clean up
Browse files- README.md +8 -1
- main.py +13 -3
- mvdream/models.py +13 -25
- mvdream/util.py +0 -196
    	
        README.md
    CHANGED
    
    | @@ -12,7 +12,14 @@ wget https://raw.githubusercontent.com/bytedance/MVDream/main/mvdream/configs/sd | |
| 12 | 
             
            python convert_mvdream_to_diffusers.py --checkpoint_path ./sd-v2.1-base-4view.pt --dump_path ./weights --original_config_file ./sd-v2-base.yaml --half --to_safetensors --test
         | 
| 13 | 
             
            ```
         | 
| 14 |  | 
| 15 | 
            -
            ###  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 16 | 
             
            ```python
         | 
| 17 | 
             
            import torch
         | 
| 18 | 
             
            import kiui
         | 
|  | |
| 12 | 
             
            python convert_mvdream_to_diffusers.py --checkpoint_path ./sd-v2.1-base-4view.pt --dump_path ./weights --original_config_file ./sd-v2-base.yaml --half --to_safetensors --test
         | 
| 13 | 
             
            ```
         | 
| 14 |  | 
| 15 | 
            +
            ### usage
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            example:
         | 
| 18 | 
            +
            ```bash
         | 
| 19 | 
            +
            python main.py "a cute owl"
         | 
| 20 | 
            +
            ```
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            detailed usage:
         | 
| 23 | 
             
            ```python
         | 
| 24 | 
             
            import torch
         | 
| 25 | 
             
            import kiui
         | 
    	
        main.py
    CHANGED
    
    | @@ -1,11 +1,21 @@ | |
| 1 | 
             
            import torch
         | 
| 2 | 
             
            import kiui
         | 
|  | |
|  | |
| 3 | 
             
            from mvdream.pipeline_mvdream import MVDreamStableDiffusionPipeline
         | 
| 4 |  | 
| 5 | 
             
            pipe = MVDreamStableDiffusionPipeline.from_pretrained('./weights', torch_dtype=torch.float16)
         | 
| 6 | 
             
            pipe = pipe.to("cuda")
         | 
| 7 |  | 
| 8 | 
            -
            prompt = "a photo of an astronaut riding a horse on mars"
         | 
| 9 | 
            -
            image = pipe(prompt)
         | 
| 10 |  | 
| 11 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
             
            import torch
         | 
| 2 | 
             
            import kiui
         | 
| 3 | 
            +
            import numpy as np
         | 
| 4 | 
            +
            import argparse
         | 
| 5 | 
             
            from mvdream.pipeline_mvdream import MVDreamStableDiffusionPipeline
         | 
| 6 |  | 
| 7 | 
             
            pipe = MVDreamStableDiffusionPipeline.from_pretrained('./weights', torch_dtype=torch.float16)
         | 
| 8 | 
             
            pipe = pipe.to("cuda")
         | 
| 9 |  | 
|  | |
|  | |
| 10 |  | 
| 11 | 
            +
            parser = argparse.ArgumentParser(description='MVDream')
         | 
| 12 | 
            +
            parser.add_argument('prompt', type=str, default="a cute owl 3d model")
         | 
| 13 | 
            +
            args = parser.parse_args()
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            while True:
         | 
| 16 | 
            +
                image = pipe(args.prompt)
         | 
| 17 | 
            +
                grid = np.concatenate([
         | 
| 18 | 
            +
                    np.concatenate([image[0], image[2]], axis=0),
         | 
| 19 | 
            +
                    np.concatenate([image[1], image[3]], axis=0),
         | 
| 20 | 
            +
                ], axis=1)
         | 
| 21 | 
            +
                kiui.vis.plot_image(grid)
         | 
    	
        mvdream/models.py
    CHANGED
    
    | @@ -10,10 +10,8 @@ from abc import abstractmethod | |
| 10 | 
             
            from .util import (
         | 
| 11 | 
             
                checkpoint,
         | 
| 12 | 
             
                conv_nd,
         | 
| 13 | 
            -
                linear,
         | 
| 14 | 
             
                avg_pool_nd,
         | 
| 15 | 
             
                zero_module,
         | 
| 16 | 
            -
                normalization,
         | 
| 17 | 
             
                timestep_embedding,
         | 
| 18 | 
             
            )
         | 
| 19 | 
             
            from .attention import SpatialTransformer, SpatialTransformer3D
         | 
| @@ -56,7 +54,7 @@ class MultiViewUNetWrapperModel(ModelMixin, ConfigMixin): | |
| 56 | 
             
                        adm_in_channels=None,
         | 
| 57 | 
             
                        camera_dim=None,):
         | 
| 58 | 
             
                    super().__init__()
         | 
| 59 | 
            -
                    self.unet | 
| 60 | 
             
                        image_size=image_size,
         | 
| 61 | 
             
                        in_channels=in_channels,
         | 
| 62 | 
             
                        model_channels=model_channels,
         | 
| @@ -218,7 +216,7 @@ class ResBlock(TimestepBlock): | |
| 218 | 
             
                    self.use_scale_shift_norm = use_scale_shift_norm
         | 
| 219 |  | 
| 220 | 
             
                    self.in_layers = nn.Sequential(
         | 
| 221 | 
            -
                         | 
| 222 | 
             
                        nn.SiLU(),
         | 
| 223 | 
             
                        conv_nd(dims, channels, self.out_channels, 3, padding=1),
         | 
| 224 | 
             
                    )
         | 
| @@ -236,13 +234,13 @@ class ResBlock(TimestepBlock): | |
| 236 |  | 
| 237 | 
             
                    self.emb_layers = nn.Sequential(
         | 
| 238 | 
             
                        nn.SiLU(),
         | 
| 239 | 
            -
                         | 
| 240 | 
             
                            emb_channels,
         | 
| 241 | 
             
                            2 * self.out_channels if use_scale_shift_norm else self.out_channels,
         | 
| 242 | 
             
                        ),
         | 
| 243 | 
             
                    )
         | 
| 244 | 
             
                    self.out_layers = nn.Sequential(
         | 
| 245 | 
            -
                         | 
| 246 | 
             
                        nn.SiLU(),
         | 
| 247 | 
             
                        nn.Dropout(p=dropout),
         | 
| 248 | 
             
                        zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
         | 
| @@ -310,7 +308,7 @@ class AttentionBlock(nn.Module): | |
| 310 | 
             
                        assert (channels % num_head_channels == 0), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
         | 
| 311 | 
             
                        self.num_heads = channels // num_head_channels
         | 
| 312 | 
             
                    self.use_checkpoint = use_checkpoint
         | 
| 313 | 
            -
                    self.norm =  | 
| 314 | 
             
                    self.qkv = conv_nd(1, channels, channels * 3, 1)
         | 
| 315 | 
             
                    if use_new_attention_order:
         | 
| 316 | 
             
                        # split qkv before split heads
         | 
| @@ -418,16 +416,6 @@ class QKVAttention(nn.Module): | |
| 418 | 
             
                    return count_flops_attn(model, _x, y)
         | 
| 419 |  | 
| 420 |  | 
| 421 | 
            -
            class Timestep(nn.Module):
         | 
| 422 | 
            -
             | 
| 423 | 
            -
                def __init__(self, dim):
         | 
| 424 | 
            -
                    super().__init__()
         | 
| 425 | 
            -
                    self.dim = dim
         | 
| 426 | 
            -
             | 
| 427 | 
            -
                def forward(self, t):
         | 
| 428 | 
            -
                    return timestep_embedding(t, self.dim)
         | 
| 429 | 
            -
             | 
| 430 | 
            -
             | 
| 431 | 
             
            class MultiViewUNetModel(nn.Module):
         | 
| 432 | 
             
                """
         | 
| 433 | 
             
                The full multi-view UNet model with attention, timestep embedding and camera embedding.
         | 
| @@ -545,17 +533,17 @@ class MultiViewUNetModel(nn.Module): | |
| 545 |  | 
| 546 | 
             
                    time_embed_dim = model_channels * 4
         | 
| 547 | 
             
                    self.time_embed = nn.Sequential(
         | 
| 548 | 
            -
                         | 
| 549 | 
             
                        nn.SiLU(),
         | 
| 550 | 
            -
                         | 
| 551 | 
             
                    )
         | 
| 552 |  | 
| 553 | 
             
                    if camera_dim is not None:
         | 
| 554 | 
             
                        time_embed_dim = model_channels * 4
         | 
| 555 | 
             
                        self.camera_embed = nn.Sequential(
         | 
| 556 | 
            -
                             | 
| 557 | 
             
                            nn.SiLU(),
         | 
| 558 | 
            -
                             | 
| 559 | 
             
                        )
         | 
| 560 |  | 
| 561 | 
             
                    if self.num_classes is not None:
         | 
| @@ -567,9 +555,9 @@ class MultiViewUNetModel(nn.Module): | |
| 567 | 
             
                        elif self.num_classes == "sequential":
         | 
| 568 | 
             
                            assert adm_in_channels is not None
         | 
| 569 | 
             
                            self.label_emb = nn.Sequential(nn.Sequential(
         | 
| 570 | 
            -
                                 | 
| 571 | 
             
                                nn.SiLU(),
         | 
| 572 | 
            -
                                 | 
| 573 | 
             
                            ))
         | 
| 574 | 
             
                        else:
         | 
| 575 | 
             
                            raise ValueError()
         | 
| @@ -722,13 +710,13 @@ class MultiViewUNetModel(nn.Module): | |
| 722 | 
             
                            self._feature_size += ch
         | 
| 723 |  | 
| 724 | 
             
                    self.out = nn.Sequential(
         | 
| 725 | 
            -
                         | 
| 726 | 
             
                        nn.SiLU(),
         | 
| 727 | 
             
                        zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
         | 
| 728 | 
             
                    )
         | 
| 729 | 
             
                    if self.predict_codebook_ids:
         | 
| 730 | 
             
                        self.id_predictor = nn.Sequential(
         | 
| 731 | 
            -
                             | 
| 732 | 
             
                            conv_nd(dims, model_channels, n_embed, 1),
         | 
| 733 | 
             
                            #nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
         | 
| 734 | 
             
                        )
         | 
|  | |
| 10 | 
             
            from .util import (
         | 
| 11 | 
             
                checkpoint,
         | 
| 12 | 
             
                conv_nd,
         | 
|  | |
| 13 | 
             
                avg_pool_nd,
         | 
| 14 | 
             
                zero_module,
         | 
|  | |
| 15 | 
             
                timestep_embedding,
         | 
| 16 | 
             
            )
         | 
| 17 | 
             
            from .attention import SpatialTransformer, SpatialTransformer3D
         | 
|  | |
| 54 | 
             
                        adm_in_channels=None,
         | 
| 55 | 
             
                        camera_dim=None,):
         | 
| 56 | 
             
                    super().__init__()
         | 
| 57 | 
            +
                    self.unet = MultiViewUNetModel(
         | 
| 58 | 
             
                        image_size=image_size,
         | 
| 59 | 
             
                        in_channels=in_channels,
         | 
| 60 | 
             
                        model_channels=model_channels,
         | 
|  | |
| 216 | 
             
                    self.use_scale_shift_norm = use_scale_shift_norm
         | 
| 217 |  | 
| 218 | 
             
                    self.in_layers = nn.Sequential(
         | 
| 219 | 
            +
                        nn.GroupNorm(32, channels),
         | 
| 220 | 
             
                        nn.SiLU(),
         | 
| 221 | 
             
                        conv_nd(dims, channels, self.out_channels, 3, padding=1),
         | 
| 222 | 
             
                    )
         | 
|  | |
| 234 |  | 
| 235 | 
             
                    self.emb_layers = nn.Sequential(
         | 
| 236 | 
             
                        nn.SiLU(),
         | 
| 237 | 
            +
                        nn.Linear(
         | 
| 238 | 
             
                            emb_channels,
         | 
| 239 | 
             
                            2 * self.out_channels if use_scale_shift_norm else self.out_channels,
         | 
| 240 | 
             
                        ),
         | 
| 241 | 
             
                    )
         | 
| 242 | 
             
                    self.out_layers = nn.Sequential(
         | 
| 243 | 
            +
                        nn.GroupNorm(32, self.out_channels),
         | 
| 244 | 
             
                        nn.SiLU(),
         | 
| 245 | 
             
                        nn.Dropout(p=dropout),
         | 
| 246 | 
             
                        zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)),
         | 
|  | |
| 308 | 
             
                        assert (channels % num_head_channels == 0), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}"
         | 
| 309 | 
             
                        self.num_heads = channels // num_head_channels
         | 
| 310 | 
             
                    self.use_checkpoint = use_checkpoint
         | 
| 311 | 
            +
                    self.norm = nn.GroupNorm(32, channels)
         | 
| 312 | 
             
                    self.qkv = conv_nd(1, channels, channels * 3, 1)
         | 
| 313 | 
             
                    if use_new_attention_order:
         | 
| 314 | 
             
                        # split qkv before split heads
         | 
|  | |
| 416 | 
             
                    return count_flops_attn(model, _x, y)
         | 
| 417 |  | 
| 418 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 419 | 
             
            class MultiViewUNetModel(nn.Module):
         | 
| 420 | 
             
                """
         | 
| 421 | 
             
                The full multi-view UNet model with attention, timestep embedding and camera embedding.
         | 
|  | |
| 533 |  | 
| 534 | 
             
                    time_embed_dim = model_channels * 4
         | 
| 535 | 
             
                    self.time_embed = nn.Sequential(
         | 
| 536 | 
            +
                        nn.Linear(model_channels, time_embed_dim),
         | 
| 537 | 
             
                        nn.SiLU(),
         | 
| 538 | 
            +
                        nn.Linear(time_embed_dim, time_embed_dim),
         | 
| 539 | 
             
                    )
         | 
| 540 |  | 
| 541 | 
             
                    if camera_dim is not None:
         | 
| 542 | 
             
                        time_embed_dim = model_channels * 4
         | 
| 543 | 
             
                        self.camera_embed = nn.Sequential(
         | 
| 544 | 
            +
                            nn.Linear(camera_dim, time_embed_dim),
         | 
| 545 | 
             
                            nn.SiLU(),
         | 
| 546 | 
            +
                            nn.Linear(time_embed_dim, time_embed_dim),
         | 
| 547 | 
             
                        )
         | 
| 548 |  | 
| 549 | 
             
                    if self.num_classes is not None:
         | 
|  | |
| 555 | 
             
                        elif self.num_classes == "sequential":
         | 
| 556 | 
             
                            assert adm_in_channels is not None
         | 
| 557 | 
             
                            self.label_emb = nn.Sequential(nn.Sequential(
         | 
| 558 | 
            +
                                nn.Linear(adm_in_channels, time_embed_dim),
         | 
| 559 | 
             
                                nn.SiLU(),
         | 
| 560 | 
            +
                                nn.Linear(time_embed_dim, time_embed_dim),
         | 
| 561 | 
             
                            ))
         | 
| 562 | 
             
                        else:
         | 
| 563 | 
             
                            raise ValueError()
         | 
|  | |
| 710 | 
             
                            self._feature_size += ch
         | 
| 711 |  | 
| 712 | 
             
                    self.out = nn.Sequential(
         | 
| 713 | 
            +
                        nn.GroupNorm(32, ch),
         | 
| 714 | 
             
                        nn.SiLU(),
         | 
| 715 | 
             
                        zero_module(conv_nd(dims, model_channels, out_channels, 3, padding=1)),
         | 
| 716 | 
             
                    )
         | 
| 717 | 
             
                    if self.predict_codebook_ids:
         | 
| 718 | 
             
                        self.id_predictor = nn.Sequential(
         | 
| 719 | 
            +
                            nn.GroupNorm(32, ch),
         | 
| 720 | 
             
                            conv_nd(dims, model_channels, n_embed, 1),
         | 
| 721 | 
             
                            #nn.LogSoftmax(dim=1)  # change to cross_entropy and produce non-normalized logits
         | 
| 722 | 
             
                        )
         | 
    	
        mvdream/util.py
    CHANGED
    
    | @@ -10,136 +10,7 @@ | |
| 10 | 
             
            import math
         | 
| 11 | 
             
            import torch
         | 
| 12 | 
             
            import torch.nn as nn
         | 
| 13 | 
            -
            import numpy as np
         | 
| 14 | 
            -
            import importlib
         | 
| 15 | 
             
            from einops import repeat
         | 
| 16 | 
            -
            from typing import Any
         | 
| 17 | 
            -
             | 
| 18 | 
            -
             | 
| 19 | 
            -
            def instantiate_from_config(config):
         | 
| 20 | 
            -
                if not "target" in config:
         | 
| 21 | 
            -
                    if config == '__is_first_stage__':
         | 
| 22 | 
            -
                        return None
         | 
| 23 | 
            -
                    elif config == "__is_unconditional__":
         | 
| 24 | 
            -
                        return None
         | 
| 25 | 
            -
                    raise KeyError("Expected key `target` to instantiate.")
         | 
| 26 | 
            -
                return get_obj_from_str(config["target"])(**config.get("params", dict()))
         | 
| 27 | 
            -
             | 
| 28 | 
            -
             | 
| 29 | 
            -
            def get_obj_from_str(string, reload=False):
         | 
| 30 | 
            -
                module, cls = string.rsplit(".", 1)
         | 
| 31 | 
            -
                if reload:
         | 
| 32 | 
            -
                    module_imp = importlib.import_module(module)
         | 
| 33 | 
            -
                    importlib.reload(module_imp)
         | 
| 34 | 
            -
                return getattr(importlib.import_module(module, package=None), cls)
         | 
| 35 | 
            -
             | 
| 36 | 
            -
             | 
| 37 | 
            -
            def make_beta_schedule(schedule,
         | 
| 38 | 
            -
                                   n_timestep,
         | 
| 39 | 
            -
                                   linear_start=1e-4,
         | 
| 40 | 
            -
                                   linear_end=2e-2,
         | 
| 41 | 
            -
                                   cosine_s=8e-3):
         | 
| 42 | 
            -
                if schedule == "linear":
         | 
| 43 | 
            -
                    betas = (torch.linspace(linear_start**0.5,
         | 
| 44 | 
            -
                                            linear_end**0.5,
         | 
| 45 | 
            -
                                            n_timestep,
         | 
| 46 | 
            -
                                            dtype=torch.float64)**2)
         | 
| 47 | 
            -
             | 
| 48 | 
            -
                elif schedule == "cosine":
         | 
| 49 | 
            -
                    timesteps = (
         | 
| 50 | 
            -
                        torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep +
         | 
| 51 | 
            -
                        cosine_s)
         | 
| 52 | 
            -
                    alphas = timesteps / (1 + cosine_s) * np.pi / 2
         | 
| 53 | 
            -
                    alphas = torch.cos(alphas).pow(2)
         | 
| 54 | 
            -
                    alphas = alphas / alphas[0]
         | 
| 55 | 
            -
                    betas = 1 - alphas[1:] / alphas[:-1]
         | 
| 56 | 
            -
                    betas = np.clip(betas, a_min=0, a_max=0.999)
         | 
| 57 | 
            -
             | 
| 58 | 
            -
                elif schedule == "sqrt_linear":
         | 
| 59 | 
            -
                    betas = torch.linspace(linear_start,
         | 
| 60 | 
            -
                                           linear_end,
         | 
| 61 | 
            -
                                           n_timestep,
         | 
| 62 | 
            -
                                           dtype=torch.float64)
         | 
| 63 | 
            -
                elif schedule == "sqrt":
         | 
| 64 | 
            -
                    betas = torch.linspace(linear_start,
         | 
| 65 | 
            -
                                           linear_end,
         | 
| 66 | 
            -
                                           n_timestep,
         | 
| 67 | 
            -
                                           dtype=torch.float64)**0.5
         | 
| 68 | 
            -
                else:
         | 
| 69 | 
            -
                    raise ValueError(f"schedule '{schedule}' unknown.")
         | 
| 70 | 
            -
                return betas.numpy()  # type: ignore
         | 
| 71 | 
            -
             | 
| 72 | 
            -
             | 
| 73 | 
            -
            def make_ddim_timesteps(ddim_discr_method,
         | 
| 74 | 
            -
                                    num_ddim_timesteps,
         | 
| 75 | 
            -
                                    num_ddpm_timesteps,
         | 
| 76 | 
            -
                                    verbose=True):
         | 
| 77 | 
            -
                if ddim_discr_method == 'uniform':
         | 
| 78 | 
            -
                    c = num_ddpm_timesteps // num_ddim_timesteps
         | 
| 79 | 
            -
                    ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
         | 
| 80 | 
            -
                elif ddim_discr_method == 'quad':
         | 
| 81 | 
            -
                    ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8),
         | 
| 82 | 
            -
                                                   num_ddim_timesteps))**2).astype(int)
         | 
| 83 | 
            -
                else:
         | 
| 84 | 
            -
                    raise NotImplementedError(
         | 
| 85 | 
            -
                        f'There is no ddim discretization method called "{ddim_discr_method}"'
         | 
| 86 | 
            -
                    )
         | 
| 87 | 
            -
             | 
| 88 | 
            -
                # assert ddim_timesteps.shape[0] == num_ddim_timesteps
         | 
| 89 | 
            -
                # add one to get the final alpha values right (the ones from first scale to data during sampling)
         | 
| 90 | 
            -
                steps_out = ddim_timesteps + 1
         | 
| 91 | 
            -
                if verbose:
         | 
| 92 | 
            -
                    print(f'Selected timesteps for ddim sampler: {steps_out}')
         | 
| 93 | 
            -
                return steps_out
         | 
| 94 | 
            -
             | 
| 95 | 
            -
             | 
| 96 | 
            -
            def make_ddim_sampling_parameters(alphacums,
         | 
| 97 | 
            -
                                              ddim_timesteps,
         | 
| 98 | 
            -
                                              eta,
         | 
| 99 | 
            -
                                              verbose=True):
         | 
| 100 | 
            -
                # select alphas for computing the variance schedule
         | 
| 101 | 
            -
                alphas = alphacums[ddim_timesteps]
         | 
| 102 | 
            -
                alphas_prev = np.asarray([alphacums[0]] +
         | 
| 103 | 
            -
                                         alphacums[ddim_timesteps[:-1]].tolist())
         | 
| 104 | 
            -
             | 
| 105 | 
            -
                # according the the formula provided in https://arxiv.org/abs/2010.02502
         | 
| 106 | 
            -
                sigmas = eta * np.sqrt(
         | 
| 107 | 
            -
                    (1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
         | 
| 108 | 
            -
                if verbose:
         | 
| 109 | 
            -
                    print(
         | 
| 110 | 
            -
                        f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}'
         | 
| 111 | 
            -
                    )
         | 
| 112 | 
            -
                    print(
         | 
| 113 | 
            -
                        f'For the chosen value of eta, which is {eta}, '
         | 
| 114 | 
            -
                        f'this results in the following sigma_t schedule for ddim sampler {sigmas}'
         | 
| 115 | 
            -
                    )
         | 
| 116 | 
            -
                return sigmas, alphas, alphas_prev
         | 
| 117 | 
            -
             | 
| 118 | 
            -
             | 
| 119 | 
            -
            def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
         | 
| 120 | 
            -
                """
         | 
| 121 | 
            -
                Create a beta schedule that discretizes the given alpha_t_bar function,
         | 
| 122 | 
            -
                which defines the cumulative product of (1-beta) over time from t = [0,1].
         | 
| 123 | 
            -
                :param num_diffusion_timesteps: the number of betas to produce.
         | 
| 124 | 
            -
                :param alpha_bar: a lambda that takes an argument t from 0 to 1 and
         | 
| 125 | 
            -
                                  produces the cumulative product of (1-beta) up to that
         | 
| 126 | 
            -
                                  part of the diffusion process.
         | 
| 127 | 
            -
                :param max_beta: the maximum beta to use; use values lower than 1 to
         | 
| 128 | 
            -
                                 prevent singularities.
         | 
| 129 | 
            -
                """
         | 
| 130 | 
            -
                betas = []
         | 
| 131 | 
            -
                for i in range(num_diffusion_timesteps):
         | 
| 132 | 
            -
                    t1 = i / num_diffusion_timesteps
         | 
| 133 | 
            -
                    t2 = (i + 1) / num_diffusion_timesteps
         | 
| 134 | 
            -
                    betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
         | 
| 135 | 
            -
                return np.array(betas)
         | 
| 136 | 
            -
             | 
| 137 | 
            -
             | 
| 138 | 
            -
            def extract_into_tensor(a, t, x_shape):
         | 
| 139 | 
            -
                b, *_ = t.shape
         | 
| 140 | 
            -
                out = a.gather(-1, t)
         | 
| 141 | 
            -
                return out.reshape(b, *((1, ) * (len(x_shape) - 1)))
         | 
| 142 | 
            -
             | 
| 143 |  | 
| 144 | 
             
            def checkpoint(func, inputs, params, flag):
         | 
| 145 | 
             
                """
         | 
| @@ -227,45 +98,6 @@ def zero_module(module): | |
| 227 | 
             
                    p.detach().zero_()
         | 
| 228 | 
             
                return module
         | 
| 229 |  | 
| 230 | 
            -
             | 
| 231 | 
            -
            def scale_module(module, scale):
         | 
| 232 | 
            -
                """
         | 
| 233 | 
            -
                Scale the parameters of a module and return it.
         | 
| 234 | 
            -
                """
         | 
| 235 | 
            -
                for p in module.parameters():
         | 
| 236 | 
            -
                    p.detach().mul_(scale)
         | 
| 237 | 
            -
                return module
         | 
| 238 | 
            -
             | 
| 239 | 
            -
             | 
| 240 | 
            -
            def mean_flat(tensor):
         | 
| 241 | 
            -
                """
         | 
| 242 | 
            -
                Take the mean over all non-batch dimensions.
         | 
| 243 | 
            -
                """
         | 
| 244 | 
            -
                return tensor.mean(dim=list(range(1, len(tensor.shape))))
         | 
| 245 | 
            -
             | 
| 246 | 
            -
             | 
| 247 | 
            -
            def normalization(channels):
         | 
| 248 | 
            -
                """
         | 
| 249 | 
            -
                Make a standard normalization layer.
         | 
| 250 | 
            -
                :param channels: number of input channels.
         | 
| 251 | 
            -
                :return: an nn.Module for normalization.
         | 
| 252 | 
            -
                """
         | 
| 253 | 
            -
                return GroupNorm32(32, channels)
         | 
| 254 | 
            -
             | 
| 255 | 
            -
             | 
| 256 | 
            -
            # PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
         | 
| 257 | 
            -
            class SiLU(nn.Module):
         | 
| 258 | 
            -
             | 
| 259 | 
            -
                def forward(self, x):
         | 
| 260 | 
            -
                    return x * torch.sigmoid(x)
         | 
| 261 | 
            -
             | 
| 262 | 
            -
             | 
| 263 | 
            -
            class GroupNorm32(nn.GroupNorm):
         | 
| 264 | 
            -
             | 
| 265 | 
            -
                def forward(self, x):
         | 
| 266 | 
            -
                    return super().forward(x)
         | 
| 267 | 
            -
             | 
| 268 | 
            -
             | 
| 269 | 
             
            def conv_nd(dims, *args, **kwargs):
         | 
| 270 | 
             
                """
         | 
| 271 | 
             
                Create a 1D, 2D, or 3D convolution module.
         | 
| @@ -279,13 +111,6 @@ def conv_nd(dims, *args, **kwargs): | |
| 279 | 
             
                raise ValueError(f"unsupported dimensions: {dims}")
         | 
| 280 |  | 
| 281 |  | 
| 282 | 
            -
            def linear(*args, **kwargs):
         | 
| 283 | 
            -
                """
         | 
| 284 | 
            -
                Create a linear module.
         | 
| 285 | 
            -
                """
         | 
| 286 | 
            -
                return nn.Linear(*args, **kwargs)
         | 
| 287 | 
            -
             | 
| 288 | 
            -
             | 
| 289 | 
             
            def avg_pool_nd(dims, *args, **kwargs):
         | 
| 290 | 
             
                """
         | 
| 291 | 
             
                Create a 1D, 2D, or 3D average pooling module.
         | 
| @@ -297,24 +122,3 @@ def avg_pool_nd(dims, *args, **kwargs): | |
| 297 | 
             
                elif dims == 3:
         | 
| 298 | 
             
                    return nn.AvgPool3d(*args, **kwargs)
         | 
| 299 | 
             
                raise ValueError(f"unsupported dimensions: {dims}")
         | 
| 300 | 
            -
             | 
| 301 | 
            -
             | 
| 302 | 
            -
            class HybridConditioner(nn.Module):
         | 
| 303 | 
            -
             | 
| 304 | 
            -
                def __init__(self, c_concat_config, c_crossattn_config):
         | 
| 305 | 
            -
                    super().__init__()
         | 
| 306 | 
            -
                    self.concat_conditioner: Any = instantiate_from_config(c_concat_config)
         | 
| 307 | 
            -
                    self.crossattn_conditioner: Any = instantiate_from_config(
         | 
| 308 | 
            -
                        c_crossattn_config)
         | 
| 309 | 
            -
             | 
| 310 | 
            -
                def forward(self, c_concat, c_crossattn):
         | 
| 311 | 
            -
                    c_concat = self.concat_conditioner(c_concat)
         | 
| 312 | 
            -
                    c_crossattn = self.crossattn_conditioner(c_crossattn)
         | 
| 313 | 
            -
                    return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
         | 
| 314 | 
            -
             | 
| 315 | 
            -
             | 
| 316 | 
            -
            def noise_like(shape, device, repeat=False):
         | 
| 317 | 
            -
                repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(
         | 
| 318 | 
            -
                    shape[0], *((1, ) * (len(shape) - 1)))
         | 
| 319 | 
            -
                noise = lambda: torch.randn(shape, device=device)
         | 
| 320 | 
            -
                return repeat_noise() if repeat else noise()
         | 
|  | |
| 10 | 
             
            import math
         | 
| 11 | 
             
            import torch
         | 
| 12 | 
             
            import torch.nn as nn
         | 
|  | |
|  | |
| 13 | 
             
            from einops import repeat
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 14 |  | 
| 15 | 
             
            def checkpoint(func, inputs, params, flag):
         | 
| 16 | 
             
                """
         | 
|  | |
| 98 | 
             
                    p.detach().zero_()
         | 
| 99 | 
             
                return module
         | 
| 100 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 101 | 
             
            def conv_nd(dims, *args, **kwargs):
         | 
| 102 | 
             
                """
         | 
| 103 | 
             
                Create a 1D, 2D, or 3D convolution module.
         | 
|  | |
| 111 | 
             
                raise ValueError(f"unsupported dimensions: {dims}")
         | 
| 112 |  | 
| 113 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 114 | 
             
            def avg_pool_nd(dims, *args, **kwargs):
         | 
| 115 | 
             
                """
         | 
| 116 | 
             
                Create a 1D, 2D, or 3D average pooling module.
         | 
|  | |
| 122 | 
             
                elif dims == 3:
         | 
| 123 | 
             
                    return nn.AvgPool3d(*args, **kwargs)
         | 
| 124 | 
             
                raise ValueError(f"unsupported dimensions: {dims}")
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 

