danieldk HF Staff commited on
Commit
79667ee
·
verified ·
1 Parent(s): 1fc12c5

Build uploaded using `kernels`.

Browse files
Files changed (35) hide show
  1. build/torch27-cxx11-cu128-aarch64-linux/activation/__init__.py +75 -0
  2. build/torch27-cxx11-cu128-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc +0 -0
  3. build/torch27-cxx11-cu128-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc +0 -0
  4. build/torch27-cxx11-cu128-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc +0 -0
  5. build/{torch28-cxx11-cu129-aarch64-linux/activation/_activation_0c3eb4e_dirty.abi3.so → torch27-cxx11-cu128-aarch64-linux/activation/_activation_320b408.abi3.so} +2 -2
  6. build/torch27-cxx11-cu128-aarch64-linux/activation/_ops.py +9 -0
  7. build/torch27-cxx11-cu128-aarch64-linux/activation/layers.py +179 -0
  8. build/torch28-cxx11-cu129-aarch64-linux/activation/__init__.py +18 -0
  9. build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc +0 -0
  10. build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc +0 -0
  11. build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc +0 -0
  12. build/torch28-cxx11-cu129-aarch64-linux/activation/_activation_320b408.abi3.so +3 -0
  13. build/torch28-cxx11-cu129-aarch64-linux/activation/_ops.py +3 -3
  14. build/torch28-cxx11-cu129-aarch64-linux/activation/layers.py +51 -0
  15. build/torch29-cxx11-cu126-aarch64-linux/activation/__init__.py +75 -0
  16. build/torch29-cxx11-cu126-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc +0 -0
  17. build/torch29-cxx11-cu126-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc +0 -0
  18. build/torch29-cxx11-cu126-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc +0 -0
  19. build/torch29-cxx11-cu126-aarch64-linux/activation/_activation_320b408.abi3.so +3 -0
  20. build/torch29-cxx11-cu126-aarch64-linux/activation/_ops.py +9 -0
  21. build/torch29-cxx11-cu126-aarch64-linux/activation/layers.py +179 -0
  22. build/torch29-cxx11-cu128-aarch64-linux/activation/__init__.py +75 -0
  23. build/torch29-cxx11-cu128-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc +0 -0
  24. build/torch29-cxx11-cu128-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc +0 -0
  25. build/torch29-cxx11-cu128-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc +0 -0
  26. build/torch29-cxx11-cu128-aarch64-linux/activation/_activation_320b408.abi3.so +3 -0
  27. build/torch29-cxx11-cu128-aarch64-linux/activation/_ops.py +9 -0
  28. build/torch29-cxx11-cu128-aarch64-linux/activation/layers.py +179 -0
  29. build/torch29-cxx11-cu130-aarch64-linux/activation/__init__.py +75 -0
  30. build/torch29-cxx11-cu130-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc +0 -0
  31. build/torch29-cxx11-cu130-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc +0 -0
  32. build/torch29-cxx11-cu130-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc +0 -0
  33. build/torch29-cxx11-cu130-aarch64-linux/activation/_activation_320b408.abi3.so +3 -0
  34. build/torch29-cxx11-cu130-aarch64-linux/activation/_ops.py +9 -0
  35. build/torch29-cxx11-cu130-aarch64-linux/activation/layers.py +179 -0
build/torch27-cxx11-cu128-aarch64-linux/activation/__init__.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from ._ops import ops
4
+
5
+ from . import layers
6
+
7
+
8
+ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
9
+ ops.silu_and_mul(out, x)
10
+ return out
11
+
12
+
13
+ def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
14
+ ops.mul_and_silu(out, x)
15
+ return out
16
+
17
+
18
+ def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
+ ops.gelu_and_mul(out, x)
20
+ return out
21
+
22
+
23
+ def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
24
+ ops.gelu_tanh_and_mul(out, x)
25
+ return out
26
+
27
+
28
+ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
29
+ ops.fatrelu_and_mul(out, x, threshold)
30
+ return out
31
+
32
+
33
+ def gelu(out: torch.Tensor, x: torch.Tensor) -> None:
34
+ ops.gelu(out, x)
35
+ return out
36
+
37
+ def silu(out: torch.Tensor, x: torch.Tensor) -> None:
38
+ ops.silu(out, x)
39
+ return out
40
+
41
+
42
+ def gelu_tanh(out: torch.Tensor, x: torch.Tensor) -> None:
43
+ ops.gelu_tanh(out, x)
44
+ return out
45
+
46
+
47
+ def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
48
+ ops.gelu_fast(out, x)
49
+ return out
50
+
51
+
52
+ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
53
+ ops.gelu_new(out, x)
54
+ return out
55
+
56
+
57
+ def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
58
+ ops.gelu_quick(out, x)
59
+ return out
60
+
61
+
62
+ __all__ = [
63
+ "silu_and_mul",
64
+ "mul_and_silu",
65
+ "gelu_and_mul",
66
+ "gelu_tanh_and_mul",
67
+ "fatrelu_and_mul",
68
+ "gelu_fast",
69
+ "gelu_new",
70
+ "gelu_quick",
71
+ "gelu_tanh",
72
+ "silu",
73
+ "gelu",
74
+ "layers",
75
+ ]
build/torch27-cxx11-cu128-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc ADDED
Binary file (3.25 kB). View file
 
build/torch27-cxx11-cu128-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc ADDED
Binary file (527 Bytes). View file
 
build/torch27-cxx11-cu128-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc ADDED
Binary file (8.92 kB). View file
 
build/{torch28-cxx11-cu129-aarch64-linux/activation/_activation_0c3eb4e_dirty.abi3.so → torch27-cxx11-cu128-aarch64-linux/activation/_activation_320b408.abi3.so} RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:b9f6a161283a05672bb3ed442990cf8a5ce553625bb482cd31ce514e07cfcf0a
3
- size 3684504
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34bdeb9ab72686850aef0a16b225b1b956162edb2cf46cba65c5e5b92ae267ae
3
+ size 4207000
build/torch27-cxx11-cu128-aarch64-linux/activation/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _activation_320b408
3
+ ops = torch.ops._activation_320b408
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_activation_320b408::{op_name}"
build/torch27-cxx11-cu128-aarch64-linux/activation/layers.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from ._ops import ops
5
+
6
+
7
+ class SiluAndMul(nn.Module):
8
+ """An activation function for SwiGLU.
9
+
10
+ The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
11
+
12
+ Shapes:
13
+ x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
14
+ return: (num_tokens, d) or (batch_size, seq_len, d)
15
+ """
16
+
17
+ can_torch_compile: bool = True
18
+
19
+ def forward(self, x: torch.Tensor):
20
+ d = x.shape[-1] // 2
21
+ output_shape = x.shape[:-1] + (d,)
22
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
23
+ ops.silu_and_mul(out, x)
24
+ return out
25
+
26
+ class Silu(nn.Module):
27
+ """An activation function for SiLU.
28
+
29
+ The function computes x -> silu(x).
30
+
31
+ Shapes:
32
+ x: (num_tokens, d) or (batch_size, seq_len, d)
33
+ return: (num_tokens, d) or (batch_size, seq_len, d)
34
+ """
35
+
36
+ can_torch_compile: bool = True
37
+
38
+ def forward(self, x: torch.Tensor):
39
+ out = torch.empty_like(x)
40
+ ops.silu(out, x)
41
+ return out
42
+
43
+ class Gelu(nn.Module):
44
+ """An activation function for GELU.
45
+
46
+ The function computes x -> gelu(x).
47
+
48
+ Shapes:
49
+ x: (num_tokens, d) or (batch_size, seq_len, d)
50
+ return: (num_tokens, d) or (batch_size, seq_len, d)
51
+ """
52
+
53
+ can_torch_compile: bool = True
54
+
55
+ def forward(self, x: torch.Tensor):
56
+ out = torch.empty_like(x)
57
+ ops.gelu(out, x)
58
+ return out
59
+
60
+ class GeluTanh(nn.Module):
61
+ """An activation function for GELU with `tanh` approximation.
62
+
63
+ The function computes x -> gelu_tanh(x).
64
+
65
+ Shapes:
66
+ x: (num_tokens, d) or (batch_size, seq_len, d)
67
+ return: (num_tokens, d) or (batch_size, seq_len, d)
68
+ """
69
+
70
+ can_torch_compile: bool = True
71
+
72
+ def forward(self, x: torch.Tensor):
73
+ out = torch.empty_like(x)
74
+ ops.gelu_tanh(out, x)
75
+ return out
76
+
77
+
78
+ class MulAndSilu(nn.Module):
79
+ """An activation function for SwiGLU.
80
+
81
+ The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
82
+
83
+ Shapes:
84
+ x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
85
+ return: (num_tokens, d) or (batch_size, seq_len, d)
86
+ """
87
+
88
+ can_torch_compile: bool = True
89
+
90
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
91
+ d = x.shape[-1] // 2
92
+ output_shape = x.shape[:-1] + (d,)
93
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
94
+ ops.mul_and_silu(out, x)
95
+ return out
96
+
97
+
98
+ class GeluAndMul(nn.Module):
99
+ """An activation function for GeGLU.
100
+
101
+ The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
102
+
103
+ Shapes:
104
+ x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
105
+ return: (batch_size, seq_len, d) or (num_tokens, d)
106
+ """
107
+
108
+ can_torch_compile: bool = True
109
+
110
+ def forward(self, x: torch.Tensor):
111
+ d = x.shape[-1] // 2
112
+ output_shape = x.shape[:-1] + (d,)
113
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
114
+ ops.gelu_and_mul(out, x)
115
+ return out
116
+
117
+
118
+ class GeluTanhAndMul(nn.Module):
119
+ can_torch_compile: bool = True
120
+
121
+ def forward(self, x: torch.Tensor):
122
+ d = x.shape[-1] // 2
123
+ output_shape = x.shape[:-1] + (d,)
124
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
125
+ ops.gelu_tanh_and_mul(out, x)
126
+ return out
127
+
128
+
129
+ class FatreluAndMul(nn.Module):
130
+ """An activation function for FATReLU.
131
+
132
+ The function computes x -> FATReLU(x[:d]) * x[d:] where
133
+ d = x.shape[-1] // 2.
134
+ This is used in openbmb/MiniCPM-S-1B-sft.
135
+
136
+ Shapes:
137
+ x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
138
+ return: (num_tokens, d) or (batch_size, seq_len, d)
139
+ """
140
+
141
+ can_torch_compile: bool = True
142
+
143
+ def __init__(self, threshold: float = 0.0):
144
+ super().__init__()
145
+ self.threshold = threshold
146
+
147
+ def forward(self, x: torch.Tensor):
148
+ d = x.shape[-1] // 2
149
+ output_shape = x.shape[:-1] + (d,)
150
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
151
+ ops.fatrelu_and_mul(out, x, self.threshold)
152
+ return out
153
+
154
+
155
+ class FastGELU(nn.Module):
156
+ can_torch_compile: bool = True
157
+
158
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
159
+ out = torch.empty_like(x)
160
+ ops.gelu_fast(out, x)
161
+ return out
162
+
163
+
164
+ class NewGELU(nn.Module):
165
+ can_torch_compile: bool = True
166
+
167
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
168
+ out = torch.empty_like(x)
169
+ ops.gelu_new(out, x)
170
+ return out
171
+
172
+
173
+ class QuickGELU(nn.Module):
174
+ can_torch_compile: bool = True
175
+
176
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
177
+ out = torch.empty_like(x)
178
+ ops.gelu_quick(out, x)
179
+ return out
build/torch28-cxx11-cu129-aarch64-linux/activation/__init__.py CHANGED
@@ -30,6 +30,20 @@ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0)
30
  return out
31
 
32
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
34
  ops.gelu_fast(out, x)
35
  return out
@@ -47,11 +61,15 @@ def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
47
 
48
  __all__ = [
49
  "silu_and_mul",
 
50
  "gelu_and_mul",
51
  "gelu_tanh_and_mul",
52
  "fatrelu_and_mul",
53
  "gelu_fast",
54
  "gelu_new",
55
  "gelu_quick",
 
 
 
56
  "layers",
57
  ]
 
30
  return out
31
 
32
 
33
+ def gelu(out: torch.Tensor, x: torch.Tensor) -> None:
34
+ ops.gelu(out, x)
35
+ return out
36
+
37
+ def silu(out: torch.Tensor, x: torch.Tensor) -> None:
38
+ ops.silu(out, x)
39
+ return out
40
+
41
+
42
+ def gelu_tanh(out: torch.Tensor, x: torch.Tensor) -> None:
43
+ ops.gelu_tanh(out, x)
44
+ return out
45
+
46
+
47
  def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
48
  ops.gelu_fast(out, x)
49
  return out
 
61
 
62
  __all__ = [
63
  "silu_and_mul",
64
+ "mul_and_silu",
65
  "gelu_and_mul",
66
  "gelu_tanh_and_mul",
67
  "fatrelu_and_mul",
68
  "gelu_fast",
69
  "gelu_new",
70
  "gelu_quick",
71
+ "gelu_tanh",
72
+ "silu",
73
+ "gelu",
74
  "layers",
75
  ]
build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc CHANGED
Binary files a/build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc and b/build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc differ
 
build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc CHANGED
Binary files a/build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc and b/build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc differ
 
build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc CHANGED
Binary files a/build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc and b/build/torch28-cxx11-cu129-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc differ
 
build/torch28-cxx11-cu129-aarch64-linux/activation/_activation_320b408.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3af83bae80c8641200010ba586e5a2cac271fa4fcd344e3532ea7d5094fd7c17
3
+ size 4275744
build/torch28-cxx11-cu129-aarch64-linux/activation/_ops.py CHANGED
@@ -1,9 +1,9 @@
1
  import torch
2
- from . import _activation_0c3eb4e_dirty
3
- ops = torch.ops._activation_0c3eb4e_dirty
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
- return f"_activation_0c3eb4e_dirty::{op_name}"
 
1
  import torch
2
+ from . import _activation_320b408
3
+ ops = torch.ops._activation_320b408
4
 
5
  def add_op_namespace_prefix(op_name: str):
6
  """
7
  Prefix op by namespace.
8
  """
9
+ return f"_activation_320b408::{op_name}"
build/torch28-cxx11-cu129-aarch64-linux/activation/layers.py CHANGED
@@ -23,6 +23,57 @@ class SiluAndMul(nn.Module):
23
  ops.silu_and_mul(out, x)
24
  return out
25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26
 
27
  class MulAndSilu(nn.Module):
28
  """An activation function for SwiGLU.
 
23
  ops.silu_and_mul(out, x)
24
  return out
25
 
26
+ class Silu(nn.Module):
27
+ """An activation function for SiLU.
28
+
29
+ The function computes x -> silu(x).
30
+
31
+ Shapes:
32
+ x: (num_tokens, d) or (batch_size, seq_len, d)
33
+ return: (num_tokens, d) or (batch_size, seq_len, d)
34
+ """
35
+
36
+ can_torch_compile: bool = True
37
+
38
+ def forward(self, x: torch.Tensor):
39
+ out = torch.empty_like(x)
40
+ ops.silu(out, x)
41
+ return out
42
+
43
+ class Gelu(nn.Module):
44
+ """An activation function for GELU.
45
+
46
+ The function computes x -> gelu(x).
47
+
48
+ Shapes:
49
+ x: (num_tokens, d) or (batch_size, seq_len, d)
50
+ return: (num_tokens, d) or (batch_size, seq_len, d)
51
+ """
52
+
53
+ can_torch_compile: bool = True
54
+
55
+ def forward(self, x: torch.Tensor):
56
+ out = torch.empty_like(x)
57
+ ops.gelu(out, x)
58
+ return out
59
+
60
+ class GeluTanh(nn.Module):
61
+ """An activation function for GELU with `tanh` approximation.
62
+
63
+ The function computes x -> gelu_tanh(x).
64
+
65
+ Shapes:
66
+ x: (num_tokens, d) or (batch_size, seq_len, d)
67
+ return: (num_tokens, d) or (batch_size, seq_len, d)
68
+ """
69
+
70
+ can_torch_compile: bool = True
71
+
72
+ def forward(self, x: torch.Tensor):
73
+ out = torch.empty_like(x)
74
+ ops.gelu_tanh(out, x)
75
+ return out
76
+
77
 
78
  class MulAndSilu(nn.Module):
79
  """An activation function for SwiGLU.
build/torch29-cxx11-cu126-aarch64-linux/activation/__init__.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from ._ops import ops
4
+
5
+ from . import layers
6
+
7
+
8
+ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
9
+ ops.silu_and_mul(out, x)
10
+ return out
11
+
12
+
13
+ def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
14
+ ops.mul_and_silu(out, x)
15
+ return out
16
+
17
+
18
+ def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
+ ops.gelu_and_mul(out, x)
20
+ return out
21
+
22
+
23
+ def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
24
+ ops.gelu_tanh_and_mul(out, x)
25
+ return out
26
+
27
+
28
+ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
29
+ ops.fatrelu_and_mul(out, x, threshold)
30
+ return out
31
+
32
+
33
+ def gelu(out: torch.Tensor, x: torch.Tensor) -> None:
34
+ ops.gelu(out, x)
35
+ return out
36
+
37
+ def silu(out: torch.Tensor, x: torch.Tensor) -> None:
38
+ ops.silu(out, x)
39
+ return out
40
+
41
+
42
+ def gelu_tanh(out: torch.Tensor, x: torch.Tensor) -> None:
43
+ ops.gelu_tanh(out, x)
44
+ return out
45
+
46
+
47
+ def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
48
+ ops.gelu_fast(out, x)
49
+ return out
50
+
51
+
52
+ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
53
+ ops.gelu_new(out, x)
54
+ return out
55
+
56
+
57
+ def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
58
+ ops.gelu_quick(out, x)
59
+ return out
60
+
61
+
62
+ __all__ = [
63
+ "silu_and_mul",
64
+ "mul_and_silu",
65
+ "gelu_and_mul",
66
+ "gelu_tanh_and_mul",
67
+ "fatrelu_and_mul",
68
+ "gelu_fast",
69
+ "gelu_new",
70
+ "gelu_quick",
71
+ "gelu_tanh",
72
+ "silu",
73
+ "gelu",
74
+ "layers",
75
+ ]
build/torch29-cxx11-cu126-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc ADDED
Binary file (3.25 kB). View file
 
build/torch29-cxx11-cu126-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc ADDED
Binary file (527 Bytes). View file
 
build/torch29-cxx11-cu126-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc ADDED
Binary file (8.92 kB). View file
 
build/torch29-cxx11-cu126-aarch64-linux/activation/_activation_320b408.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9c24e0eb75a09a9fc19e7096276d560226f198617291681c1a18e94002a629e
3
+ size 2963480
build/torch29-cxx11-cu126-aarch64-linux/activation/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _activation_320b408
3
+ ops = torch.ops._activation_320b408
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_activation_320b408::{op_name}"
build/torch29-cxx11-cu126-aarch64-linux/activation/layers.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from ._ops import ops
5
+
6
+
7
+ class SiluAndMul(nn.Module):
8
+ """An activation function for SwiGLU.
9
+
10
+ The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
11
+
12
+ Shapes:
13
+ x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
14
+ return: (num_tokens, d) or (batch_size, seq_len, d)
15
+ """
16
+
17
+ can_torch_compile: bool = True
18
+
19
+ def forward(self, x: torch.Tensor):
20
+ d = x.shape[-1] // 2
21
+ output_shape = x.shape[:-1] + (d,)
22
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
23
+ ops.silu_and_mul(out, x)
24
+ return out
25
+
26
+ class Silu(nn.Module):
27
+ """An activation function for SiLU.
28
+
29
+ The function computes x -> silu(x).
30
+
31
+ Shapes:
32
+ x: (num_tokens, d) or (batch_size, seq_len, d)
33
+ return: (num_tokens, d) or (batch_size, seq_len, d)
34
+ """
35
+
36
+ can_torch_compile: bool = True
37
+
38
+ def forward(self, x: torch.Tensor):
39
+ out = torch.empty_like(x)
40
+ ops.silu(out, x)
41
+ return out
42
+
43
+ class Gelu(nn.Module):
44
+ """An activation function for GELU.
45
+
46
+ The function computes x -> gelu(x).
47
+
48
+ Shapes:
49
+ x: (num_tokens, d) or (batch_size, seq_len, d)
50
+ return: (num_tokens, d) or (batch_size, seq_len, d)
51
+ """
52
+
53
+ can_torch_compile: bool = True
54
+
55
+ def forward(self, x: torch.Tensor):
56
+ out = torch.empty_like(x)
57
+ ops.gelu(out, x)
58
+ return out
59
+
60
+ class GeluTanh(nn.Module):
61
+ """An activation function for GELU with `tanh` approximation.
62
+
63
+ The function computes x -> gelu_tanh(x).
64
+
65
+ Shapes:
66
+ x: (num_tokens, d) or (batch_size, seq_len, d)
67
+ return: (num_tokens, d) or (batch_size, seq_len, d)
68
+ """
69
+
70
+ can_torch_compile: bool = True
71
+
72
+ def forward(self, x: torch.Tensor):
73
+ out = torch.empty_like(x)
74
+ ops.gelu_tanh(out, x)
75
+ return out
76
+
77
+
78
+ class MulAndSilu(nn.Module):
79
+ """An activation function for SwiGLU.
80
+
81
+ The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
82
+
83
+ Shapes:
84
+ x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
85
+ return: (num_tokens, d) or (batch_size, seq_len, d)
86
+ """
87
+
88
+ can_torch_compile: bool = True
89
+
90
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
91
+ d = x.shape[-1] // 2
92
+ output_shape = x.shape[:-1] + (d,)
93
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
94
+ ops.mul_and_silu(out, x)
95
+ return out
96
+
97
+
98
+ class GeluAndMul(nn.Module):
99
+ """An activation function for GeGLU.
100
+
101
+ The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
102
+
103
+ Shapes:
104
+ x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
105
+ return: (batch_size, seq_len, d) or (num_tokens, d)
106
+ """
107
+
108
+ can_torch_compile: bool = True
109
+
110
+ def forward(self, x: torch.Tensor):
111
+ d = x.shape[-1] // 2
112
+ output_shape = x.shape[:-1] + (d,)
113
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
114
+ ops.gelu_and_mul(out, x)
115
+ return out
116
+
117
+
118
+ class GeluTanhAndMul(nn.Module):
119
+ can_torch_compile: bool = True
120
+
121
+ def forward(self, x: torch.Tensor):
122
+ d = x.shape[-1] // 2
123
+ output_shape = x.shape[:-1] + (d,)
124
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
125
+ ops.gelu_tanh_and_mul(out, x)
126
+ return out
127
+
128
+
129
+ class FatreluAndMul(nn.Module):
130
+ """An activation function for FATReLU.
131
+
132
+ The function computes x -> FATReLU(x[:d]) * x[d:] where
133
+ d = x.shape[-1] // 2.
134
+ This is used in openbmb/MiniCPM-S-1B-sft.
135
+
136
+ Shapes:
137
+ x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
138
+ return: (num_tokens, d) or (batch_size, seq_len, d)
139
+ """
140
+
141
+ can_torch_compile: bool = True
142
+
143
+ def __init__(self, threshold: float = 0.0):
144
+ super().__init__()
145
+ self.threshold = threshold
146
+
147
+ def forward(self, x: torch.Tensor):
148
+ d = x.shape[-1] // 2
149
+ output_shape = x.shape[:-1] + (d,)
150
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
151
+ ops.fatrelu_and_mul(out, x, self.threshold)
152
+ return out
153
+
154
+
155
+ class FastGELU(nn.Module):
156
+ can_torch_compile: bool = True
157
+
158
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
159
+ out = torch.empty_like(x)
160
+ ops.gelu_fast(out, x)
161
+ return out
162
+
163
+
164
+ class NewGELU(nn.Module):
165
+ can_torch_compile: bool = True
166
+
167
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
168
+ out = torch.empty_like(x)
169
+ ops.gelu_new(out, x)
170
+ return out
171
+
172
+
173
+ class QuickGELU(nn.Module):
174
+ can_torch_compile: bool = True
175
+
176
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
177
+ out = torch.empty_like(x)
178
+ ops.gelu_quick(out, x)
179
+ return out
build/torch29-cxx11-cu128-aarch64-linux/activation/__init__.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from ._ops import ops
4
+
5
+ from . import layers
6
+
7
+
8
+ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
9
+ ops.silu_and_mul(out, x)
10
+ return out
11
+
12
+
13
+ def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
14
+ ops.mul_and_silu(out, x)
15
+ return out
16
+
17
+
18
+ def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
+ ops.gelu_and_mul(out, x)
20
+ return out
21
+
22
+
23
+ def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
24
+ ops.gelu_tanh_and_mul(out, x)
25
+ return out
26
+
27
+
28
+ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
29
+ ops.fatrelu_and_mul(out, x, threshold)
30
+ return out
31
+
32
+
33
+ def gelu(out: torch.Tensor, x: torch.Tensor) -> None:
34
+ ops.gelu(out, x)
35
+ return out
36
+
37
+ def silu(out: torch.Tensor, x: torch.Tensor) -> None:
38
+ ops.silu(out, x)
39
+ return out
40
+
41
+
42
+ def gelu_tanh(out: torch.Tensor, x: torch.Tensor) -> None:
43
+ ops.gelu_tanh(out, x)
44
+ return out
45
+
46
+
47
+ def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
48
+ ops.gelu_fast(out, x)
49
+ return out
50
+
51
+
52
+ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
53
+ ops.gelu_new(out, x)
54
+ return out
55
+
56
+
57
+ def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
58
+ ops.gelu_quick(out, x)
59
+ return out
60
+
61
+
62
+ __all__ = [
63
+ "silu_and_mul",
64
+ "mul_and_silu",
65
+ "gelu_and_mul",
66
+ "gelu_tanh_and_mul",
67
+ "fatrelu_and_mul",
68
+ "gelu_fast",
69
+ "gelu_new",
70
+ "gelu_quick",
71
+ "gelu_tanh",
72
+ "silu",
73
+ "gelu",
74
+ "layers",
75
+ ]
build/torch29-cxx11-cu128-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc ADDED
Binary file (3.25 kB). View file
 
build/torch29-cxx11-cu128-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc ADDED
Binary file (527 Bytes). View file
 
build/torch29-cxx11-cu128-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc ADDED
Binary file (8.92 kB). View file
 
build/torch29-cxx11-cu128-aarch64-linux/activation/_activation_320b408.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08ee3dfa4d481eaf44ac3c11a0843598c05950f779dba66abd468fecb7839b32
3
+ size 4208760
build/torch29-cxx11-cu128-aarch64-linux/activation/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _activation_320b408
3
+ ops = torch.ops._activation_320b408
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_activation_320b408::{op_name}"
build/torch29-cxx11-cu128-aarch64-linux/activation/layers.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from ._ops import ops
5
+
6
+
7
+ class SiluAndMul(nn.Module):
8
+ """An activation function for SwiGLU.
9
+
10
+ The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
11
+
12
+ Shapes:
13
+ x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
14
+ return: (num_tokens, d) or (batch_size, seq_len, d)
15
+ """
16
+
17
+ can_torch_compile: bool = True
18
+
19
+ def forward(self, x: torch.Tensor):
20
+ d = x.shape[-1] // 2
21
+ output_shape = x.shape[:-1] + (d,)
22
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
23
+ ops.silu_and_mul(out, x)
24
+ return out
25
+
26
+ class Silu(nn.Module):
27
+ """An activation function for SiLU.
28
+
29
+ The function computes x -> silu(x).
30
+
31
+ Shapes:
32
+ x: (num_tokens, d) or (batch_size, seq_len, d)
33
+ return: (num_tokens, d) or (batch_size, seq_len, d)
34
+ """
35
+
36
+ can_torch_compile: bool = True
37
+
38
+ def forward(self, x: torch.Tensor):
39
+ out = torch.empty_like(x)
40
+ ops.silu(out, x)
41
+ return out
42
+
43
+ class Gelu(nn.Module):
44
+ """An activation function for GELU.
45
+
46
+ The function computes x -> gelu(x).
47
+
48
+ Shapes:
49
+ x: (num_tokens, d) or (batch_size, seq_len, d)
50
+ return: (num_tokens, d) or (batch_size, seq_len, d)
51
+ """
52
+
53
+ can_torch_compile: bool = True
54
+
55
+ def forward(self, x: torch.Tensor):
56
+ out = torch.empty_like(x)
57
+ ops.gelu(out, x)
58
+ return out
59
+
60
+ class GeluTanh(nn.Module):
61
+ """An activation function for GELU with `tanh` approximation.
62
+
63
+ The function computes x -> gelu_tanh(x).
64
+
65
+ Shapes:
66
+ x: (num_tokens, d) or (batch_size, seq_len, d)
67
+ return: (num_tokens, d) or (batch_size, seq_len, d)
68
+ """
69
+
70
+ can_torch_compile: bool = True
71
+
72
+ def forward(self, x: torch.Tensor):
73
+ out = torch.empty_like(x)
74
+ ops.gelu_tanh(out, x)
75
+ return out
76
+
77
+
78
+ class MulAndSilu(nn.Module):
79
+ """An activation function for SwiGLU.
80
+
81
+ The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
82
+
83
+ Shapes:
84
+ x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
85
+ return: (num_tokens, d) or (batch_size, seq_len, d)
86
+ """
87
+
88
+ can_torch_compile: bool = True
89
+
90
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
91
+ d = x.shape[-1] // 2
92
+ output_shape = x.shape[:-1] + (d,)
93
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
94
+ ops.mul_and_silu(out, x)
95
+ return out
96
+
97
+
98
+ class GeluAndMul(nn.Module):
99
+ """An activation function for GeGLU.
100
+
101
+ The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
102
+
103
+ Shapes:
104
+ x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
105
+ return: (batch_size, seq_len, d) or (num_tokens, d)
106
+ """
107
+
108
+ can_torch_compile: bool = True
109
+
110
+ def forward(self, x: torch.Tensor):
111
+ d = x.shape[-1] // 2
112
+ output_shape = x.shape[:-1] + (d,)
113
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
114
+ ops.gelu_and_mul(out, x)
115
+ return out
116
+
117
+
118
+ class GeluTanhAndMul(nn.Module):
119
+ can_torch_compile: bool = True
120
+
121
+ def forward(self, x: torch.Tensor):
122
+ d = x.shape[-1] // 2
123
+ output_shape = x.shape[:-1] + (d,)
124
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
125
+ ops.gelu_tanh_and_mul(out, x)
126
+ return out
127
+
128
+
129
+ class FatreluAndMul(nn.Module):
130
+ """An activation function for FATReLU.
131
+
132
+ The function computes x -> FATReLU(x[:d]) * x[d:] where
133
+ d = x.shape[-1] // 2.
134
+ This is used in openbmb/MiniCPM-S-1B-sft.
135
+
136
+ Shapes:
137
+ x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
138
+ return: (num_tokens, d) or (batch_size, seq_len, d)
139
+ """
140
+
141
+ can_torch_compile: bool = True
142
+
143
+ def __init__(self, threshold: float = 0.0):
144
+ super().__init__()
145
+ self.threshold = threshold
146
+
147
+ def forward(self, x: torch.Tensor):
148
+ d = x.shape[-1] // 2
149
+ output_shape = x.shape[:-1] + (d,)
150
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
151
+ ops.fatrelu_and_mul(out, x, self.threshold)
152
+ return out
153
+
154
+
155
+ class FastGELU(nn.Module):
156
+ can_torch_compile: bool = True
157
+
158
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
159
+ out = torch.empty_like(x)
160
+ ops.gelu_fast(out, x)
161
+ return out
162
+
163
+
164
+ class NewGELU(nn.Module):
165
+ can_torch_compile: bool = True
166
+
167
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
168
+ out = torch.empty_like(x)
169
+ ops.gelu_new(out, x)
170
+ return out
171
+
172
+
173
+ class QuickGELU(nn.Module):
174
+ can_torch_compile: bool = True
175
+
176
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
177
+ out = torch.empty_like(x)
178
+ ops.gelu_quick(out, x)
179
+ return out
build/torch29-cxx11-cu130-aarch64-linux/activation/__init__.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ from ._ops import ops
4
+
5
+ from . import layers
6
+
7
+
8
+ def silu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
9
+ ops.silu_and_mul(out, x)
10
+ return out
11
+
12
+
13
+ def mul_and_silu(out: torch.Tensor, x: torch.Tensor) -> None:
14
+ ops.mul_and_silu(out, x)
15
+ return out
16
+
17
+
18
+ def gelu_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
19
+ ops.gelu_and_mul(out, x)
20
+ return out
21
+
22
+
23
+ def gelu_tanh_and_mul(out: torch.Tensor, x: torch.Tensor) -> None:
24
+ ops.gelu_tanh_and_mul(out, x)
25
+ return out
26
+
27
+
28
+ def fatrelu_and_mul(out: torch.Tensor, x: torch.Tensor, threshold: float = 0.0) -> None:
29
+ ops.fatrelu_and_mul(out, x, threshold)
30
+ return out
31
+
32
+
33
+ def gelu(out: torch.Tensor, x: torch.Tensor) -> None:
34
+ ops.gelu(out, x)
35
+ return out
36
+
37
+ def silu(out: torch.Tensor, x: torch.Tensor) -> None:
38
+ ops.silu(out, x)
39
+ return out
40
+
41
+
42
+ def gelu_tanh(out: torch.Tensor, x: torch.Tensor) -> None:
43
+ ops.gelu_tanh(out, x)
44
+ return out
45
+
46
+
47
+ def gelu_fast(out: torch.Tensor, x: torch.Tensor) -> None:
48
+ ops.gelu_fast(out, x)
49
+ return out
50
+
51
+
52
+ def gelu_new(out: torch.Tensor, x: torch.Tensor) -> None:
53
+ ops.gelu_new(out, x)
54
+ return out
55
+
56
+
57
+ def gelu_quick(out: torch.Tensor, x: torch.Tensor) -> None:
58
+ ops.gelu_quick(out, x)
59
+ return out
60
+
61
+
62
+ __all__ = [
63
+ "silu_and_mul",
64
+ "mul_and_silu",
65
+ "gelu_and_mul",
66
+ "gelu_tanh_and_mul",
67
+ "fatrelu_and_mul",
68
+ "gelu_fast",
69
+ "gelu_new",
70
+ "gelu_quick",
71
+ "gelu_tanh",
72
+ "silu",
73
+ "gelu",
74
+ "layers",
75
+ ]
build/torch29-cxx11-cu130-aarch64-linux/activation/__pycache__/__init__.cpython-313.pyc ADDED
Binary file (3.25 kB). View file
 
build/torch29-cxx11-cu130-aarch64-linux/activation/__pycache__/_ops.cpython-313.pyc ADDED
Binary file (527 Bytes). View file
 
build/torch29-cxx11-cu130-aarch64-linux/activation/__pycache__/layers.cpython-313.pyc ADDED
Binary file (8.92 kB). View file
 
build/torch29-cxx11-cu130-aarch64-linux/activation/_activation_320b408.abi3.so ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73748b54059552f5983322f7dedc36ed349b38ad6fb9318301bb4965b1fe49aa
3
+ size 4094968
build/torch29-cxx11-cu130-aarch64-linux/activation/_ops.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from . import _activation_320b408
3
+ ops = torch.ops._activation_320b408
4
+
5
+ def add_op_namespace_prefix(op_name: str):
6
+ """
7
+ Prefix op by namespace.
8
+ """
9
+ return f"_activation_320b408::{op_name}"
build/torch29-cxx11-cu130-aarch64-linux/activation/layers.py ADDED
@@ -0,0 +1,179 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+
4
+ from ._ops import ops
5
+
6
+
7
+ class SiluAndMul(nn.Module):
8
+ """An activation function for SwiGLU.
9
+
10
+ The function computes x -> silu(x[:d]) * x[d:] where d = x.shape[-1] // 2.
11
+
12
+ Shapes:
13
+ x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
14
+ return: (num_tokens, d) or (batch_size, seq_len, d)
15
+ """
16
+
17
+ can_torch_compile: bool = True
18
+
19
+ def forward(self, x: torch.Tensor):
20
+ d = x.shape[-1] // 2
21
+ output_shape = x.shape[:-1] + (d,)
22
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
23
+ ops.silu_and_mul(out, x)
24
+ return out
25
+
26
+ class Silu(nn.Module):
27
+ """An activation function for SiLU.
28
+
29
+ The function computes x -> silu(x).
30
+
31
+ Shapes:
32
+ x: (num_tokens, d) or (batch_size, seq_len, d)
33
+ return: (num_tokens, d) or (batch_size, seq_len, d)
34
+ """
35
+
36
+ can_torch_compile: bool = True
37
+
38
+ def forward(self, x: torch.Tensor):
39
+ out = torch.empty_like(x)
40
+ ops.silu(out, x)
41
+ return out
42
+
43
+ class Gelu(nn.Module):
44
+ """An activation function for GELU.
45
+
46
+ The function computes x -> gelu(x).
47
+
48
+ Shapes:
49
+ x: (num_tokens, d) or (batch_size, seq_len, d)
50
+ return: (num_tokens, d) or (batch_size, seq_len, d)
51
+ """
52
+
53
+ can_torch_compile: bool = True
54
+
55
+ def forward(self, x: torch.Tensor):
56
+ out = torch.empty_like(x)
57
+ ops.gelu(out, x)
58
+ return out
59
+
60
+ class GeluTanh(nn.Module):
61
+ """An activation function for GELU with `tanh` approximation.
62
+
63
+ The function computes x -> gelu_tanh(x).
64
+
65
+ Shapes:
66
+ x: (num_tokens, d) or (batch_size, seq_len, d)
67
+ return: (num_tokens, d) or (batch_size, seq_len, d)
68
+ """
69
+
70
+ can_torch_compile: bool = True
71
+
72
+ def forward(self, x: torch.Tensor):
73
+ out = torch.empty_like(x)
74
+ ops.gelu_tanh(out, x)
75
+ return out
76
+
77
+
78
+ class MulAndSilu(nn.Module):
79
+ """An activation function for SwiGLU.
80
+
81
+ The function computes x -> x[:d] * silu(x[d:]) where d = x.shape[-1] // 2.
82
+
83
+ Shapes:
84
+ x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
85
+ return: (num_tokens, d) or (batch_size, seq_len, d)
86
+ """
87
+
88
+ can_torch_compile: bool = True
89
+
90
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
91
+ d = x.shape[-1] // 2
92
+ output_shape = x.shape[:-1] + (d,)
93
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
94
+ ops.mul_and_silu(out, x)
95
+ return out
96
+
97
+
98
+ class GeluAndMul(nn.Module):
99
+ """An activation function for GeGLU.
100
+
101
+ The function computes x -> GELU(x[:d]) * x[d:] where d = x.shape[-1] // 2.
102
+
103
+ Shapes:
104
+ x: (batch_size, seq_len, 2 * d) or (num_tokens, 2 * d)
105
+ return: (batch_size, seq_len, d) or (num_tokens, d)
106
+ """
107
+
108
+ can_torch_compile: bool = True
109
+
110
+ def forward(self, x: torch.Tensor):
111
+ d = x.shape[-1] // 2
112
+ output_shape = x.shape[:-1] + (d,)
113
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
114
+ ops.gelu_and_mul(out, x)
115
+ return out
116
+
117
+
118
+ class GeluTanhAndMul(nn.Module):
119
+ can_torch_compile: bool = True
120
+
121
+ def forward(self, x: torch.Tensor):
122
+ d = x.shape[-1] // 2
123
+ output_shape = x.shape[:-1] + (d,)
124
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
125
+ ops.gelu_tanh_and_mul(out, x)
126
+ return out
127
+
128
+
129
+ class FatreluAndMul(nn.Module):
130
+ """An activation function for FATReLU.
131
+
132
+ The function computes x -> FATReLU(x[:d]) * x[d:] where
133
+ d = x.shape[-1] // 2.
134
+ This is used in openbmb/MiniCPM-S-1B-sft.
135
+
136
+ Shapes:
137
+ x: (num_tokens, 2 * d) or (batch_size, seq_len, 2 * d)
138
+ return: (num_tokens, d) or (batch_size, seq_len, d)
139
+ """
140
+
141
+ can_torch_compile: bool = True
142
+
143
+ def __init__(self, threshold: float = 0.0):
144
+ super().__init__()
145
+ self.threshold = threshold
146
+
147
+ def forward(self, x: torch.Tensor):
148
+ d = x.shape[-1] // 2
149
+ output_shape = x.shape[:-1] + (d,)
150
+ out = torch.empty(output_shape, dtype=x.dtype, device=x.device)
151
+ ops.fatrelu_and_mul(out, x, self.threshold)
152
+ return out
153
+
154
+
155
+ class FastGELU(nn.Module):
156
+ can_torch_compile: bool = True
157
+
158
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
159
+ out = torch.empty_like(x)
160
+ ops.gelu_fast(out, x)
161
+ return out
162
+
163
+
164
+ class NewGELU(nn.Module):
165
+ can_torch_compile: bool = True
166
+
167
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
168
+ out = torch.empty_like(x)
169
+ ops.gelu_new(out, x)
170
+ return out
171
+
172
+
173
+ class QuickGELU(nn.Module):
174
+ can_torch_compile: bool = True
175
+
176
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
177
+ out = torch.empty_like(x)
178
+ ops.gelu_quick(out, x)
179
+ return out