chansung commited on
Commit
631fce7
·
1 Parent(s): 5c1d668

add custom handler

Browse files
__pycache__/handler.cpython-38.pyc ADDED
Binary file (3.42 kB). View file
 
handler.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict, List, Any
2
+
3
+ import base64
4
+ import math
5
+ import numpy as np
6
+ import tensorflow as tf
7
+ from tensorflow import keras
8
+
9
+ from keras_cv.models.generative.stable_diffusion.constants import _ALPHAS_CUMPROD
10
+ from keras_cv.models.generative.stable_diffusion.diffusion_model import DiffusionModel
11
+
12
+ class MyEndpointHandler():
13
+ def __init__(self, path=""):
14
+ self.seed = None
15
+
16
+ img_height = 512
17
+ img_width = 512
18
+ self.img_height = round(img_height / 128) * 128
19
+ self.img_width = round(img_width / 128) * 128
20
+
21
+ self.MAX_PROMPT_LENGTH = 77
22
+ self.diffusion_model = DiffusionModel(self.img_height, self.img_width, self.MAX_PROMPT_LENGTH)
23
+
24
+ def _get_initial_diffusion_noise(self, batch_size, seed):
25
+ if seed is not None:
26
+ return tf.random.stateless_normal(
27
+ (batch_size, self.img_height // 8, self.img_width // 8, 4),
28
+ seed=[seed, seed],
29
+ )
30
+ else:
31
+ return tf.random.normal(
32
+ (batch_size, self.img_height // 8, self.img_width // 8, 4)
33
+ )
34
+
35
+ def _get_initial_alphas(self, timesteps):
36
+ alphas = [_ALPHAS_CUMPROD[t] for t in timesteps]
37
+ alphas_prev = [1.0] + alphas[:-1]
38
+
39
+ return alphas, alphas_prev
40
+
41
+ def _get_timestep_embedding(self, timestep, batch_size, dim=320, max_period=10000):
42
+ half = dim // 2
43
+ freqs = tf.math.exp(
44
+ -math.log(max_period) * tf.range(0, half, dtype=tf.float32) / half
45
+ )
46
+ args = tf.convert_to_tensor([timestep], dtype=tf.float32) * freqs
47
+ embedding = tf.concat([tf.math.cos(args), tf.math.sin(args)], 0)
48
+ embedding = tf.reshape(embedding, [1, -1])
49
+ return tf.repeat(embedding, batch_size, axis=0)
50
+
51
+ def __call__(self, data: Dict[str, Any]) -> str:
52
+ # get inputs
53
+ tmp_data = data.pop("inputs", data)
54
+
55
+ context = base64.b64decode(tmp_data[0])
56
+ context = np.frombuffer(context, dtype="float32")
57
+ context = np.reshape(context, (1, 77, 768))
58
+
59
+ unconditional_context = base64.b64decode(tmp_data[1])
60
+ unconditional_context = np.frombuffer(unconditional_context, dtype="float32")
61
+ unconditional_context = np.reshape(unconditional_context, (1, 77, 768))
62
+
63
+ batch_size = data.pop("batch_size", 1)
64
+
65
+ num_steps = data.pop("num_steps", 50)
66
+ unconditional_guidance_scale = data.pop("unconditional_guidance_scale", 7.5)
67
+
68
+ latent = self._get_initial_diffusion_noise(batch_size, self.seed)
69
+
70
+ # Iterative reverse diffusion stage
71
+ timesteps = tf.range(1, 1000, 1000 // num_steps)
72
+ alphas, alphas_prev = self._get_initial_alphas(timesteps)
73
+ progbar = keras.utils.Progbar(len(timesteps))
74
+ iteration = 0
75
+ for index, timestep in list(enumerate(timesteps))[::-1]:
76
+ latent_prev = latent # Set aside the previous latent vector
77
+ t_emb = self._get_timestep_embedding(timestep, batch_size)
78
+ unconditional_latent = self.diffusion_model.predict_on_batch(
79
+ [latent, t_emb, unconditional_context]
80
+ )
81
+ latent = self.diffusion_model.predict_on_batch([latent, t_emb, context])
82
+ latent = unconditional_latent + unconditional_guidance_scale * (
83
+ latent - unconditional_latent
84
+ )
85
+ a_t, a_prev = alphas[index], alphas_prev[index]
86
+ pred_x0 = (latent_prev - math.sqrt(1 - a_t) * latent) / math.sqrt(a_t)
87
+ latent = latent * math.sqrt(1.0 - a_prev) + math.sqrt(a_prev) * pred_x0
88
+ iteration += 1
89
+ progbar.update(iteration)
90
+
91
+ latent_b64 = base64.b64encode(latent.numpy().tobytes())
92
+ latent_b64str = latent_b64.decode()
93
+
94
+ return latent_b64str
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ keras-cv
2
+ tensorflow
3
+ tensorflow_datasets