |
+
If True, rotary embedding will combine dimensions 0 & 1, 2 & 3, etc. If False,
|
| 728 |
+
rotary embedding will combine dimensions 0 & rotary_dim / 2, 1 & rotary_dim / 2 + 1
|
| 729 |
+
(i.e. GPT-NeoX style).
|
| 730 |
+
num_splits: int. If > 1, split the key/value into this many chunks along the sequence.
|
| 731 |
+
If num_splits == 1, we don't split the key/value. If num_splits == 0, we use a heuristic
|
| 732 |
+
to automatically determine the number of splits.
|
| 733 |
+
Don't change this unless you know what you are doing.
|
| 734 |
+
return_softmax_lse: bool. Whether to return the logsumexp of the attention scores.
|
| 735 |
+
|
| 736 |
+
Return:
|
| 737 |
+
out: (batch_size, seqlen, nheads, headdim).
|
| 738 |
+
softmax_lse [optional, if return_softmax_lse=True]: (batch_size, nheads, seqlen). The
|
| 739 |
+
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
|
| 740 |
+
normalization factor).
|
| 741 |
+
"""
|
| 742 |
+
assert k_cache.stride(-1) == 1, "k_cache must have contiguous last dimension"
|
| 743 |
+
assert v_cache.stride(-1) == 1, "v_cache must have contiguous last dimension"
|
| 744 |
+
if softmax_scale is None:
|
| 745 |
+
softmax_scale = (q.shape[-1] + (qv.shape[-1] if qv is not None else 0)) ** (-0.5)
|
| 746 |
+
if cache_seqlens is not None and isinstance(cache_seqlens, int):
|
| 747 |
+
cache_seqlens = torch.full(
|
| 748 |
+
(k_cache.shape[0],), cache_seqlens, dtype=torch.int32, device=k_cache.device
|
| 749 |
+
)
|
| 750 |
+
cache_seqlens = maybe_contiguous(cache_seqlens)
|
| 751 |
+
out, softmax_lse, *rest = _flash_attn_forward(
|
| 752 |
+
q,
|
| 753 |
+
k_cache,
|
| 754 |
+
v_cache,
|
| 755 |
+
k,
|
| 756 |
+
v,
|
| 757 |
+
qv,
|
| 758 |
+
None, # out
|
| 759 |
+
cu_seqlens_q,
|
| 760 |
+
None, # cu_seqlens_k
|
| 761 |
+
cu_seqlens_k_new,
|
| 762 |
+
None, # seqused_q
|
| 763 |
+
cache_seqlens,
|
| 764 |
+
max_seqlen_q,
|
| 765 |
+
None, # max_seqlen_k
|
| 766 |
+
page_table,
|
| 767 |
+
cache_batch_idx,
|
| 768 |
+
cache_leftpad,
|
| 769 |
+
rotary_cos,
|
| 770 |
+
rotary_sin,
|
| 771 |
+
rotary_seqlens,
|
| 772 |
+
q_descale, k_descale, v_descale,
|
| 773 |
+
softmax_scale,
|
| 774 |
+
causal=causal,
|
| 775 |
+
window_size=window_size,
|
| 776 |
+
attention_chunk=attention_chunk,
|
| 777 |
+
softcap=softcap,
|
| 778 |
+
rotary_interleaved=rotary_interleaved,
|
| 779 |
+
scheduler_metadata=scheduler_metadata,
|
| 780 |
+
num_splits=num_splits,
|
| 781 |
+
pack_gqa=pack_gqa,
|
| 782 |
+
sm_margin=sm_margin,
|
| 783 |
+
)
|
| 784 |
+
# return (out, softmax_lse) if return_softmax_lse else out
|
| 785 |
+
return (out, softmax_lse, *rest) if return_softmax_lse else out
|
| 786 |
+
|
| 787 |
+
|
| 788 |
+
def get_scheduler_metadata(
|
| 789 |
+
batch_size, max_seqlen_q, max_seqlen_k, num_heads_q, num_heads_kv, headdim,
|
| 790 |
+
cache_seqlens: torch.Tensor,
|
| 791 |
+
qkv_dtype=torch.bfloat16,
|
| 792 |
+
headdim_v=None,
|
| 793 |
+
cu_seqlens_q: Optional[torch.Tensor] = None,
|
| 794 |
+
cu_seqlens_k_new: Optional[torch.Tensor] = None,
|
| 795 |
+
cache_leftpad: Optional[torch.Tensor] = None,
|
| 796 |
+
page_size: Optional[int] = None,
|
| 797 |
+
max_seqlen_k_new=0,
|
| 798 |
+
causal=False,
|
| 799 |
+
window_size=(-1, -1), # -1 means infinite context window
|
| 800 |
+
attention_chunk=0,
|
| 801 |
+
has_softcap=False,
|
| 802 |
+
num_splits=0, # Can be tuned for speed
|
| 803 |
+
pack_gqa=None, # Can be tuned for speed
|
| 804 |
+
sm_margin=0, # Can be tuned if some SMs are used for communication
|
| 805 |
+
):
|
| 806 |
+
cache_seqlens = maybe_contiguous(cache_seqlens)
|
| 807 |
+
if headdim_v is None:
|
| 808 |
+
headdim_v = headdim
|
| 809 |
+
scheduler_metadata = flash_attn_3_cuda.get_scheduler_metadata(
|
| 810 |
+
batch_size, max_seqlen_q, max_seqlen_k, num_heads_q, num_heads_kv, headdim, headdim_v,
|
| 811 |
+
qkv_dtype,
|
| 812 |
+
cache_seqlens,
|
| 813 |
+
cu_seqlens_q,
|
| 814 |
+
None, # cu_seqlens_k
|
| 815 |
+
cu_seqlens_k_new,
|
| 816 |
+
None, # seqused_q
|
| 817 |
+
cache_leftpad,
|
| 818 |
+
page_size,
|
| 819 |
+
max_seqlen_k_new,
|
| 820 |
+
causal,
|
| 821 |
+
window_size[0], window_size[1],
|
| 822 |
+
attention_chunk,
|
| 823 |
+
has_softcap,
|
| 824 |
+
num_splits,
|
| 825 |
+
pack_gqa,
|
| 826 |
+
sm_margin,
|
| 827 |
+
)
|
| 828 |
+
return scheduler_metadata
|