File size: 1,641 Bytes
7aae728
 
 
 
 
 
 
 
b0ba0b9
 
 
 
 
 
7aae728
 
 
 
 
 
 
b0ba0b9
7aae728
 
 
 
 
 
b0ba0b9
 
 
 
7aae728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
library_name: keras
tags:
- image-classification
---

## Model description

Metric learning aims to measure the similarity among data samples and to learn embedding models. In the context of metric learning to learn embedding models, the motivation is to embed inputs in an embedding space such that similar images 
are close together in that space while dissimilar ones are far away.  

These models once trained can produce embeddings for downstream systems where such similarity is useful.  

Full credits to [Mat Kelcey](https://twitter.com/mat_kelcey) for this work.

## Intended uses & limitations

More information needed

## Training and evaluation data

Trained and evaluated on [CIFAR-10](https://keras.io/api/datasets/cifar10/) dataset.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.001
- training_precision: float32
- num_epochs: 20
- Optimizer Info:
| name | learning_rate | decay | beta_1 | beta_2 | epsilon | amsgrad | training_precision |
|----|-------------|-----|------|------|-------|-------|------------------|
|Adam|0.0010000000474974513|0.0|0.8999999761581421|0.9990000128746033|1e-07|False|float32|

 ## Training Metrics

| Epochs | Train Loss |
 |--- |--- |
| 1| 2.248| 
| 2| 2.11| 
| 3| 2.042| 
| 4| 1.998| 
| 5| 1.957| 
| 6| 1.929| 
| 7| 1.897| 
| 8| 1.879| 
| 9| 1.844| 
| 10| 1.807| 
| 11| 1.799| 
| 12| 1.761| 
| 13| 1.762| 
| 14| 1.735| 
| 15| 1.713| 
| 16| 1.687| 
| 17| 1.669| 
| 18| 1.646| 
| 19| 1.633| 
| 20| 1.619| 
 ## Model Plot

<details>
<summary>View Model Plot</summary>

![Model Image](./model.png)

</details>