chansung commited on
Commit
2781352
·
1 Parent(s): 1ef6430

add custom handler

Browse files
Files changed (2) hide show
  1. __pycache__/handler.cpython-38.pyc +0 -0
  2. handler.py +1 -6
__pycache__/handler.cpython-38.pyc CHANGED
Binary files a/__pycache__/handler.cpython-38.pyc and b/__pycache__/handler.cpython-38.pyc differ
 
handler.py CHANGED
@@ -1,7 +1,6 @@
1
  from typing import Dict, List, Any
2
 
3
  import base64
4
- import logging
5
  import math
6
  import numpy as np
7
  import tensorflow as tf
@@ -57,19 +56,15 @@ class EndpointHandler():
57
  def __call__(self, data: Dict[str, Any]) -> str:
58
  # get inputs
59
  contexts = data.pop("inputs", data)
60
- logging.warning(contexts)
61
-
62
  batch_size = data.pop("batch_size", 1)
63
 
64
  context = base64.b64decode(contexts[0])
65
  context = np.frombuffer(context, dtype="float32")
66
  context = np.reshape(context, (batch_size, 77, 768))
67
- print(context)
68
 
69
  unconditional_context = base64.b64decode(contexts[1])
70
  unconditional_context = np.frombuffer(unconditional_context, dtype="float32")
71
  unconditional_context = np.reshape(unconditional_context, (batch_size, 77, 768))
72
- print(unconditional_context)
73
 
74
  num_steps = data.pop("num_steps", 25)
75
  unconditional_guidance_scale = data.pop("unconditional_guidance_scale", 7.5)
@@ -100,4 +95,4 @@ class EndpointHandler():
100
  latent_b64 = base64.b64encode(latent.numpy().tobytes())
101
  latent_b64str = latent_b64.decode()
102
 
103
- return latent_b64str
 
1
  from typing import Dict, List, Any
2
 
3
  import base64
 
4
  import math
5
  import numpy as np
6
  import tensorflow as tf
 
56
  def __call__(self, data: Dict[str, Any]) -> str:
57
  # get inputs
58
  contexts = data.pop("inputs", data)
 
 
59
  batch_size = data.pop("batch_size", 1)
60
 
61
  context = base64.b64decode(contexts[0])
62
  context = np.frombuffer(context, dtype="float32")
63
  context = np.reshape(context, (batch_size, 77, 768))
 
64
 
65
  unconditional_context = base64.b64decode(contexts[1])
66
  unconditional_context = np.frombuffer(unconditional_context, dtype="float32")
67
  unconditional_context = np.reshape(unconditional_context, (batch_size, 77, 768))
 
68
 
69
  num_steps = data.pop("num_steps", 25)
70
  unconditional_guidance_scale = data.pop("unconditional_guidance_scale", 7.5)
 
95
  latent_b64 = base64.b64encode(latent.numpy().tobytes())
96
  latent_b64str = latent_b64.decode()
97
 
98
+ return latent_b64str