Upload folder using huggingface_hub
Browse files- README.md +99 -87
- model-00001-of-00002.safetensors +1 -1
- model-00002-of-00002.safetensors +1 -1
README.md
CHANGED
|
@@ -2,16 +2,16 @@
|
|
| 2 |
license: other
|
| 3 |
license_name: katanemo-research
|
| 4 |
license_link: >-
|
| 5 |
-
https://huggingface.co/
|
| 6 |
base_model:
|
| 7 |
-
- Qwen/Qwen2.5-
|
| 8 |
language:
|
| 9 |
- en
|
| 10 |
pipeline_tag: text-generation
|
| 11 |
library_name: transformers
|
| 12 |
---
|
| 13 |
|
| 14 |
-
# katanemo/Arch-Function-
|
| 15 |
|
| 16 |
## Overview
|
| 17 |
The Katanemo Arch-Function collection of large language models (LLMs) is a collection state-of-the-art (SOTA) LLMs specifically designed for **function calling** tasks. The models are designed to understand complex function signatures, identify required parameters, and produce accurate function call outputs based on natural language prompts. Achieving performance on par with GPT-4, these models set a new benchmark in the domain of function-oriented tasks, making them suitable for scenarios where automated API interaction and function execution is crucial.
|
|
@@ -54,7 +54,7 @@ Katanemo Arch-Function collection is built on top of the [Qwen 2.5](https://hugg
|
|
| 54 |
|
| 55 |
|
| 56 |
## Performance Benchmarks
|
| 57 |
-
We evaluate Katanemo Arch-Function series on the [Berkeley Function-Calling Leaderboard (BFCL)](https://gorilla.cs.berkeley.edu/leaderboard.html#leaderboard). For each model family, we select the one with the highest rank.
|
| 58 |
|
| 59 |
<table>
|
| 60 |
<tr style="text-align: center; vertical-align: middle; font-weight: bold;">
|
|
@@ -75,109 +75,121 @@ We evaluate Katanemo Arch-Function series on the [Berkeley Function-Calling Lead
|
|
| 75 |
</tr>
|
| 76 |
<tr style="text-align: center; vertical-align: middle;">
|
| 77 |
<td>1</td>
|
| 78 |
-
<td>GPT-
|
| 79 |
-
<td>
|
| 80 |
-
<td>
|
| 81 |
-
<td>
|
| 82 |
-
<td>
|
| 83 |
-
<td>
|
| 84 |
-
<td>
|
| 85 |
-
<td>
|
| 86 |
</tr>
|
| 87 |
<tr style="text-align: center; vertical-align: middle;">
|
| 88 |
-
<td>
|
| 89 |
-
<td>
|
| 90 |
-
<td>59.
|
| 91 |
-
<td>
|
| 92 |
-
<td>
|
| 93 |
-
<td>
|
| 94 |
-
<td>
|
| 95 |
-
<td>
|
| 96 |
-
<td>
|
| 97 |
</tr>
|
| 98 |
<tr style="text-align: center; vertical-align: middle; font-weight: bold;">
|
| 99 |
<td> </td>
|
| 100 |
<td>Arch-Function-7B</td>
|
| 101 |
-
<td>
|
| 102 |
-
<td>
|
| 103 |
-
<td>
|
| 104 |
-
<td>
|
| 105 |
-
<td>
|
| 106 |
-
<td>
|
| 107 |
-
<td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
</tr>
|
| 109 |
<tr style="text-align: center; vertical-align: middle; font-weight: bold;">
|
| 110 |
<td> </td>
|
| 111 |
<td>Arch-Function-3B</td>
|
| 112 |
-
<td>56.
|
| 113 |
-
<td>
|
| 114 |
-
<td>
|
| 115 |
-
<td>
|
| 116 |
-
<td>
|
| 117 |
-
<td>
|
| 118 |
-
<td>
|
| 119 |
-
</tr>
|
| 120 |
-
<tr style="text-align: center; vertical-align: middle;">
|
| 121 |
-
<td>7</td>
|
| 122 |
-
<td>mistral-large-2407</td>
|
| 123 |
-
<td>55.82%</td>
|
| 124 |
-
<td>84.12%</td>
|
| 125 |
-
<td>83.09%</td>
|
| 126 |
-
<td>67.17%</td>
|
| 127 |
-
<td>20.50%</td>
|
| 128 |
-
<td>78.05%</td>
|
| 129 |
-
<td>48.93%</td>
|
| 130 |
-
</tr>
|
| 131 |
-
<tr style="text-align: center; vertical-align: middle;">
|
| 132 |
-
<td>9</td>
|
| 133 |
-
<td>Claude-3.5-Sonnet-20240620</td>
|
| 134 |
-
<td>54.83%</td>
|
| 135 |
-
<td>70.35%</td>
|
| 136 |
-
<td>66.34%</td>
|
| 137 |
-
<td>71.39%</td>
|
| 138 |
-
<td>23.5%</td>
|
| 139 |
-
<td>63.41%</td>
|
| 140 |
-
<td>75.91%</td>
|
| 141 |
</tr>
|
| 142 |
</tr>
|
| 143 |
<tr style="text-align: center; vertical-align: middle; font-weight: bold;">
|
| 144 |
<td> </td>
|
| 145 |
<td>Arch-Function-1.5B</td>
|
| 146 |
-
<td>
|
| 147 |
-
<td>
|
| 148 |
-
<td>
|
| 149 |
-
<td>
|
| 150 |
-
<td>
|
| 151 |
-
<td>
|
| 152 |
-
<td>
|
| 153 |
</tr>
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
<td>
|
| 157 |
-
<td>
|
| 158 |
-
<td>
|
| 159 |
-
<td>
|
| 160 |
-
<td>
|
| 161 |
-
<td>
|
| 162 |
-
<td>
|
| 163 |
-
<td>
|
|
|
|
| 164 |
</tr>
|
| 165 |
-
<tr style="text-align: center; vertical-align: middle;">
|
| 166 |
-
<td>
|
| 167 |
-
<td>
|
| 168 |
-
<td>53.
|
| 169 |
-
<td>
|
| 170 |
-
<td>
|
| 171 |
-
<td>
|
| 172 |
-
<td>
|
| 173 |
-
<td>
|
| 174 |
-
<td>76
|
| 175 |
</tr>
|
| 176 |
</table>
|
| 177 |
|
| 178 |
|
| 179 |
# Requirements
|
| 180 |
-
The code of Arch-Function-
|
| 181 |
```bash
|
| 182 |
pip install transformers>=4.37.0
|
| 183 |
```
|
|
@@ -193,7 +205,7 @@ import json
|
|
| 193 |
from typing import Any, Dict, List
|
| 194 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 195 |
|
| 196 |
-
model_name = "katanemo/Arch-Function-
|
| 197 |
model = AutoModelForCausalLM.from_pretrained(
|
| 198 |
model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True
|
| 199 |
)
|
|
@@ -332,4 +344,4 @@ The current temperature in Seattle is 62 degrees in Fahrenheit.
|
|
| 332 |
|
| 333 |
|
| 334 |
# License
|
| 335 |
-
Katanemo Arch-Function collection is distributed under the [Katanemo license](https://huggingface.co/
|
|
|
|
| 2 |
license: other
|
| 3 |
license_name: katanemo-research
|
| 4 |
license_link: >-
|
| 5 |
+
https://huggingface.co/katanemolabs/Arch-Function-1.5B/blob/main/LICENSE
|
| 6 |
base_model:
|
| 7 |
+
- Qwen/Qwen2.5-1.5B-Instruct
|
| 8 |
language:
|
| 9 |
- en
|
| 10 |
pipeline_tag: text-generation
|
| 11 |
library_name: transformers
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# katanemo/Arch-Function-1.5B
|
| 15 |
|
| 16 |
## Overview
|
| 17 |
The Katanemo Arch-Function collection of large language models (LLMs) is a collection state-of-the-art (SOTA) LLMs specifically designed for **function calling** tasks. The models are designed to understand complex function signatures, identify required parameters, and produce accurate function call outputs based on natural language prompts. Achieving performance on par with GPT-4, these models set a new benchmark in the domain of function-oriented tasks, making them suitable for scenarios where automated API interaction and function execution is crucial.
|
|
|
|
| 54 |
|
| 55 |
|
| 56 |
## Performance Benchmarks
|
| 57 |
+
We evaluate Katanemo Arch-Function series on the [Berkeley Function-Calling Leaderboard (BFCL)](https://gorilla.cs.berkeley.edu/leaderboard.html#leaderboard). We compare with commonly-used models and the results (as of Oct 21st, 2024) are shwon below. For each model family, we select the one with the highest rank.
|
| 58 |
|
| 59 |
<table>
|
| 60 |
<tr style="text-align: center; vertical-align: middle; font-weight: bold;">
|
|
|
|
| 75 |
</tr>
|
| 76 |
<tr style="text-align: center; vertical-align: middle;">
|
| 77 |
<td>1</td>
|
| 78 |
+
<td>GPT-4o-2024-08-06 (FC)</td>
|
| 79 |
+
<td>62.19%</td>
|
| 80 |
+
<td>85.90%</td>
|
| 81 |
+
<td>85.64%</td>
|
| 82 |
+
<td>75.43%</td>
|
| 83 |
+
<td>25.00%</td>
|
| 84 |
+
<td>63.41%</td>
|
| 85 |
+
<td>82.93%</td>
|
| 86 |
</tr>
|
| 87 |
<tr style="text-align: center; vertical-align: middle;">
|
| 88 |
+
<td>6</td>
|
| 89 |
+
<td>o1-preview-2024-09-12 (Prompt)</td>
|
| 90 |
+
<td>59.27%</td>
|
| 91 |
+
<td>86.42%</td>
|
| 92 |
+
<td>88.88%</td>
|
| 93 |
+
<td>73.08%</td>
|
| 94 |
+
<td>17.62%</td>
|
| 95 |
+
<td>73.17%</td>
|
| 96 |
+
<td>74.60%</td>
|
| 97 |
</tr>
|
| 98 |
<tr style="text-align: center; vertical-align: middle; font-weight: bold;">
|
| 99 |
<td> </td>
|
| 100 |
<td>Arch-Function-7B</td>
|
| 101 |
+
<td>58.44%</td>
|
| 102 |
+
<td>85.58%</td>
|
| 103 |
+
<td>88.14%</td>
|
| 104 |
+
<td>69.08%</td>
|
| 105 |
+
<td>20.50%</td>
|
| 106 |
+
<td>92.68%</td>
|
| 107 |
+
<td>74.05%</td>
|
| 108 |
+
</tr>
|
| 109 |
+
<tr style="text-align: center; vertical-align: middle; ">
|
| 110 |
+
<td>9</td>
|
| 111 |
+
<td>Gemini-1.5-Flash-002 (Prompt)</td>
|
| 112 |
+
<td>57.92%</td>
|
| 113 |
+
<td>86.58%</td>
|
| 114 |
+
<td>89.48%</td>
|
| 115 |
+
<td>76.28%</td>
|
| 116 |
+
<td>9.88%</td>
|
| 117 |
+
<td>85.37%</td>
|
| 118 |
+
<td>78.54%</td>
|
| 119 |
+
</tr>
|
| 120 |
+
<tr style="text-align: center; vertical-align: middle; ">
|
| 121 |
+
<td>12</td>
|
| 122 |
+
<td>Claude-3.5-Sonnet-20240620 (FC)</td>
|
| 123 |
+
<td>57.42%</td>
|
| 124 |
+
<td>70.04%</td>
|
| 125 |
+
<td>66.27%</td>
|
| 126 |
+
<td>74.68%</td>
|
| 127 |
+
<td>28.38%</td>
|
| 128 |
+
<td>68.29%</td>
|
| 129 |
+
<td>74.58%</td>
|
| 130 |
+
</tr>
|
| 131 |
+
<tr style="text-align: center; vertical-align: middle; ">
|
| 132 |
+
<td>13</td>
|
| 133 |
+
<td>mistral-large-2407 (FC)</td>
|
| 134 |
+
<td>56.80%</td>
|
| 135 |
+
<td>86.62%</td>
|
| 136 |
+
<td>84.57%</td>
|
| 137 |
+
<td>68.37%</td>
|
| 138 |
+
<td>20.62%</td>
|
| 139 |
+
<td>75.61%</td>
|
| 140 |
+
<td>49.44%</td>
|
| 141 |
</tr>
|
| 142 |
<tr style="text-align: center; vertical-align: middle; font-weight: bold;">
|
| 143 |
<td> </td>
|
| 144 |
<td>Arch-Function-3B</td>
|
| 145 |
+
<td>56.57%</td>
|
| 146 |
+
<td>83.62%</td>
|
| 147 |
+
<td>85.36%</td>
|
| 148 |
+
<td>66.90%</td>
|
| 149 |
+
<td>19.50%</td>
|
| 150 |
+
<td>97.56%</td>
|
| 151 |
+
<td>70.99%</td>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
</tr>
|
| 153 |
</tr>
|
| 154 |
<tr style="text-align: center; vertical-align: middle; font-weight: bold;">
|
| 155 |
<td> </td>
|
| 156 |
<td>Arch-Function-1.5B</td>
|
| 157 |
+
<td>54.52%</td>
|
| 158 |
+
<td>80.31%</td>
|
| 159 |
+
<td>82.04%</td>
|
| 160 |
+
<td>66.19%</td>
|
| 161 |
+
<td>17.25%</td>
|
| 162 |
+
<td>97.56%</td>
|
| 163 |
+
<td>69.95%</td>
|
| 164 |
</tr>
|
| 165 |
+
|
| 166 |
+
<tr style="text-align: center; vertical-align: middle; ">
|
| 167 |
+
<td>21</td>
|
| 168 |
+
<td>Llama-3.1-70B-Instruct (Prompt)</td>
|
| 169 |
+
<td>53.67%</td>
|
| 170 |
+
<td>88.90%</td>
|
| 171 |
+
<td>89.34%</td>
|
| 172 |
+
<td>61.13%</td>
|
| 173 |
+
<td>12.38%</td>
|
| 174 |
+
<td>92.68%</td>
|
| 175 |
+
<td>58.38%</td>
|
| 176 |
</tr>
|
| 177 |
+
<tr style="text-align: center; vertical-align: middle; ">
|
| 178 |
+
<td>22</td>
|
| 179 |
+
<td>Gemma-2-27b-it (Prompt)</td>
|
| 180 |
+
<td>53.66%</td>
|
| 181 |
+
<td>88.52%</td>
|
| 182 |
+
<td>87.89%</td>
|
| 183 |
+
<td>69.48%</td>
|
| 184 |
+
<td>4.12%</td>
|
| 185 |
+
<td>87.8%</td>
|
| 186 |
+
<td>68.76%</td>
|
| 187 |
</tr>
|
| 188 |
</table>
|
| 189 |
|
| 190 |
|
| 191 |
# Requirements
|
| 192 |
+
The code of Arch-Function-1.5B has been in the Hugging Face `transformers` library and we advise you to install latest version:
|
| 193 |
```bash
|
| 194 |
pip install transformers>=4.37.0
|
| 195 |
```
|
|
|
|
| 205 |
from typing import Any, Dict, List
|
| 206 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 207 |
|
| 208 |
+
model_name = "katanemo/Arch-Function-1.5B"
|
| 209 |
model = AutoModelForCausalLM.from_pretrained(
|
| 210 |
model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True
|
| 211 |
)
|
|
|
|
| 344 |
|
| 345 |
|
| 346 |
# License
|
| 347 |
+
Katanemo Arch-Function collection is distributed under the [Katanemo license](https://huggingface.co/katanemolabs/Arch-Function-1.5B/blob/main/LICENSE).
|
model-00001-of-00002.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 4957560304
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4d13942083f5a22837c4b9bd5341221f18f5303f12a53afadaceea02ac79b771
|
| 3 |
size 4957560304
|
model-00002-of-00002.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1214366696
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1445b032668c261f394138703eef06d2ec97c1eb568fe5c00ed8494158564c93
|
| 3 |
size 1214366696
|