Upload folder using huggingface_hub
Browse files- .gitattributes +3 -0
- LICENSE +73 -0
- README.md +216 -0
- config.json +262 -0
- configuration.py +125 -0
- examples/waybill.png +3 -0
- generation_config.json +8 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +746 -0
- modeling.py +493 -0
- preprocessor_config.json +6 -0
- processing.py +208 -0
- processing_image.py +289 -0
- tokenization.py +240 -0
- tokenizer.json +3 -0
- tokenizer_config.json +2095 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
examples/example1.png filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
examples/waybill.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
LICENSE
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
KANANA LICENSE AGREEMENT
|
| 2 |
+
|
| 3 |
+
Kanana Release Date: July 17, 2025
|
| 4 |
+
|
| 5 |
+
This KANANA LICENSE AGREEMENT (this “Agreement”) is made by and between you and Kakao Corp. (“KAKAO”) that governs your use of Kanana Materials that KAKAO provides to you.
|
| 6 |
+
By using, copying, modifying, distributing, performing, or displaying all or part of Kanana Materials, or otherwise accepting the terms and conditions of this Agreement, you agree to be bound by this Agreement. You hereby represent and warrant that (i) you are legally authorized to enter into this Agreement, and (ii) if you are entering into this Agreement on behalf of a legal entity, you have the authority to legally and validly bind such entity.
|
| 7 |
+
|
| 8 |
+
1. Definition
|
| 9 |
+
1.1 “Agreement” means the terms and conditions for use, copying, distribution and modification of Kanana Materials as set forth herein.
|
| 10 |
+
1.2 “KAKAO” means Kakao Corp.
|
| 11 |
+
1.3 “You” means an individual or legal entity that enters into this Agreement with KAKAO and exercises its rights hereunder or uses Kanana Materials for any purpose. If you enter into this Agreement on behalf of a legal entity, “you” shall include such entity.
|
| 12 |
+
1.4 “Kanana” means the basic large-scale language model, software, and algorithms distributed by KAKAO under this Agreement, including parameters (such as Model Weights and optimizer status), machine learning model codes, inference/learning/fine-tuning codes, and other related elements.
|
| 13 |
+
1.5 “Documentation” means the specifications, manuals, and other documentation accompanying Kanana distributed by KAKAO.
|
| 14 |
+
1.6 “Kanana Materials” means, collectively, Kanana and Documentation, including any portions or components thereof.
|
| 15 |
+
1.7 “Outputs” means information content generated by operating or otherwise using Kanana Materials.
|
| 16 |
+
1.8 “Derivative Works” means (i) any modifications to Kanana, (ii) any work of authorship based on Kanana, or (iii) any other designed machine learning models that either directly use the patterns of Model Weights, parameters, operations, and/or outputs or incorporate a substantial part of Kanana’s performance or functional characteristics through methods including, but not limited to, transfer learning, fine-tuning, or knowledge distillation. This includes distillation methods using Kanana’s intermediate data representations or a method based on the synthetic data outputs generated by Kanana; provided, however, that Outputs shall not be deemed to be Derivative Works.
|
| 17 |
+
1.9 “Model Weights” means a set of numerical parameter values generated during Kanana’s learning process, representing the result of substantial investment and effort by KAKAO.
|
| 18 |
+
|
| 19 |
+
2. Grant of License and Use Policy
|
| 20 |
+
2.1 Grant of License. Subject to the terms and conditions of this Agreement, you are granted a non-exclusive, worldwide, non-transferrable, royalty-free limited license under KAKAO’s intellectual property or other rights owned by KAKAO that enables you to access, download, install, copy, use, reproduce, distribute, create Derivative Works of, and make modifications to Kanana Materials.
|
| 21 |
+
2.2 Policy on Prohibited Use. Your use of Kanana Materials and Derivative Works must comply with applicable laws and regulations and adhere to KAKAO’s Guidelines For Responsible AI (https://www.kakaocorp.com/page/responsible/detail/guidelinesForResponsibleAI), which is hereby incorporated into this Agreement.
|
| 22 |
+
2.3 This Agreement applies solely to Kanana-*** and shall not apply to any other models distributed by KAKAO under separate licenses. Licenses applicable to such other models shall not apply to Kanana-***.
|
| 23 |
+
2.4 The license terms applicable to a specific version of Kanana applies exclusively to that version and shall not extend to any other versions. Each version shall be deemed as an independent and separate work of authorship.
|
| 24 |
+
2.5 You may use each version of Kanana only in accordance with the license terms expressly specified for that version, and you shall not claim that the license terms applicable to one version apply to any other version.
|
| 25 |
+
2.6 You shall not combine different versions of Kanana versions that are subject to different license terms in order to circumvent any applicable license terms.
|
| 26 |
+
|
| 27 |
+
3. Redistribution
|
| 28 |
+
3.1 You may copy, distribute or disclose Kanana, Derivative Works, or any products or services that contain Kanana or Derivative Works; provided, however, that you shall:
|
| 29 |
+
(i) incorporate the compliance obligation set forth in the Policy on Prohibited Use provision of Section 2.2 in any agreement for use and distribution and notify subsequent users that such use restrictions apply;
|
| 30 |
+
(ii) provide any recipients of Kanana Materials or Derivative Works a copy of this Agreement;
|
| 31 |
+
(iii) expressly indicate in any files you have modified that it has been modified by you;
|
| 32 |
+
(iv) include a “Notice” text file that includes the following notice:
|
| 33 |
+
“Kanana is licensed in accordance with the Kanana License Agreement. Copyright © KAKAO Corp. All Rights Reserved.”; and
|
| 34 |
+
(v) clearly display the phrase “Powered by Kanana” on related websites, user interfaces, blog posts, introduction pages, or product documentation in a manner that is easily recognizable to users. In addition, if you use Kanana Materials or their outputs to create, train, improve, or enhance other AI models and distribute them, you must include ‘Kanana’ as a prefix to the name of such AI models.
|
| 35 |
+
3.2 You may add your own copyright statement to your modifications of Kanana Materials and may provide additional or different license terms and conditions; provided, however, that such additional or different license terms and conditions shall not violate or conflict with any provisions of this Agreement.
|
| 36 |
+
|
| 37 |
+
4. Additional Commercial Terms
|
| 38 |
+
4.1 If you wish to engage in any of the following activities using Kanana Materials or any Derivative Works, you must obtain a separate commercial license expressly granted by KAKAO:
|
| 39 |
+
(i) Offering or (re)selling to third parties access to Kanana Materials or any Derivative Works through API, cloud platforms, or other remote access services;
|
| 40 |
+
(ii) Offering or (re)selling to third parties Kanana Materials or any Derivative Works in whole or in part, as part of a system integration (SI) or on-premise deployment solution; or
|
| 41 |
+
(iii) Offering or (re)selling to third parties Kanana Materials or any Derivative Works embedded in an on-device domains.
|
| 42 |
+
4.2 If, as of Kanana Release Date, the number of monthly active users of the products or services provided by you and/or your affiliates, is greater than 10 million in the preceding calendar month, you must obtain a separate commercial license expressly granted by KAKAO.
|
| 43 |
+
4.3 For clarity, unless your activities or conditions fall within those specified in Sections 4.1 and 4.2 above, you may use Kanana Materials or any Derivative Works for the development and operation of your own services without obtaining a commercial license from KAKAO.
|
| 44 |
+
4.4 The grant of any commercial license under Sections 4.1 and 4.2 shall be at KAKAO’s sole discretion
|
| 45 |
+
|
| 46 |
+
5. Outputs
|
| 47 |
+
KAKAO will not claim any rights to Outputs you generate using Kanana Materials. You shall be solely responsible for Outputs and the use thereof.
|
| 48 |
+
|
| 49 |
+
6. Disclaimer of Warranty
|
| 50 |
+
Unless required by law, Kanana Materials are provided on an “AS IS” basis, and KAKAO disclaims all warranties of any kind, both express and implied, including, without limitation, any warranties of title, non-infringement, merchantability, or fitness for a particular purpose.
|
| 51 |
+
|
| 52 |
+
7. Limitation on Liability
|
| 53 |
+
Unless required by law, in no event shall KAKAO be liable to you for damages, including any direct, indirect, special, consequential, incidental, and punitive damages of any character arising out of the use or inability to use Kanana Materials, Derivative Works, or Outputs, even if KAKAO has been advised of the possibility of such damages.
|
| 54 |
+
|
| 55 |
+
8. Indemnification
|
| 56 |
+
You shall indemnify and hold KAKAO harmless from and against any and all claims that may be filed by a third party as a result of your infringement of any third party’s rights or violation of any applicable law, to the extent caused by your use or distribution of Kanana Materials, Derivative Works, or Outputs; provided, however, that the foregoing shall not apply to claims resulting from KAKAO’s willful or gross negligence.
|
| 57 |
+
|
| 58 |
+
9. Intellectual Property
|
| 59 |
+
9.1 This Agreement does not grant you any rights to use KAKAO’s trademarks, service marks, or product names. However, on a limited basis and solely for the purpose of complying with Section 3.1(v), KAKAO authorizes you to use the Kanana trademark, provided that KAKAO may require you to discontinue such use at any time if you impair the value of the Kanana trademark.
|
| 60 |
+
9.2 KAKAO retains ownership of Kanana Materials and Derivative Works created by KAKAO, but you will retain ownership of any Derivative Works and modifications made by you.
|
| 61 |
+
9.3 If you bring any legal action or proceeding against KAKAO or a third party alleging that the Kanana Materials, Derivative Works, or Outputs infringe your intellectual property rights, your rights under this Agreement shall automatically terminate as of the date such action is filed.
|
| 62 |
+
9.4 You acknowledge that Model Weights are a valuable asset of KAKAO. You shall not extract, copy, distribute, modify Model Weights or use them to train new models, except as expressly permitted under this Agreement.
|
| 63 |
+
9.5 The protections under this Agreement apply to all components of Kanana Materials (irrespective of whether it is recognized as a work of authorship), including, but not limited to, Model Weights, parameters, algorithms, or structures. You may exercise your rights in these components only to the extent expressly permitted under this Agreement.
|
| 64 |
+
|
| 65 |
+
10. Term and Termination
|
| 66 |
+
The term of this Agreement will commence upon your acceptance of this Agreement or access to Kanana Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. KAKAO may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of Kanana Materials and Derivative Works. Sections 5, 6, 7, 8, 10 and 11 shall survive the termination of this Agreement.
|
| 67 |
+
|
| 68 |
+
11. Governing Law and Arbitration
|
| 69 |
+
11.1 This Agreement will be governed and construed under the laws of the Republic of Korea, without regard to its conflicts of laws principles.
|
| 70 |
+
11.2 Any disputes arising out of or in connection with this Agreement shall be finally settled by arbitration in accordance with the International Arbitration Rules of the Korean Commercial Arbitration Board. The number of arbitrators shall be one. The seat, or legal place, of arbitral proceedings shall be Seoul, Republic of Korea. The language to be used in the arbitral proceedings shall be English. Either party may seek interim or provisional relief from a court of competent jurisdiction, which shall not be considered a waiver of any provision in this Section. The arbitral tribunal also has the authority to issue orders for interim or provisional relief.
|
| 71 |
+
|
| 72 |
+
12. No Waiver
|
| 73 |
+
KAKAO’s failure or delay in exercising any of its rights under this Agreement shall not constitute a waiver of such rights.
|
README.md
ADDED
|
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: other
|
| 3 |
+
license_name: "kanana"
|
| 4 |
+
license_link: LICENSE
|
| 5 |
+
language:
|
| 6 |
+
- ko
|
| 7 |
+
- en
|
| 8 |
+
base_model:
|
| 9 |
+
- kakaocorp/kanana-1.5-v-3b-instruct
|
| 10 |
+
pipeline_tag: image-text-to-text
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
# kanana-1.5-v-3b-instruct
|
| 16 |
+
|
| 17 |
+
The Unified Foundation Model (UFO) task force of Kanana at Kakao developed and released the Kanana-V family of multimodal large language models (MLLMs), a collection of pretrained text/image-to-text (TI2T) models.
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
## Intended Use
|
| 22 |
+
|
| 23 |
+
kanana-1.5-v-3b-instruct is intended for research and application development in multimodal understanding and text generation tasks. Typical use cases include image captioning, document understanding, OCR-based reasoning, and multimodal instruction following in both English and Korean. The model is optimized for both general-purpose and Korea-specific benchmarks, making it suitable for bilingual environments.
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
## Model Details
|
| 29 |
+
|
| 30 |
+
- **Developed by:** Unified Foundation Model (UFO) TF at Kakao
|
| 31 |
+
- **Language(s) :** ['en', 'ko']
|
| 32 |
+
- **Model Architecture:** kanana-1.5-v-3b-instruct has 3.6B parameters and contains image encoder, C-abstractor, and kanana-1.5-3b-instruct language model.
|
| 33 |
+
- **Input:** The models accept text and image inputs.
|
| 34 |
+
- **Output:** The models generate text only.
|
| 35 |
+
- **Context Length:** 32k
|
| 36 |
+
- **Knowledge Cutoff Date:** June 30, 2024
|
| 37 |
+
- **Model Release Date:** Jul 24, 2025.
|
| 38 |
+
- **License:** kanana-license
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
## Evaluation
|
| 44 |
+
|
| 45 |
+
### Model Configuration Summary
|
| 46 |
+
|
| 47 |
+
| Model | LLM | Total Parameter |
|
| 48 |
+
|----------------------------|----------------------------------|-----------|
|
| 49 |
+
| **kanana-1.5-v-3b-instruct** | kanana-1.5-3b-instruct | 3.67B |
|
| 50 |
+
| HCX-SEED-Vision-3B | HyperCLOVAX-SEED-Text-Base-3B | 3.72B |
|
| 51 |
+
| Phi-3-Vision | Phi-3-Mini | 4.15B |
|
| 52 |
+
| Qwen2.5-VL-3B-Instruct | Qwen2.5-3B | 3.75B |
|
| 53 |
+
| InternVL2.5-4B | Qwen2.5-3B-Instruct | 3.94B |
|
| 54 |
+
|
| 55 |
+
### Overview
|
| 56 |
+
|
| 57 |
+
| Model | All | Image (EN) | Image (KO) | IF (EN, KO) |
|
| 58 |
+
|----------------------------|--------|------------|------------|-------------|
|
| 59 |
+
| **kanana-1.5-v-3b-instruct** | 73.22 | 74.00 | 68.27 | 77.39 |
|
| 60 |
+
| HCX-SEED-Vision-3B | 59.00 | 64.81 | 51.96 | 60.23 |
|
| 61 |
+
| Phi-3-Vision | 48.84 | 65.41 | 36.40 | 44.71 |
|
| 62 |
+
| Qwen2.5-VL-3B-Instruct | 63.54 | 73.97 | 60.60 | 56.04 |
|
| 63 |
+
| InternVL2.5-4B | 61.35 | 74.73 | 54.68 | 54.63 |
|
| 64 |
+
|
| 65 |
+
### Image Benchmarks (EN)
|
| 66 |
+
|
| 67 |
+
| Model | average | MMMU (Val) | MathVista | DocVQA | ChartQA | OCRBench | InfoVQA | TextVQA | RealWorldQA | MMStar | MMB | SEED-image | MMVet | LLaVA-Wild | scienceqa | AI2D |
|
| 68 |
+
|----------------------------|--------------|------------|-----------|--------|---------|----------|---------|---------|-------------|--------|-------|------------|-------|------------|-----------|-------|
|
| 69 |
+
| **kanana-1.5-v-3b-instruct** | 74.00 | 43.89 | 56.00 | 93.06 | 81.20 | 82.50 | 73.62 | 78.62 | 65.36 | 56.32 | 78.44 | 75.17 | 65.87 | 89.60 | 95.61 | 74.81 |
|
| 70 |
+
| HCX-SEED-Vision-3B | 64.81 | 38.89 | 47.40 | 79.87 | 71.88 | 62.90 | 55.59 | 73.51 | 62.48 | 46.66 | 72.42 | 74.84 | 47.27 | 79.30 | 86.84 | 72.31 |
|
| 71 |
+
| Phi-3-Vision | 65.41 | 45.33 | 43.60 | 87.04 | 81.40 | 63.60 | 54.80 | 69.61 | 59.08 | 47.47 | 73.37 | 71.69 | 45.96 | 70.40 | 90.84 | 76.98 |
|
| 72 |
+
| Qwen2.5-VL-3B-Instruct | 73.97 | 50.67 | 62.00 | 94.19 | 83.60 | 79.10 | 77.22 | 77.77 | 59.74 | 56.26 | 77.75 | 74.83 | 61.06 | 96.90 | 79.69 | 78.79 |
|
| 73 |
+
| InternVL2.5-4B | 74.73 | 52.33 | 61.80 | 92.13 | 82.76 | 79.20 | 69.73 | 78.24 | 62.88 | 59.72 | 81.96 | 75.59 | 61.38 | 86.30 | 97.14 | 79.83 |
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
### Image Benchmarks (KO)
|
| 77 |
+
|
| 78 |
+
| Model | average | KoOCRBench | KoMMDBench | KoChartTask | KoMathSolution | KoCosMed | KoFoodMenu | KoEntity | KoExam | KoCelebV2 |
|
| 79 |
+
|----------------------------|--------------|----------------------|------------|-------------|----------------|----------|------------|----------|--------|-----------|
|
| 80 |
+
| **kanana-1.5-v-3b-instruct** | 68.27 | 85.93 | 74.00 | 84.96 | 36.88 | 87.58 | 70.84 | 72.04 | 58.99 | 43.24 |
|
| 81 |
+
| HCX-SEED-Vision-3B | 51.96 | 32.91 | 64.57 | 73.55 | 27.88 | 78.16 | 57.08 | 64.12 | 31.82 | 37.58 |
|
| 82 |
+
| Phi-3-Vision | 36.40 | 25.13 | 37.93 | 52.36 | 38.75 | 56.75 | 34.70 | 31.71 | 24.05 | 26.25 |
|
| 83 |
+
| Qwen2.5-VL-3B-Instruct | 60.60 | 50.67 | 61.75 | 84.96 | 47.13 | 82.01 | 66.32 | 58.15 | 60.68 | 33.72 |
|
| 84 |
+
| InternVL2.5-4B | 54.68 | 20.52 | 62.65 | 82.61 | 46.50 | 82.66 | 65.09 | 50.42 | 47.43 | 34.23 |
|
| 85 |
+
|
| 86 |
+
### Multimodal Instruction Following Benchmarks (EN, KO)
|
| 87 |
+
|
| 88 |
+
| Model | average | MIABench | MIABench-Ko | MM-IFEval | MM-OmniAlign |
|
| 89 |
+
|----------------------------|--------------|----------|-------------|-----------|--------------|
|
| 90 |
+
| **kanana-1.5-v-3b-instruct** | 77.39 | 90.28 | 91.17 | 56.67 | 71.43 |
|
| 91 |
+
| HCX-SEED-Vision-3B | 60.23 | 85.81 | 81.80 | 47.91 | 25.40 |
|
| 92 |
+
| Phi-3-Vision | 44.71 | 85.78 | 38.35 | 44.37 | 10.32 |
|
| 93 |
+
| Qwen2.5-VL-3B-Instruct | 56.04 | 82.55 | 59.61 | 39.14 | 42.86 |
|
| 94 |
+
| InternVL2.5-4B | 54.63 | 85.68 | 68.35 | 43.06 | 21.43 |
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
### Note on Benchmarking Methodology
|
| 99 |
+
|
| 100 |
+
All benchmarks were re-measured under identical software conditions to ensure fair comparison.
|
| 101 |
+
|
| 102 |
+
- **[VLMEvalKit](https://github.com/open-compass/VLMEvalKit)** was used for MMMU, MathVista, ScienceQA, MIA-Bench, MM-IFEval and MM-OmniAlign.
|
| 103 |
+
|
| 104 |
+
- **[lmms-eval](https://github.com/EvolvingLMMs-Lab/lmms-eval)** was employed for DocVQA, ChartQA, OCRBench, InfoVQA, TextVQA, RealWorldQA, MMStar, MMB, and SEED-image.
|
| 105 |
+
|
| 106 |
+
- HCX-SEED-Vision-3B was evaluated without the use of any auxiliary tools (e.g., external OCR engines or Lens features), as such tools are not publicly available and therefore not included in our evaluation setup.
|
| 107 |
+
|
| 108 |
+
- **Important note for ChartQA**: It was identified that the original rule-based parser used by lmms-eval marked answers ending with a period (".") as incorrect due to parsing issues. To address this, the parser logic was modified to remove any trailing period before parsing the response. All ChartQA evaluations presented here reflect results obtained after applying this parser adjustment.
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
The following in-house benchmarks evaluate Korean-language tasks and Korea-specific knowledge:
|
| 112 |
+
|
| 113 |
+
| Benchmark | Purpose |
|
| 114 |
+
|-----------|---------|
|
| 115 |
+
| **KoOCRBench** | Korean character recognition (OCR) |
|
| 116 |
+
| **KoMMDBench**, **KoEntity**, **KoCelebV2** | Korean knowledge & cultural visual QA |
|
| 117 |
+
| **KoFoodMenu**, **KoCosMed** | Korean text-based visual QA |
|
| 118 |
+
| **KoChartTask** | Chart understanding in Korean |
|
| 119 |
+
| **KoExam**, **KoMathSolution** | Multimodal Problem-solving in Korean (general exams & mathematics) |
|
| 120 |
+
| **MIABench-Ko** | Korean multimodal instruction-following benchmark (derived from MIABench) |
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
## Usage
|
| 125 |
+
|
| 126 |
+
### Requirements
|
| 127 |
+
|
| 128 |
+
```
|
| 129 |
+
pip install transformers accelerate timm omegaconf
|
| 130 |
+
```
|
| 131 |
+
`transformers>=4.45.0` or the latest version is recommended.
|
| 132 |
+
|
| 133 |
+
### Quickstart
|
| 134 |
+
|
| 135 |
+
The following is a code snippet that briefly demonstrates how to load a model and process input data using the `AutoClass` from `transformers`.
|
| 136 |
+
```python
|
| 137 |
+
from PIL import Image
|
| 138 |
+
import torch
|
| 139 |
+
from transformers import AutoModelForVision2Seq, AutoProcessor
|
| 140 |
+
|
| 141 |
+
MODEL = "kakaocorp/kanana-1.5-v-3b-instruct"
|
| 142 |
+
|
| 143 |
+
# Load the model on the available device(s)
|
| 144 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 145 |
+
MODEL,
|
| 146 |
+
torch_dtype=torch.bfloat16,
|
| 147 |
+
device_map="auto",
|
| 148 |
+
trust_remote_code=True
|
| 149 |
+
)
|
| 150 |
+
model.eval()
|
| 151 |
+
|
| 152 |
+
# Load processor
|
| 153 |
+
processor = AutoProcessor.from_pretrained(MODEL, trust_remote_code=True)
|
| 154 |
+
|
| 155 |
+
# Prepare input batch
|
| 156 |
+
batch = []
|
| 157 |
+
for _ in range(1): # dummy loop to demonstrate batch processing
|
| 158 |
+
image_files = [
|
| 159 |
+
"./examples/waybill.png"
|
| 160 |
+
]
|
| 161 |
+
|
| 162 |
+
sample = {
|
| 163 |
+
"image": [Image.open(image_file_path).convert("RGB") for image_file_path in image_files],
|
| 164 |
+
"conv": [
|
| 165 |
+
{"role": "system", "content": "The following is a conversation between a curious human and AI assistant."},
|
| 166 |
+
{"role": "user", "content": " ".join(["<image>"] * len(image_files))},
|
| 167 |
+
{"role": "user", "content": "사진에서 보내는 사람과 받는 사람 정보를 json 형태로 정리해줘."},
|
| 168 |
+
]
|
| 169 |
+
}
|
| 170 |
+
|
| 171 |
+
batch.append(sample)
|
| 172 |
+
|
| 173 |
+
inputs = processor.batch_encode_collate(
|
| 174 |
+
batch, padding_side="left", add_generation_prompt=True, max_length=8192
|
| 175 |
+
)
|
| 176 |
+
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
|
| 177 |
+
|
| 178 |
+
# Set the generation config
|
| 179 |
+
gen_kwargs = {
|
| 180 |
+
"max_new_tokens": 2048,
|
| 181 |
+
"temperature": 0,
|
| 182 |
+
"top_p": 1.0,
|
| 183 |
+
"num_beams": 1,
|
| 184 |
+
"do_sample": False,
|
| 185 |
+
}
|
| 186 |
+
|
| 187 |
+
# Generate text
|
| 188 |
+
gens = model.generate(
|
| 189 |
+
**inputs,
|
| 190 |
+
**gen_kwargs,
|
| 191 |
+
)
|
| 192 |
+
text_outputs = processor.tokenizer.batch_decode(gens, skip_special_tokens=True)
|
| 193 |
+
print(text_outputs) # ['```json\n{\n "보내는분": {\n "성명": "카카오",\n "주소": "경기도 성남시 판교역로 166"\n },\n "받는분": {\n "성명": "카나나",\n "주소": "제주도 제주시 첨단로 242"\n }\n}\n```']
|
| 194 |
+
```
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
## Limitations
|
| 199 |
+
|
| 200 |
+
- The model may generate inaccurate or misleading content, especially in scenarios requiring precise factual understanding (e.g., scientific diagrams or mathematical reasoning).
|
| 201 |
+
- Performance on languages other than Korean and English has not been evaluated and may be poor.
|
| 202 |
+
- The model is not designed for medical, legal, or other high-stakes domains.
|
| 203 |
+
- The model may reflect social biases present in the pretraining data.
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
## Contributors
|
| 208 |
+
- Beomhee Park, Byeonguk Bae, Byungseok Roh, Daejin Jo, Donghee Son, Dongjin Lee, Hyunwoong Ko, Jaemyung Lee, Jeehye Lee, Sunghun Kang, Wooyoung Kang
|
| 209 |
+
- Listed in alphabetical order (first name)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
## Contact
|
| 214 |
+
- Kanana MLLM Core Team Technical Support: [email protected]
|
| 215 |
+
- Business & Partnership Contact: [email protected]
|
| 216 |
+
|
config.json
ADDED
|
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"KananaVForConditionalGeneration"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration.KananaVConfig",
|
| 7 |
+
"AutoModelForVision2Seq": "modeling.KananaVForConditionalGeneration",
|
| 8 |
+
"AutoImageProcessor": "processing_image.KananaVImageProcessor",
|
| 9 |
+
"AutoProcessor": "processing.KananaVProcessor"
|
| 10 |
+
},
|
| 11 |
+
"model_type": "kanana-1.5-v",
|
| 12 |
+
"plora_config": null,
|
| 13 |
+
"projector_config": {
|
| 14 |
+
"_attn_implementation_autoset": false,
|
| 15 |
+
"add_cross_attention": false,
|
| 16 |
+
"architectures": null,
|
| 17 |
+
"bad_words_ids": null,
|
| 18 |
+
"begin_suppress_tokens": null,
|
| 19 |
+
"bos_token_id": null,
|
| 20 |
+
"chunk_size_feed_forward": 0,
|
| 21 |
+
"cross_attention_hidden_size": null,
|
| 22 |
+
"decoder_start_token_id": null,
|
| 23 |
+
"depth": 2,
|
| 24 |
+
"diversity_penalty": 0.0,
|
| 25 |
+
"do_sample": false,
|
| 26 |
+
"early_stopping": false,
|
| 27 |
+
"encoder_hidden_size": 1280,
|
| 28 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 29 |
+
"eos_token_id": null,
|
| 30 |
+
"exponential_decay_length_penalty": null,
|
| 31 |
+
"feature_layer_index": -1,
|
| 32 |
+
"finetuning_task": null,
|
| 33 |
+
"forced_bos_token_id": null,
|
| 34 |
+
"forced_eos_token_id": null,
|
| 35 |
+
"hidden_size": 1024,
|
| 36 |
+
"id2label": {
|
| 37 |
+
"0": "LABEL_0",
|
| 38 |
+
"1": "LABEL_1"
|
| 39 |
+
},
|
| 40 |
+
"is_decoder": false,
|
| 41 |
+
"is_encoder_decoder": false,
|
| 42 |
+
"label2id": {
|
| 43 |
+
"LABEL_0": 0,
|
| 44 |
+
"LABEL_1": 1
|
| 45 |
+
},
|
| 46 |
+
"length_penalty": 1.0,
|
| 47 |
+
"max_length": 20,
|
| 48 |
+
"merge_size": 2,
|
| 49 |
+
"min_length": 0,
|
| 50 |
+
"mlp_depth": 2,
|
| 51 |
+
"model_type": "kanana-1.5-v-visual_projector",
|
| 52 |
+
"no_repeat_ngram_size": 0,
|
| 53 |
+
"num_beam_groups": 1,
|
| 54 |
+
"num_beams": 1,
|
| 55 |
+
"num_eos_tokens": 0,
|
| 56 |
+
"num_return_sequences": 1,
|
| 57 |
+
"output_attentions": false,
|
| 58 |
+
"output_hidden_size": 2048,
|
| 59 |
+
"output_hidden_states": false,
|
| 60 |
+
"output_scores": false,
|
| 61 |
+
"pad_token_id": null,
|
| 62 |
+
"pos_emb": true,
|
| 63 |
+
"pos_emb_size": 576,
|
| 64 |
+
"prefix": null,
|
| 65 |
+
"prenorm": false,
|
| 66 |
+
"problem_type": null,
|
| 67 |
+
"projector_type": "dynamic-c-abs",
|
| 68 |
+
"pruned_heads": {},
|
| 69 |
+
"remove_invalid_values": false,
|
| 70 |
+
"repetition_penalty": 1.0,
|
| 71 |
+
"return_dict": true,
|
| 72 |
+
"return_dict_in_generate": false,
|
| 73 |
+
"sep_token_id": null,
|
| 74 |
+
"suppress_tokens": null,
|
| 75 |
+
"task_specific_params": null,
|
| 76 |
+
"temperature": 1.0,
|
| 77 |
+
"tf_legacy_loss": false,
|
| 78 |
+
"tie_encoder_decoder": false,
|
| 79 |
+
"tie_word_embeddings": true,
|
| 80 |
+
"tokenizer_class": null,
|
| 81 |
+
"top_k": 50,
|
| 82 |
+
"top_p": 1.0,
|
| 83 |
+
"torch_dtype": null,
|
| 84 |
+
"torchscript": false,
|
| 85 |
+
"typical_p": 1.0,
|
| 86 |
+
"use_bfloat16": false
|
| 87 |
+
},
|
| 88 |
+
"text_config": {
|
| 89 |
+
"_name_or_path": "kakaocorp/kanana-1.5-3b-instruct",
|
| 90 |
+
"_attn_implementation_autoset": false,
|
| 91 |
+
"add_cross_attention": false,
|
| 92 |
+
"architectures": [
|
| 93 |
+
"LlamaForCausalLM"
|
| 94 |
+
],
|
| 95 |
+
"attention_bias": false,
|
| 96 |
+
"attention_dropout": 0.0,
|
| 97 |
+
"bad_words_ids": null,
|
| 98 |
+
"begin_suppress_tokens": null,
|
| 99 |
+
"bos_token_id": 128000,
|
| 100 |
+
"chunk_size_feed_forward": 0,
|
| 101 |
+
"cross_attention_hidden_size": null,
|
| 102 |
+
"decoder_start_token_id": null,
|
| 103 |
+
"diversity_penalty": 0.0,
|
| 104 |
+
"do_sample": false,
|
| 105 |
+
"early_stopping": false,
|
| 106 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 107 |
+
"eos_token_id": 128009,
|
| 108 |
+
"exponential_decay_length_penalty": null,
|
| 109 |
+
"finetuning_task": null,
|
| 110 |
+
"forced_bos_token_id": null,
|
| 111 |
+
"forced_eos_token_id": null,
|
| 112 |
+
"head_dim": 128,
|
| 113 |
+
"hidden_act": "silu",
|
| 114 |
+
"hidden_size": 2048,
|
| 115 |
+
"id2label": {
|
| 116 |
+
"0": "LABEL_0",
|
| 117 |
+
"1": "LABEL_1"
|
| 118 |
+
},
|
| 119 |
+
"initializer_range": 0.02,
|
| 120 |
+
"intermediate_size": 9216,
|
| 121 |
+
"is_decoder": false,
|
| 122 |
+
"is_encoder_decoder": false,
|
| 123 |
+
"label2id": {
|
| 124 |
+
"LABEL_0": 0,
|
| 125 |
+
"LABEL_1": 1
|
| 126 |
+
},
|
| 127 |
+
"length_penalty": 1.0,
|
| 128 |
+
"max_length": 20,
|
| 129 |
+
"max_position_embeddings": 32768,
|
| 130 |
+
"min_length": 0,
|
| 131 |
+
"mlp_bias": false,
|
| 132 |
+
"model_type": "kanana-1.5-3b-instruct",
|
| 133 |
+
"no_repeat_ngram_size": 0,
|
| 134 |
+
"num_attention_heads": 32,
|
| 135 |
+
"num_beam_groups": 1,
|
| 136 |
+
"num_beams": 1,
|
| 137 |
+
"num_hidden_layers": 32,
|
| 138 |
+
"num_key_value_heads": 8,
|
| 139 |
+
"num_return_sequences": 1,
|
| 140 |
+
"output_attentions": false,
|
| 141 |
+
"output_hidden_states": false,
|
| 142 |
+
"output_scores": false,
|
| 143 |
+
"pad_token_id": 128001,
|
| 144 |
+
"prefix": null,
|
| 145 |
+
"pretraining_tp": 1,
|
| 146 |
+
"problem_type": null,
|
| 147 |
+
"pruned_heads": {},
|
| 148 |
+
"remove_invalid_values": false,
|
| 149 |
+
"repetition_penalty": 1.0,
|
| 150 |
+
"return_dict": true,
|
| 151 |
+
"return_dict_in_generate": false,
|
| 152 |
+
"rms_norm_eps": 1e-05,
|
| 153 |
+
"rope_scaling": null,
|
| 154 |
+
"rope_theta": 8000000.0,
|
| 155 |
+
"sep_token_id": null,
|
| 156 |
+
"suppress_tokens": null,
|
| 157 |
+
"task_specific_params": null,
|
| 158 |
+
"temperature": 1.0,
|
| 159 |
+
"tf_legacy_loss": false,
|
| 160 |
+
"tie_encoder_decoder": false,
|
| 161 |
+
"tie_word_embeddings": false,
|
| 162 |
+
"tokenizer_class": null,
|
| 163 |
+
"top_k": 50,
|
| 164 |
+
"top_p": 1.0,
|
| 165 |
+
"torch_dtype": "bfloat16",
|
| 166 |
+
"torchscript": false,
|
| 167 |
+
"typical_p": 1.0,
|
| 168 |
+
"use_bfloat16": false,
|
| 169 |
+
"use_cache": false,
|
| 170 |
+
"vocab_size": 128259
|
| 171 |
+
},
|
| 172 |
+
"torch_dtype": "bfloat16",
|
| 173 |
+
"transformers_version": "4.51.3",
|
| 174 |
+
"vision_config": {
|
| 175 |
+
"_attn_implementation_autoset": false,
|
| 176 |
+
"add_cross_attention": false,
|
| 177 |
+
"architectures": null,
|
| 178 |
+
"bad_words_ids": null,
|
| 179 |
+
"begin_suppress_tokens": null,
|
| 180 |
+
"bos_token_id": null,
|
| 181 |
+
"chunk_size_feed_forward": 0,
|
| 182 |
+
"cross_attention_hidden_size": null,
|
| 183 |
+
"decoder_start_token_id": null,
|
| 184 |
+
"depth": 32,
|
| 185 |
+
"diversity_penalty": 0.0,
|
| 186 |
+
"do_sample": false,
|
| 187 |
+
"early_stopping": false,
|
| 188 |
+
"embed_dim": 1280,
|
| 189 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 190 |
+
"encoder_type": "qwen2-vl-ve",
|
| 191 |
+
"eos_token_id": null,
|
| 192 |
+
"exponential_decay_length_penalty": null,
|
| 193 |
+
"finetuning_task": null,
|
| 194 |
+
"forced_bos_token_id": null,
|
| 195 |
+
"forced_eos_token_id": null,
|
| 196 |
+
"hidden_act": "quick_gelu",
|
| 197 |
+
"hidden_size": 1280,
|
| 198 |
+
"id2label": {
|
| 199 |
+
"0": "LABEL_0",
|
| 200 |
+
"1": "LABEL_1"
|
| 201 |
+
},
|
| 202 |
+
"image_mean": [
|
| 203 |
+
0.48145466,
|
| 204 |
+
0.4578275,
|
| 205 |
+
0.40821073
|
| 206 |
+
],
|
| 207 |
+
"image_size": "dynamic",
|
| 208 |
+
"image_std": [
|
| 209 |
+
0.26862954,
|
| 210 |
+
0.26130258,
|
| 211 |
+
0.27577711
|
| 212 |
+
],
|
| 213 |
+
"in_channels": 3,
|
| 214 |
+
"in_chans": 3,
|
| 215 |
+
"initializer_range": 0.02,
|
| 216 |
+
"is_decoder": false,
|
| 217 |
+
"is_encoder_decoder": false,
|
| 218 |
+
"label2id": {
|
| 219 |
+
"LABEL_0": 0,
|
| 220 |
+
"LABEL_1": 1
|
| 221 |
+
},
|
| 222 |
+
"length_penalty": 1.0,
|
| 223 |
+
"max_length": 20,
|
| 224 |
+
"min_length": 0,
|
| 225 |
+
"mlp_ratio": 4,
|
| 226 |
+
"model_type": "kanana-1.5-v-visual-encoder",
|
| 227 |
+
"no_repeat_ngram_size": 0,
|
| 228 |
+
"num_beam_groups": 1,
|
| 229 |
+
"num_beams": 1,
|
| 230 |
+
"num_heads": 16,
|
| 231 |
+
"num_return_sequences": 1,
|
| 232 |
+
"output_attentions": false,
|
| 233 |
+
"output_hidden_states": false,
|
| 234 |
+
"output_scores": false,
|
| 235 |
+
"pad_token_id": null,
|
| 236 |
+
"patch_size": 14,
|
| 237 |
+
"prefix": null,
|
| 238 |
+
"problem_type": null,
|
| 239 |
+
"pruned_heads": {},
|
| 240 |
+
"remove_invalid_values": false,
|
| 241 |
+
"repetition_penalty": 1.0,
|
| 242 |
+
"return_dict": true,
|
| 243 |
+
"return_dict_in_generate": false,
|
| 244 |
+
"sep_token_id": null,
|
| 245 |
+
"spatial_merge_size": 2,
|
| 246 |
+
"spatial_patch_size": 14,
|
| 247 |
+
"suppress_tokens": null,
|
| 248 |
+
"task_specific_params": null,
|
| 249 |
+
"temperature": 1.0,
|
| 250 |
+
"temporal_patch_size": 2,
|
| 251 |
+
"tf_legacy_loss": false,
|
| 252 |
+
"tie_encoder_decoder": false,
|
| 253 |
+
"tie_word_embeddings": true,
|
| 254 |
+
"tokenizer_class": null,
|
| 255 |
+
"top_k": 50,
|
| 256 |
+
"top_p": 1.0,
|
| 257 |
+
"torch_dtype": "bfloat16",
|
| 258 |
+
"torchscript": false,
|
| 259 |
+
"typical_p": 1.0,
|
| 260 |
+
"use_bfloat16": false
|
| 261 |
+
}
|
| 262 |
+
}
|
configuration.py
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
|
| 3 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 4 |
+
from transformers.models.llama.configuration_llama import LlamaConfig
|
| 5 |
+
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
|
| 6 |
+
|
| 7 |
+
logger = logging.getLogger("kanana-1.5-v")
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class KananaVVisionConfig(PretrainedConfig):
|
| 11 |
+
model_type = "kanana-1.5-v-visual-encoder"
|
| 12 |
+
base_config_key = "vision_config"
|
| 13 |
+
|
| 14 |
+
def __init__(
|
| 15 |
+
self,
|
| 16 |
+
depth=32,
|
| 17 |
+
embed_dim=1280,
|
| 18 |
+
mlp_ratio=4,
|
| 19 |
+
num_heads=16,
|
| 20 |
+
in_chans=3,
|
| 21 |
+
hidden_size=1280,
|
| 22 |
+
patch_size=14,
|
| 23 |
+
spatial_merge_size=2,
|
| 24 |
+
spatial_patch_size=14,
|
| 25 |
+
temporal_patch_size=2,
|
| 26 |
+
initializer_range=0.02,
|
| 27 |
+
image_size="dynamic",
|
| 28 |
+
image_mean=OPENAI_CLIP_MEAN,
|
| 29 |
+
image_std=OPENAI_CLIP_STD,
|
| 30 |
+
**kwargs,
|
| 31 |
+
):
|
| 32 |
+
super().__init__(**kwargs)
|
| 33 |
+
|
| 34 |
+
self.depth = depth
|
| 35 |
+
self.embed_dim = embed_dim
|
| 36 |
+
self.mlp_ratio = mlp_ratio
|
| 37 |
+
self.num_heads = num_heads
|
| 38 |
+
self.in_chans = in_chans
|
| 39 |
+
self.hidden_size = hidden_size
|
| 40 |
+
self.patch_size = patch_size
|
| 41 |
+
self.spatial_merge_size = spatial_merge_size
|
| 42 |
+
self.spatial_patch_size = spatial_patch_size
|
| 43 |
+
self.temporal_patch_size = temporal_patch_size
|
| 44 |
+
self.initializer_range = initializer_range
|
| 45 |
+
self.image_size = image_size
|
| 46 |
+
self.image_mean = image_mean
|
| 47 |
+
self.image_std = image_std
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
class KananaVVisualProjectorConfig(PretrainedConfig):
|
| 51 |
+
model_type = "kanana-1.5-v-visual_projector"
|
| 52 |
+
base_config_key = "projector_config"
|
| 53 |
+
|
| 54 |
+
def __init__(
|
| 55 |
+
self,
|
| 56 |
+
depth=2,
|
| 57 |
+
encoder_hidden_size=1280,
|
| 58 |
+
feature_layer_index=-1,
|
| 59 |
+
hidden_size=1024,
|
| 60 |
+
merge_size=2,
|
| 61 |
+
mlp_depth=2,
|
| 62 |
+
num_eos_tokens=0,
|
| 63 |
+
output_hidden_size=2048,
|
| 64 |
+
pos_emb=True,
|
| 65 |
+
pos_emb_size=576,
|
| 66 |
+
prenorm=False,
|
| 67 |
+
projector_type="dynamic-c-abs",
|
| 68 |
+
**kwargs,
|
| 69 |
+
):
|
| 70 |
+
super().__init__(**kwargs)
|
| 71 |
+
|
| 72 |
+
self.depth = depth
|
| 73 |
+
self.encoder_hidden_size = encoder_hidden_size
|
| 74 |
+
self.feature_layer_index = feature_layer_index
|
| 75 |
+
self.hidden_size = hidden_size
|
| 76 |
+
self.merge_size = merge_size
|
| 77 |
+
self.mlp_depth = mlp_depth
|
| 78 |
+
self.num_eos_tokens = num_eos_tokens
|
| 79 |
+
self.output_hidden_size = output_hidden_size
|
| 80 |
+
self.pos_emb = pos_emb
|
| 81 |
+
self.pos_emb_size = pos_emb_size
|
| 82 |
+
self.prenorm = prenorm
|
| 83 |
+
self.projector_type = projector_type
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class KananaLanguageConfig(LlamaConfig):
|
| 87 |
+
model_type = "kanana-1.5-3b-instruct"
|
| 88 |
+
base_config_key = "text_config"
|
| 89 |
+
|
| 90 |
+
def __init__(
|
| 91 |
+
self,
|
| 92 |
+
**kwargs,
|
| 93 |
+
):
|
| 94 |
+
super().__init__(**kwargs)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
class KananaVConfig(PretrainedConfig):
|
| 98 |
+
model_type = "kanana-1.5-v"
|
| 99 |
+
is_composition = True
|
| 100 |
+
|
| 101 |
+
def __init__(
|
| 102 |
+
self,
|
| 103 |
+
vision_config: dict = {},
|
| 104 |
+
projector_config: dict = {},
|
| 105 |
+
text_config: dict = {},
|
| 106 |
+
**kwargs,
|
| 107 |
+
):
|
| 108 |
+
super().__init__(**kwargs)
|
| 109 |
+
|
| 110 |
+
# Vision config
|
| 111 |
+
self.vision_config = KananaVVisionConfig(**vision_config)
|
| 112 |
+
|
| 113 |
+
# Visual projector config
|
| 114 |
+
self.projector_config = KananaVVisualProjectorConfig(**projector_config)
|
| 115 |
+
|
| 116 |
+
# Language model config
|
| 117 |
+
self.text_config = KananaLanguageConfig(**text_config)
|
| 118 |
+
|
| 119 |
+
@property
|
| 120 |
+
def num_visual_tokens(self):
|
| 121 |
+
return "dynamic"
|
| 122 |
+
|
| 123 |
+
@property
|
| 124 |
+
def hidden_size(self):
|
| 125 |
+
return self.text_config.hidden_size
|
examples/waybill.png
ADDED
|
Git LFS Details
|
generation_config.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 128000,
|
| 4 |
+
"eos_token_id": 128009,
|
| 5 |
+
"pad_token_id": 128001,
|
| 6 |
+
"transformers_version": "4.51.3",
|
| 7 |
+
"use_cache": false
|
| 8 |
+
}
|
model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:94272a33a98c25bdd9d646f82c13d1cfeae654e7dd9780cef9ff259799621577
|
| 3 |
+
size 4990094968
|
model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:90eac19b6578027e8271c0712f7c14a9b2ee0705633a022aa22d31b7b02746cb
|
| 3 |
+
size 2345793064
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,746 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 7335800448
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"abstractor.net.0.b1.conv1.bn.bias": "model-00001-of-00002.safetensors",
|
| 7 |
+
"abstractor.net.0.b1.conv1.bn.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"abstractor.net.0.b1.conv1.conv.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"abstractor.net.0.b1.conv2.bn.bias": "model-00001-of-00002.safetensors",
|
| 10 |
+
"abstractor.net.0.b1.conv2.bn.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"abstractor.net.0.b1.conv2.conv.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"abstractor.net.0.b1.conv3.bn.bias": "model-00001-of-00002.safetensors",
|
| 13 |
+
"abstractor.net.0.b1.conv3.bn.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"abstractor.net.0.b1.conv3.conv.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"abstractor.net.0.b1.downsample.bn.bias": "model-00001-of-00002.safetensors",
|
| 16 |
+
"abstractor.net.0.b1.downsample.bn.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"abstractor.net.0.b1.downsample.conv.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"abstractor.net.0.b1.se.fc1.bias": "model-00001-of-00002.safetensors",
|
| 19 |
+
"abstractor.net.0.b1.se.fc1.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"abstractor.net.0.b1.se.fc2.bias": "model-00001-of-00002.safetensors",
|
| 21 |
+
"abstractor.net.0.b1.se.fc2.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"abstractor.net.0.b2.conv1.bn.bias": "model-00001-of-00002.safetensors",
|
| 23 |
+
"abstractor.net.0.b2.conv1.bn.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"abstractor.net.0.b2.conv1.conv.weight": "model-00001-of-00002.safetensors",
|
| 25 |
+
"abstractor.net.0.b2.conv2.bn.bias": "model-00001-of-00002.safetensors",
|
| 26 |
+
"abstractor.net.0.b2.conv2.bn.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"abstractor.net.0.b2.conv2.conv.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"abstractor.net.0.b2.conv3.bn.bias": "model-00001-of-00002.safetensors",
|
| 29 |
+
"abstractor.net.0.b2.conv3.bn.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"abstractor.net.0.b2.conv3.conv.weight": "model-00001-of-00002.safetensors",
|
| 31 |
+
"abstractor.net.0.b2.se.fc1.bias": "model-00001-of-00002.safetensors",
|
| 32 |
+
"abstractor.net.0.b2.se.fc1.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"abstractor.net.0.b2.se.fc2.bias": "model-00001-of-00002.safetensors",
|
| 34 |
+
"abstractor.net.0.b2.se.fc2.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"abstractor.net.2.b1.conv1.bn.bias": "model-00001-of-00002.safetensors",
|
| 36 |
+
"abstractor.net.2.b1.conv1.bn.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"abstractor.net.2.b1.conv1.conv.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"abstractor.net.2.b1.conv2.bn.bias": "model-00001-of-00002.safetensors",
|
| 39 |
+
"abstractor.net.2.b1.conv2.bn.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"abstractor.net.2.b1.conv2.conv.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"abstractor.net.2.b1.conv3.bn.bias": "model-00001-of-00002.safetensors",
|
| 42 |
+
"abstractor.net.2.b1.conv3.bn.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"abstractor.net.2.b1.conv3.conv.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"abstractor.net.2.b1.downsample.bn.bias": "model-00001-of-00002.safetensors",
|
| 45 |
+
"abstractor.net.2.b1.downsample.bn.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"abstractor.net.2.b1.downsample.conv.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"abstractor.net.2.b1.se.fc1.bias": "model-00001-of-00002.safetensors",
|
| 48 |
+
"abstractor.net.2.b1.se.fc1.weight": "model-00001-of-00002.safetensors",
|
| 49 |
+
"abstractor.net.2.b1.se.fc2.bias": "model-00001-of-00002.safetensors",
|
| 50 |
+
"abstractor.net.2.b1.se.fc2.weight": "model-00001-of-00002.safetensors",
|
| 51 |
+
"abstractor.net.2.b2.conv1.bn.bias": "model-00001-of-00002.safetensors",
|
| 52 |
+
"abstractor.net.2.b2.conv1.bn.weight": "model-00001-of-00002.safetensors",
|
| 53 |
+
"abstractor.net.2.b2.conv1.conv.weight": "model-00001-of-00002.safetensors",
|
| 54 |
+
"abstractor.net.2.b2.conv2.bn.bias": "model-00001-of-00002.safetensors",
|
| 55 |
+
"abstractor.net.2.b2.conv2.bn.weight": "model-00001-of-00002.safetensors",
|
| 56 |
+
"abstractor.net.2.b2.conv2.conv.weight": "model-00001-of-00002.safetensors",
|
| 57 |
+
"abstractor.net.2.b2.conv3.bn.bias": "model-00001-of-00002.safetensors",
|
| 58 |
+
"abstractor.net.2.b2.conv3.bn.weight": "model-00001-of-00002.safetensors",
|
| 59 |
+
"abstractor.net.2.b2.conv3.conv.weight": "model-00001-of-00002.safetensors",
|
| 60 |
+
"abstractor.net.2.b2.se.fc1.bias": "model-00001-of-00002.safetensors",
|
| 61 |
+
"abstractor.net.2.b2.se.fc1.weight": "model-00001-of-00002.safetensors",
|
| 62 |
+
"abstractor.net.2.b2.se.fc2.bias": "model-00001-of-00002.safetensors",
|
| 63 |
+
"abstractor.net.2.b2.se.fc2.weight": "model-00001-of-00002.safetensors",
|
| 64 |
+
"abstractor.pos_emb": "model-00001-of-00002.safetensors",
|
| 65 |
+
"abstractor.readout.0.bias": "model-00001-of-00002.safetensors",
|
| 66 |
+
"abstractor.readout.0.weight": "model-00001-of-00002.safetensors",
|
| 67 |
+
"abstractor.readout.2.bias": "model-00001-of-00002.safetensors",
|
| 68 |
+
"abstractor.readout.2.weight": "model-00001-of-00002.safetensors",
|
| 69 |
+
"language_model.lm_head.weight": "model-00002-of-00002.safetensors",
|
| 70 |
+
"language_model.model.embed_tokens.weight": "model-00001-of-00002.safetensors",
|
| 71 |
+
"language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 72 |
+
"language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 73 |
+
"language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 74 |
+
"language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 75 |
+
"language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 76 |
+
"language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 77 |
+
"language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 78 |
+
"language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 79 |
+
"language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 80 |
+
"language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 81 |
+
"language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 82 |
+
"language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 83 |
+
"language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 84 |
+
"language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 85 |
+
"language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 86 |
+
"language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 87 |
+
"language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 88 |
+
"language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 89 |
+
"language_model.model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 90 |
+
"language_model.model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 91 |
+
"language_model.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 92 |
+
"language_model.model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 93 |
+
"language_model.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 94 |
+
"language_model.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 95 |
+
"language_model.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 96 |
+
"language_model.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 97 |
+
"language_model.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 98 |
+
"language_model.model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 99 |
+
"language_model.model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 100 |
+
"language_model.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 101 |
+
"language_model.model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 102 |
+
"language_model.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 103 |
+
"language_model.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 104 |
+
"language_model.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 105 |
+
"language_model.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 106 |
+
"language_model.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 107 |
+
"language_model.model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 108 |
+
"language_model.model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 109 |
+
"language_model.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 110 |
+
"language_model.model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 111 |
+
"language_model.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 112 |
+
"language_model.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 113 |
+
"language_model.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 114 |
+
"language_model.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 115 |
+
"language_model.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 116 |
+
"language_model.model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 117 |
+
"language_model.model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 118 |
+
"language_model.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 119 |
+
"language_model.model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 120 |
+
"language_model.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 121 |
+
"language_model.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 122 |
+
"language_model.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 123 |
+
"language_model.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 124 |
+
"language_model.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 125 |
+
"language_model.model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 126 |
+
"language_model.model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 127 |
+
"language_model.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 128 |
+
"language_model.model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 129 |
+
"language_model.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 130 |
+
"language_model.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 131 |
+
"language_model.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 132 |
+
"language_model.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 133 |
+
"language_model.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 134 |
+
"language_model.model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 135 |
+
"language_model.model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 136 |
+
"language_model.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 137 |
+
"language_model.model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 138 |
+
"language_model.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 139 |
+
"language_model.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 140 |
+
"language_model.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 141 |
+
"language_model.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 142 |
+
"language_model.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 143 |
+
"language_model.model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 144 |
+
"language_model.model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 145 |
+
"language_model.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 146 |
+
"language_model.model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 147 |
+
"language_model.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 148 |
+
"language_model.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 149 |
+
"language_model.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 150 |
+
"language_model.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 151 |
+
"language_model.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 152 |
+
"language_model.model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 153 |
+
"language_model.model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 154 |
+
"language_model.model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 155 |
+
"language_model.model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 156 |
+
"language_model.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 157 |
+
"language_model.model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 158 |
+
"language_model.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 159 |
+
"language_model.model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 160 |
+
"language_model.model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 161 |
+
"language_model.model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 162 |
+
"language_model.model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 163 |
+
"language_model.model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 164 |
+
"language_model.model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 165 |
+
"language_model.model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 166 |
+
"language_model.model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 167 |
+
"language_model.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"language_model.model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 169 |
+
"language_model.model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 170 |
+
"language_model.model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 171 |
+
"language_model.model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 172 |
+
"language_model.model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 173 |
+
"language_model.model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 174 |
+
"language_model.model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 175 |
+
"language_model.model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 176 |
+
"language_model.model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 177 |
+
"language_model.model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 178 |
+
"language_model.model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 179 |
+
"language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 180 |
+
"language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 181 |
+
"language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 182 |
+
"language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 183 |
+
"language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 184 |
+
"language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 185 |
+
"language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 186 |
+
"language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 187 |
+
"language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 188 |
+
"language_model.model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 189 |
+
"language_model.model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 190 |
+
"language_model.model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 191 |
+
"language_model.model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 192 |
+
"language_model.model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 193 |
+
"language_model.model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 194 |
+
"language_model.model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 195 |
+
"language_model.model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 196 |
+
"language_model.model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 197 |
+
"language_model.model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 198 |
+
"language_model.model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 199 |
+
"language_model.model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 200 |
+
"language_model.model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 201 |
+
"language_model.model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 202 |
+
"language_model.model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 203 |
+
"language_model.model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 204 |
+
"language_model.model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 205 |
+
"language_model.model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 206 |
+
"language_model.model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 207 |
+
"language_model.model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 208 |
+
"language_model.model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 209 |
+
"language_model.model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 210 |
+
"language_model.model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 211 |
+
"language_model.model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 212 |
+
"language_model.model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 213 |
+
"language_model.model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 214 |
+
"language_model.model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 215 |
+
"language_model.model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 216 |
+
"language_model.model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 217 |
+
"language_model.model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 218 |
+
"language_model.model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 219 |
+
"language_model.model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 220 |
+
"language_model.model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 221 |
+
"language_model.model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 222 |
+
"language_model.model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 223 |
+
"language_model.model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 224 |
+
"language_model.model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 225 |
+
"language_model.model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 226 |
+
"language_model.model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 227 |
+
"language_model.model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 228 |
+
"language_model.model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 229 |
+
"language_model.model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 230 |
+
"language_model.model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 231 |
+
"language_model.model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 232 |
+
"language_model.model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 233 |
+
"language_model.model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 234 |
+
"language_model.model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 235 |
+
"language_model.model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 236 |
+
"language_model.model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 237 |
+
"language_model.model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 238 |
+
"language_model.model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 239 |
+
"language_model.model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 240 |
+
"language_model.model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 241 |
+
"language_model.model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 242 |
+
"language_model.model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 243 |
+
"language_model.model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 244 |
+
"language_model.model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 245 |
+
"language_model.model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 246 |
+
"language_model.model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 247 |
+
"language_model.model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 248 |
+
"language_model.model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 249 |
+
"language_model.model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 250 |
+
"language_model.model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 251 |
+
"language_model.model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 252 |
+
"language_model.model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 253 |
+
"language_model.model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 254 |
+
"language_model.model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 255 |
+
"language_model.model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 256 |
+
"language_model.model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 257 |
+
"language_model.model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 258 |
+
"language_model.model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 259 |
+
"language_model.model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 260 |
+
"language_model.model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 261 |
+
"language_model.model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 262 |
+
"language_model.model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 263 |
+
"language_model.model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 264 |
+
"language_model.model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 265 |
+
"language_model.model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 266 |
+
"language_model.model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 267 |
+
"language_model.model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 268 |
+
"language_model.model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 269 |
+
"language_model.model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 270 |
+
"language_model.model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 271 |
+
"language_model.model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 272 |
+
"language_model.model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 273 |
+
"language_model.model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 274 |
+
"language_model.model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 275 |
+
"language_model.model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 276 |
+
"language_model.model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 277 |
+
"language_model.model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 278 |
+
"language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 279 |
+
"language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 280 |
+
"language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 281 |
+
"language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 282 |
+
"language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 283 |
+
"language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 284 |
+
"language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 285 |
+
"language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 286 |
+
"language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 287 |
+
"language_model.model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 288 |
+
"language_model.model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 289 |
+
"language_model.model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 290 |
+
"language_model.model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 291 |
+
"language_model.model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 292 |
+
"language_model.model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 293 |
+
"language_model.model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 294 |
+
"language_model.model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 295 |
+
"language_model.model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 296 |
+
"language_model.model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 297 |
+
"language_model.model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
|
| 298 |
+
"language_model.model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
|
| 299 |
+
"language_model.model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
|
| 300 |
+
"language_model.model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
|
| 301 |
+
"language_model.model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
|
| 302 |
+
"language_model.model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
|
| 303 |
+
"language_model.model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
|
| 304 |
+
"language_model.model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
|
| 305 |
+
"language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 306 |
+
"language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 307 |
+
"language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 308 |
+
"language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 309 |
+
"language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 310 |
+
"language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 311 |
+
"language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 312 |
+
"language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 313 |
+
"language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 314 |
+
"language_model.model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 315 |
+
"language_model.model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 316 |
+
"language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 317 |
+
"language_model.model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 318 |
+
"language_model.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 319 |
+
"language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 320 |
+
"language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 321 |
+
"language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 322 |
+
"language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 323 |
+
"language_model.model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 324 |
+
"language_model.model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 325 |
+
"language_model.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 326 |
+
"language_model.model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 327 |
+
"language_model.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 328 |
+
"language_model.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 329 |
+
"language_model.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 330 |
+
"language_model.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 331 |
+
"language_model.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 332 |
+
"language_model.model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 333 |
+
"language_model.model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 334 |
+
"language_model.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 335 |
+
"language_model.model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 336 |
+
"language_model.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 337 |
+
"language_model.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 338 |
+
"language_model.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 339 |
+
"language_model.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 340 |
+
"language_model.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 341 |
+
"language_model.model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 342 |
+
"language_model.model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 343 |
+
"language_model.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 344 |
+
"language_model.model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 345 |
+
"language_model.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 346 |
+
"language_model.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 347 |
+
"language_model.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 348 |
+
"language_model.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 349 |
+
"language_model.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 350 |
+
"language_model.model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 351 |
+
"language_model.model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
|
| 352 |
+
"language_model.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
|
| 353 |
+
"language_model.model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
|
| 354 |
+
"language_model.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
|
| 355 |
+
"language_model.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
|
| 356 |
+
"language_model.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
|
| 357 |
+
"language_model.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
|
| 358 |
+
"language_model.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
|
| 359 |
+
"language_model.model.norm.weight": "model-00002-of-00002.safetensors",
|
| 360 |
+
"vision_model.blocks.0.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 361 |
+
"vision_model.blocks.0.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 362 |
+
"vision_model.blocks.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 363 |
+
"vision_model.blocks.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 364 |
+
"vision_model.blocks.0.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 365 |
+
"vision_model.blocks.0.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 366 |
+
"vision_model.blocks.0.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 367 |
+
"vision_model.blocks.0.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 368 |
+
"vision_model.blocks.0.norm1.bias": "model-00001-of-00002.safetensors",
|
| 369 |
+
"vision_model.blocks.0.norm1.weight": "model-00001-of-00002.safetensors",
|
| 370 |
+
"vision_model.blocks.0.norm2.bias": "model-00001-of-00002.safetensors",
|
| 371 |
+
"vision_model.blocks.0.norm2.weight": "model-00001-of-00002.safetensors",
|
| 372 |
+
"vision_model.blocks.1.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 373 |
+
"vision_model.blocks.1.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 374 |
+
"vision_model.blocks.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 375 |
+
"vision_model.blocks.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 376 |
+
"vision_model.blocks.1.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 377 |
+
"vision_model.blocks.1.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 378 |
+
"vision_model.blocks.1.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 379 |
+
"vision_model.blocks.1.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 380 |
+
"vision_model.blocks.1.norm1.bias": "model-00001-of-00002.safetensors",
|
| 381 |
+
"vision_model.blocks.1.norm1.weight": "model-00001-of-00002.safetensors",
|
| 382 |
+
"vision_model.blocks.1.norm2.bias": "model-00001-of-00002.safetensors",
|
| 383 |
+
"vision_model.blocks.1.norm2.weight": "model-00001-of-00002.safetensors",
|
| 384 |
+
"vision_model.blocks.10.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 385 |
+
"vision_model.blocks.10.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 386 |
+
"vision_model.blocks.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 387 |
+
"vision_model.blocks.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 388 |
+
"vision_model.blocks.10.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 389 |
+
"vision_model.blocks.10.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 390 |
+
"vision_model.blocks.10.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 391 |
+
"vision_model.blocks.10.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 392 |
+
"vision_model.blocks.10.norm1.bias": "model-00001-of-00002.safetensors",
|
| 393 |
+
"vision_model.blocks.10.norm1.weight": "model-00001-of-00002.safetensors",
|
| 394 |
+
"vision_model.blocks.10.norm2.bias": "model-00001-of-00002.safetensors",
|
| 395 |
+
"vision_model.blocks.10.norm2.weight": "model-00001-of-00002.safetensors",
|
| 396 |
+
"vision_model.blocks.11.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 397 |
+
"vision_model.blocks.11.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 398 |
+
"vision_model.blocks.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 399 |
+
"vision_model.blocks.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 400 |
+
"vision_model.blocks.11.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 401 |
+
"vision_model.blocks.11.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 402 |
+
"vision_model.blocks.11.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 403 |
+
"vision_model.blocks.11.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 404 |
+
"vision_model.blocks.11.norm1.bias": "model-00001-of-00002.safetensors",
|
| 405 |
+
"vision_model.blocks.11.norm1.weight": "model-00001-of-00002.safetensors",
|
| 406 |
+
"vision_model.blocks.11.norm2.bias": "model-00001-of-00002.safetensors",
|
| 407 |
+
"vision_model.blocks.11.norm2.weight": "model-00001-of-00002.safetensors",
|
| 408 |
+
"vision_model.blocks.12.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 409 |
+
"vision_model.blocks.12.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 410 |
+
"vision_model.blocks.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 411 |
+
"vision_model.blocks.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 412 |
+
"vision_model.blocks.12.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 413 |
+
"vision_model.blocks.12.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 414 |
+
"vision_model.blocks.12.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 415 |
+
"vision_model.blocks.12.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 416 |
+
"vision_model.blocks.12.norm1.bias": "model-00001-of-00002.safetensors",
|
| 417 |
+
"vision_model.blocks.12.norm1.weight": "model-00001-of-00002.safetensors",
|
| 418 |
+
"vision_model.blocks.12.norm2.bias": "model-00001-of-00002.safetensors",
|
| 419 |
+
"vision_model.blocks.12.norm2.weight": "model-00001-of-00002.safetensors",
|
| 420 |
+
"vision_model.blocks.13.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 421 |
+
"vision_model.blocks.13.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 422 |
+
"vision_model.blocks.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 423 |
+
"vision_model.blocks.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 424 |
+
"vision_model.blocks.13.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 425 |
+
"vision_model.blocks.13.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 426 |
+
"vision_model.blocks.13.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 427 |
+
"vision_model.blocks.13.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 428 |
+
"vision_model.blocks.13.norm1.bias": "model-00001-of-00002.safetensors",
|
| 429 |
+
"vision_model.blocks.13.norm1.weight": "model-00001-of-00002.safetensors",
|
| 430 |
+
"vision_model.blocks.13.norm2.bias": "model-00001-of-00002.safetensors",
|
| 431 |
+
"vision_model.blocks.13.norm2.weight": "model-00001-of-00002.safetensors",
|
| 432 |
+
"vision_model.blocks.14.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 433 |
+
"vision_model.blocks.14.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 434 |
+
"vision_model.blocks.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 435 |
+
"vision_model.blocks.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 436 |
+
"vision_model.blocks.14.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 437 |
+
"vision_model.blocks.14.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 438 |
+
"vision_model.blocks.14.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 439 |
+
"vision_model.blocks.14.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 440 |
+
"vision_model.blocks.14.norm1.bias": "model-00001-of-00002.safetensors",
|
| 441 |
+
"vision_model.blocks.14.norm1.weight": "model-00001-of-00002.safetensors",
|
| 442 |
+
"vision_model.blocks.14.norm2.bias": "model-00001-of-00002.safetensors",
|
| 443 |
+
"vision_model.blocks.14.norm2.weight": "model-00001-of-00002.safetensors",
|
| 444 |
+
"vision_model.blocks.15.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 445 |
+
"vision_model.blocks.15.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 446 |
+
"vision_model.blocks.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 447 |
+
"vision_model.blocks.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 448 |
+
"vision_model.blocks.15.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 449 |
+
"vision_model.blocks.15.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 450 |
+
"vision_model.blocks.15.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 451 |
+
"vision_model.blocks.15.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 452 |
+
"vision_model.blocks.15.norm1.bias": "model-00001-of-00002.safetensors",
|
| 453 |
+
"vision_model.blocks.15.norm1.weight": "model-00001-of-00002.safetensors",
|
| 454 |
+
"vision_model.blocks.15.norm2.bias": "model-00001-of-00002.safetensors",
|
| 455 |
+
"vision_model.blocks.15.norm2.weight": "model-00001-of-00002.safetensors",
|
| 456 |
+
"vision_model.blocks.16.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 457 |
+
"vision_model.blocks.16.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 458 |
+
"vision_model.blocks.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 459 |
+
"vision_model.blocks.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 460 |
+
"vision_model.blocks.16.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 461 |
+
"vision_model.blocks.16.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 462 |
+
"vision_model.blocks.16.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 463 |
+
"vision_model.blocks.16.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 464 |
+
"vision_model.blocks.16.norm1.bias": "model-00001-of-00002.safetensors",
|
| 465 |
+
"vision_model.blocks.16.norm1.weight": "model-00001-of-00002.safetensors",
|
| 466 |
+
"vision_model.blocks.16.norm2.bias": "model-00001-of-00002.safetensors",
|
| 467 |
+
"vision_model.blocks.16.norm2.weight": "model-00001-of-00002.safetensors",
|
| 468 |
+
"vision_model.blocks.17.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 469 |
+
"vision_model.blocks.17.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 470 |
+
"vision_model.blocks.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 471 |
+
"vision_model.blocks.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 472 |
+
"vision_model.blocks.17.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 473 |
+
"vision_model.blocks.17.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 474 |
+
"vision_model.blocks.17.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 475 |
+
"vision_model.blocks.17.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 476 |
+
"vision_model.blocks.17.norm1.bias": "model-00001-of-00002.safetensors",
|
| 477 |
+
"vision_model.blocks.17.norm1.weight": "model-00001-of-00002.safetensors",
|
| 478 |
+
"vision_model.blocks.17.norm2.bias": "model-00001-of-00002.safetensors",
|
| 479 |
+
"vision_model.blocks.17.norm2.weight": "model-00001-of-00002.safetensors",
|
| 480 |
+
"vision_model.blocks.18.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 481 |
+
"vision_model.blocks.18.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 482 |
+
"vision_model.blocks.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 483 |
+
"vision_model.blocks.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 484 |
+
"vision_model.blocks.18.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 485 |
+
"vision_model.blocks.18.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 486 |
+
"vision_model.blocks.18.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 487 |
+
"vision_model.blocks.18.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 488 |
+
"vision_model.blocks.18.norm1.bias": "model-00001-of-00002.safetensors",
|
| 489 |
+
"vision_model.blocks.18.norm1.weight": "model-00001-of-00002.safetensors",
|
| 490 |
+
"vision_model.blocks.18.norm2.bias": "model-00001-of-00002.safetensors",
|
| 491 |
+
"vision_model.blocks.18.norm2.weight": "model-00001-of-00002.safetensors",
|
| 492 |
+
"vision_model.blocks.19.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 493 |
+
"vision_model.blocks.19.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 494 |
+
"vision_model.blocks.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 495 |
+
"vision_model.blocks.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 496 |
+
"vision_model.blocks.19.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 497 |
+
"vision_model.blocks.19.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 498 |
+
"vision_model.blocks.19.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 499 |
+
"vision_model.blocks.19.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 500 |
+
"vision_model.blocks.19.norm1.bias": "model-00001-of-00002.safetensors",
|
| 501 |
+
"vision_model.blocks.19.norm1.weight": "model-00001-of-00002.safetensors",
|
| 502 |
+
"vision_model.blocks.19.norm2.bias": "model-00001-of-00002.safetensors",
|
| 503 |
+
"vision_model.blocks.19.norm2.weight": "model-00001-of-00002.safetensors",
|
| 504 |
+
"vision_model.blocks.2.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 505 |
+
"vision_model.blocks.2.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 506 |
+
"vision_model.blocks.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 507 |
+
"vision_model.blocks.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 508 |
+
"vision_model.blocks.2.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 509 |
+
"vision_model.blocks.2.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 510 |
+
"vision_model.blocks.2.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 511 |
+
"vision_model.blocks.2.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 512 |
+
"vision_model.blocks.2.norm1.bias": "model-00001-of-00002.safetensors",
|
| 513 |
+
"vision_model.blocks.2.norm1.weight": "model-00001-of-00002.safetensors",
|
| 514 |
+
"vision_model.blocks.2.norm2.bias": "model-00001-of-00002.safetensors",
|
| 515 |
+
"vision_model.blocks.2.norm2.weight": "model-00001-of-00002.safetensors",
|
| 516 |
+
"vision_model.blocks.20.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 517 |
+
"vision_model.blocks.20.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 518 |
+
"vision_model.blocks.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 519 |
+
"vision_model.blocks.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 520 |
+
"vision_model.blocks.20.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 521 |
+
"vision_model.blocks.20.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 522 |
+
"vision_model.blocks.20.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 523 |
+
"vision_model.blocks.20.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 524 |
+
"vision_model.blocks.20.norm1.bias": "model-00001-of-00002.safetensors",
|
| 525 |
+
"vision_model.blocks.20.norm1.weight": "model-00001-of-00002.safetensors",
|
| 526 |
+
"vision_model.blocks.20.norm2.bias": "model-00001-of-00002.safetensors",
|
| 527 |
+
"vision_model.blocks.20.norm2.weight": "model-00001-of-00002.safetensors",
|
| 528 |
+
"vision_model.blocks.21.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 529 |
+
"vision_model.blocks.21.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 530 |
+
"vision_model.blocks.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 531 |
+
"vision_model.blocks.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 532 |
+
"vision_model.blocks.21.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 533 |
+
"vision_model.blocks.21.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 534 |
+
"vision_model.blocks.21.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 535 |
+
"vision_model.blocks.21.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 536 |
+
"vision_model.blocks.21.norm1.bias": "model-00001-of-00002.safetensors",
|
| 537 |
+
"vision_model.blocks.21.norm1.weight": "model-00001-of-00002.safetensors",
|
| 538 |
+
"vision_model.blocks.21.norm2.bias": "model-00001-of-00002.safetensors",
|
| 539 |
+
"vision_model.blocks.21.norm2.weight": "model-00001-of-00002.safetensors",
|
| 540 |
+
"vision_model.blocks.22.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 541 |
+
"vision_model.blocks.22.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 542 |
+
"vision_model.blocks.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 543 |
+
"vision_model.blocks.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 544 |
+
"vision_model.blocks.22.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 545 |
+
"vision_model.blocks.22.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 546 |
+
"vision_model.blocks.22.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 547 |
+
"vision_model.blocks.22.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 548 |
+
"vision_model.blocks.22.norm1.bias": "model-00001-of-00002.safetensors",
|
| 549 |
+
"vision_model.blocks.22.norm1.weight": "model-00001-of-00002.safetensors",
|
| 550 |
+
"vision_model.blocks.22.norm2.bias": "model-00001-of-00002.safetensors",
|
| 551 |
+
"vision_model.blocks.22.norm2.weight": "model-00001-of-00002.safetensors",
|
| 552 |
+
"vision_model.blocks.23.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 553 |
+
"vision_model.blocks.23.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 554 |
+
"vision_model.blocks.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 555 |
+
"vision_model.blocks.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 556 |
+
"vision_model.blocks.23.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 557 |
+
"vision_model.blocks.23.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 558 |
+
"vision_model.blocks.23.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 559 |
+
"vision_model.blocks.23.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 560 |
+
"vision_model.blocks.23.norm1.bias": "model-00001-of-00002.safetensors",
|
| 561 |
+
"vision_model.blocks.23.norm1.weight": "model-00001-of-00002.safetensors",
|
| 562 |
+
"vision_model.blocks.23.norm2.bias": "model-00001-of-00002.safetensors",
|
| 563 |
+
"vision_model.blocks.23.norm2.weight": "model-00001-of-00002.safetensors",
|
| 564 |
+
"vision_model.blocks.24.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 565 |
+
"vision_model.blocks.24.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 566 |
+
"vision_model.blocks.24.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 567 |
+
"vision_model.blocks.24.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 568 |
+
"vision_model.blocks.24.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 569 |
+
"vision_model.blocks.24.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 570 |
+
"vision_model.blocks.24.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 571 |
+
"vision_model.blocks.24.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 572 |
+
"vision_model.blocks.24.norm1.bias": "model-00001-of-00002.safetensors",
|
| 573 |
+
"vision_model.blocks.24.norm1.weight": "model-00001-of-00002.safetensors",
|
| 574 |
+
"vision_model.blocks.24.norm2.bias": "model-00001-of-00002.safetensors",
|
| 575 |
+
"vision_model.blocks.24.norm2.weight": "model-00001-of-00002.safetensors",
|
| 576 |
+
"vision_model.blocks.25.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 577 |
+
"vision_model.blocks.25.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 578 |
+
"vision_model.blocks.25.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 579 |
+
"vision_model.blocks.25.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 580 |
+
"vision_model.blocks.25.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 581 |
+
"vision_model.blocks.25.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 582 |
+
"vision_model.blocks.25.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 583 |
+
"vision_model.blocks.25.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 584 |
+
"vision_model.blocks.25.norm1.bias": "model-00001-of-00002.safetensors",
|
| 585 |
+
"vision_model.blocks.25.norm1.weight": "model-00001-of-00002.safetensors",
|
| 586 |
+
"vision_model.blocks.25.norm2.bias": "model-00001-of-00002.safetensors",
|
| 587 |
+
"vision_model.blocks.25.norm2.weight": "model-00001-of-00002.safetensors",
|
| 588 |
+
"vision_model.blocks.26.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 589 |
+
"vision_model.blocks.26.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 590 |
+
"vision_model.blocks.26.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 591 |
+
"vision_model.blocks.26.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 592 |
+
"vision_model.blocks.26.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 593 |
+
"vision_model.blocks.26.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 594 |
+
"vision_model.blocks.26.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 595 |
+
"vision_model.blocks.26.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 596 |
+
"vision_model.blocks.26.norm1.bias": "model-00001-of-00002.safetensors",
|
| 597 |
+
"vision_model.blocks.26.norm1.weight": "model-00001-of-00002.safetensors",
|
| 598 |
+
"vision_model.blocks.26.norm2.bias": "model-00001-of-00002.safetensors",
|
| 599 |
+
"vision_model.blocks.26.norm2.weight": "model-00001-of-00002.safetensors",
|
| 600 |
+
"vision_model.blocks.27.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 601 |
+
"vision_model.blocks.27.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 602 |
+
"vision_model.blocks.27.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 603 |
+
"vision_model.blocks.27.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 604 |
+
"vision_model.blocks.27.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 605 |
+
"vision_model.blocks.27.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 606 |
+
"vision_model.blocks.27.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 607 |
+
"vision_model.blocks.27.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 608 |
+
"vision_model.blocks.27.norm1.bias": "model-00001-of-00002.safetensors",
|
| 609 |
+
"vision_model.blocks.27.norm1.weight": "model-00001-of-00002.safetensors",
|
| 610 |
+
"vision_model.blocks.27.norm2.bias": "model-00001-of-00002.safetensors",
|
| 611 |
+
"vision_model.blocks.27.norm2.weight": "model-00001-of-00002.safetensors",
|
| 612 |
+
"vision_model.blocks.28.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 613 |
+
"vision_model.blocks.28.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 614 |
+
"vision_model.blocks.28.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 615 |
+
"vision_model.blocks.28.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 616 |
+
"vision_model.blocks.28.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 617 |
+
"vision_model.blocks.28.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 618 |
+
"vision_model.blocks.28.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 619 |
+
"vision_model.blocks.28.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 620 |
+
"vision_model.blocks.28.norm1.bias": "model-00001-of-00002.safetensors",
|
| 621 |
+
"vision_model.blocks.28.norm1.weight": "model-00001-of-00002.safetensors",
|
| 622 |
+
"vision_model.blocks.28.norm2.bias": "model-00001-of-00002.safetensors",
|
| 623 |
+
"vision_model.blocks.28.norm2.weight": "model-00001-of-00002.safetensors",
|
| 624 |
+
"vision_model.blocks.29.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 625 |
+
"vision_model.blocks.29.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 626 |
+
"vision_model.blocks.29.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 627 |
+
"vision_model.blocks.29.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 628 |
+
"vision_model.blocks.29.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 629 |
+
"vision_model.blocks.29.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 630 |
+
"vision_model.blocks.29.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 631 |
+
"vision_model.blocks.29.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 632 |
+
"vision_model.blocks.29.norm1.bias": "model-00001-of-00002.safetensors",
|
| 633 |
+
"vision_model.blocks.29.norm1.weight": "model-00001-of-00002.safetensors",
|
| 634 |
+
"vision_model.blocks.29.norm2.bias": "model-00001-of-00002.safetensors",
|
| 635 |
+
"vision_model.blocks.29.norm2.weight": "model-00001-of-00002.safetensors",
|
| 636 |
+
"vision_model.blocks.3.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 637 |
+
"vision_model.blocks.3.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 638 |
+
"vision_model.blocks.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 639 |
+
"vision_model.blocks.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 640 |
+
"vision_model.blocks.3.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 641 |
+
"vision_model.blocks.3.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 642 |
+
"vision_model.blocks.3.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 643 |
+
"vision_model.blocks.3.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 644 |
+
"vision_model.blocks.3.norm1.bias": "model-00001-of-00002.safetensors",
|
| 645 |
+
"vision_model.blocks.3.norm1.weight": "model-00001-of-00002.safetensors",
|
| 646 |
+
"vision_model.blocks.3.norm2.bias": "model-00001-of-00002.safetensors",
|
| 647 |
+
"vision_model.blocks.3.norm2.weight": "model-00001-of-00002.safetensors",
|
| 648 |
+
"vision_model.blocks.30.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 649 |
+
"vision_model.blocks.30.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 650 |
+
"vision_model.blocks.30.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 651 |
+
"vision_model.blocks.30.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 652 |
+
"vision_model.blocks.30.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 653 |
+
"vision_model.blocks.30.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 654 |
+
"vision_model.blocks.30.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 655 |
+
"vision_model.blocks.30.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 656 |
+
"vision_model.blocks.30.norm1.bias": "model-00001-of-00002.safetensors",
|
| 657 |
+
"vision_model.blocks.30.norm1.weight": "model-00001-of-00002.safetensors",
|
| 658 |
+
"vision_model.blocks.30.norm2.bias": "model-00001-of-00002.safetensors",
|
| 659 |
+
"vision_model.blocks.30.norm2.weight": "model-00001-of-00002.safetensors",
|
| 660 |
+
"vision_model.blocks.31.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 661 |
+
"vision_model.blocks.31.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 662 |
+
"vision_model.blocks.31.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 663 |
+
"vision_model.blocks.31.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 664 |
+
"vision_model.blocks.31.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 665 |
+
"vision_model.blocks.31.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 666 |
+
"vision_model.blocks.31.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 667 |
+
"vision_model.blocks.31.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 668 |
+
"vision_model.blocks.31.norm1.bias": "model-00001-of-00002.safetensors",
|
| 669 |
+
"vision_model.blocks.31.norm1.weight": "model-00001-of-00002.safetensors",
|
| 670 |
+
"vision_model.blocks.31.norm2.bias": "model-00001-of-00002.safetensors",
|
| 671 |
+
"vision_model.blocks.31.norm2.weight": "model-00001-of-00002.safetensors",
|
| 672 |
+
"vision_model.blocks.4.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 673 |
+
"vision_model.blocks.4.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 674 |
+
"vision_model.blocks.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 675 |
+
"vision_model.blocks.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 676 |
+
"vision_model.blocks.4.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 677 |
+
"vision_model.blocks.4.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 678 |
+
"vision_model.blocks.4.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 679 |
+
"vision_model.blocks.4.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 680 |
+
"vision_model.blocks.4.norm1.bias": "model-00001-of-00002.safetensors",
|
| 681 |
+
"vision_model.blocks.4.norm1.weight": "model-00001-of-00002.safetensors",
|
| 682 |
+
"vision_model.blocks.4.norm2.bias": "model-00001-of-00002.safetensors",
|
| 683 |
+
"vision_model.blocks.4.norm2.weight": "model-00001-of-00002.safetensors",
|
| 684 |
+
"vision_model.blocks.5.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 685 |
+
"vision_model.blocks.5.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 686 |
+
"vision_model.blocks.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 687 |
+
"vision_model.blocks.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 688 |
+
"vision_model.blocks.5.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 689 |
+
"vision_model.blocks.5.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 690 |
+
"vision_model.blocks.5.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 691 |
+
"vision_model.blocks.5.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 692 |
+
"vision_model.blocks.5.norm1.bias": "model-00001-of-00002.safetensors",
|
| 693 |
+
"vision_model.blocks.5.norm1.weight": "model-00001-of-00002.safetensors",
|
| 694 |
+
"vision_model.blocks.5.norm2.bias": "model-00001-of-00002.safetensors",
|
| 695 |
+
"vision_model.blocks.5.norm2.weight": "model-00001-of-00002.safetensors",
|
| 696 |
+
"vision_model.blocks.6.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 697 |
+
"vision_model.blocks.6.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 698 |
+
"vision_model.blocks.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 699 |
+
"vision_model.blocks.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 700 |
+
"vision_model.blocks.6.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 701 |
+
"vision_model.blocks.6.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 702 |
+
"vision_model.blocks.6.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 703 |
+
"vision_model.blocks.6.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 704 |
+
"vision_model.blocks.6.norm1.bias": "model-00001-of-00002.safetensors",
|
| 705 |
+
"vision_model.blocks.6.norm1.weight": "model-00001-of-00002.safetensors",
|
| 706 |
+
"vision_model.blocks.6.norm2.bias": "model-00001-of-00002.safetensors",
|
| 707 |
+
"vision_model.blocks.6.norm2.weight": "model-00001-of-00002.safetensors",
|
| 708 |
+
"vision_model.blocks.7.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 709 |
+
"vision_model.blocks.7.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 710 |
+
"vision_model.blocks.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 711 |
+
"vision_model.blocks.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 712 |
+
"vision_model.blocks.7.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 713 |
+
"vision_model.blocks.7.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 714 |
+
"vision_model.blocks.7.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 715 |
+
"vision_model.blocks.7.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 716 |
+
"vision_model.blocks.7.norm1.bias": "model-00001-of-00002.safetensors",
|
| 717 |
+
"vision_model.blocks.7.norm1.weight": "model-00001-of-00002.safetensors",
|
| 718 |
+
"vision_model.blocks.7.norm2.bias": "model-00001-of-00002.safetensors",
|
| 719 |
+
"vision_model.blocks.7.norm2.weight": "model-00001-of-00002.safetensors",
|
| 720 |
+
"vision_model.blocks.8.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 721 |
+
"vision_model.blocks.8.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 722 |
+
"vision_model.blocks.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 723 |
+
"vision_model.blocks.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 724 |
+
"vision_model.blocks.8.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 725 |
+
"vision_model.blocks.8.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 726 |
+
"vision_model.blocks.8.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 727 |
+
"vision_model.blocks.8.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 728 |
+
"vision_model.blocks.8.norm1.bias": "model-00001-of-00002.safetensors",
|
| 729 |
+
"vision_model.blocks.8.norm1.weight": "model-00001-of-00002.safetensors",
|
| 730 |
+
"vision_model.blocks.8.norm2.bias": "model-00001-of-00002.safetensors",
|
| 731 |
+
"vision_model.blocks.8.norm2.weight": "model-00001-of-00002.safetensors",
|
| 732 |
+
"vision_model.blocks.9.attn.proj.bias": "model-00001-of-00002.safetensors",
|
| 733 |
+
"vision_model.blocks.9.attn.proj.weight": "model-00001-of-00002.safetensors",
|
| 734 |
+
"vision_model.blocks.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
|
| 735 |
+
"vision_model.blocks.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
|
| 736 |
+
"vision_model.blocks.9.mlp.fc1.bias": "model-00001-of-00002.safetensors",
|
| 737 |
+
"vision_model.blocks.9.mlp.fc1.weight": "model-00001-of-00002.safetensors",
|
| 738 |
+
"vision_model.blocks.9.mlp.fc2.bias": "model-00001-of-00002.safetensors",
|
| 739 |
+
"vision_model.blocks.9.mlp.fc2.weight": "model-00001-of-00002.safetensors",
|
| 740 |
+
"vision_model.blocks.9.norm1.bias": "model-00001-of-00002.safetensors",
|
| 741 |
+
"vision_model.blocks.9.norm1.weight": "model-00001-of-00002.safetensors",
|
| 742 |
+
"vision_model.blocks.9.norm2.bias": "model-00001-of-00002.safetensors",
|
| 743 |
+
"vision_model.blocks.9.norm2.weight": "model-00001-of-00002.safetensors",
|
| 744 |
+
"vision_model.patch_embed.proj.weight": "model-00001-of-00002.safetensors"
|
| 745 |
+
}
|
| 746 |
+
}
|
modeling.py
ADDED
|
@@ -0,0 +1,493 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from functools import partial
|
| 2 |
+
import logging
|
| 3 |
+
import re
|
| 4 |
+
from typing import Optional, Tuple, Union
|
| 5 |
+
|
| 6 |
+
from einops import rearrange
|
| 7 |
+
from timm.layers import LayerNorm, LayerNorm2d
|
| 8 |
+
from timm.layers.pos_embed import resample_abs_pos_embed
|
| 9 |
+
from timm.models.regnet import RegStage
|
| 10 |
+
import torch
|
| 11 |
+
from torch import nn
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
import torch.utils.checkpoint
|
| 14 |
+
from transformers import LlamaForCausalLM
|
| 15 |
+
from transformers.modeling_outputs import BaseModelOutput
|
| 16 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 17 |
+
from transformers.models.auto import AutoModelForCausalLM
|
| 18 |
+
from transformers.models.qwen2_vl.configuration_qwen2_vl import (
|
| 19 |
+
Qwen2VLVisionConfig,
|
| 20 |
+
)
|
| 21 |
+
from transformers.models.qwen2_vl.modeling_qwen2_vl import (
|
| 22 |
+
PatchEmbed,
|
| 23 |
+
Qwen2VLPreTrainedModel,
|
| 24 |
+
Qwen2VisionTransformerPretrainedModel,
|
| 25 |
+
Qwen2VLVisionBlock,
|
| 26 |
+
VisionRotaryEmbedding
|
| 27 |
+
)
|
| 28 |
+
|
| 29 |
+
from .configuration import KananaVVisualProjectorConfig, KananaVConfig
|
| 30 |
+
|
| 31 |
+
logger = logging.getLogger("kanana-1.5-v")
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def build_pos_embeds(
|
| 35 |
+
config: KananaVVisualProjectorConfig, num_input_tokens: int, vision_hidden_size: int
|
| 36 |
+
):
|
| 37 |
+
# pos emb
|
| 38 |
+
if config.pos_emb:
|
| 39 |
+
pos_emb = torch.nn.Parameter(torch.zeros(1, num_input_tokens, vision_hidden_size))
|
| 40 |
+
nn.init.trunc_normal_(pos_emb, mean=0.0, std=0.02)
|
| 41 |
+
else:
|
| 42 |
+
pos_emb = None
|
| 43 |
+
|
| 44 |
+
return pos_emb
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def build_eos_tokens(config: KananaVVisualProjectorConfig, output_hidden_size: int):
|
| 48 |
+
# think tokens
|
| 49 |
+
num_eos_tokens = config.num_eos_tokens
|
| 50 |
+
if num_eos_tokens:
|
| 51 |
+
eos_tokens = torch.nn.Parameter(torch.randn(1, num_eos_tokens, output_hidden_size))
|
| 52 |
+
nn.init.trunc_normal_(eos_tokens, mean=0.0, std=config.initializer_range)
|
| 53 |
+
else:
|
| 54 |
+
eos_tokens = None
|
| 55 |
+
|
| 56 |
+
return eos_tokens
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def build_prenorm(config: KananaVVisualProjectorConfig):
|
| 60 |
+
if getattr(config, "prenorm", False):
|
| 61 |
+
prenorm = LayerNorm(config.encoder_hidden_size)
|
| 62 |
+
else:
|
| 63 |
+
prenorm = None
|
| 64 |
+
return prenorm
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def build_mlp(depth: int, hidden_size: int, output_hidden_size: int):
|
| 68 |
+
layers = [nn.Linear(hidden_size, output_hidden_size)]
|
| 69 |
+
for _ in range(1, depth):
|
| 70 |
+
layers.append(nn.SiLU())
|
| 71 |
+
layers.append(nn.Linear(output_hidden_size, output_hidden_size))
|
| 72 |
+
return nn.Sequential(*layers)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class PatchMerge(nn.Module):
|
| 76 |
+
def __init__(self, merge_size):
|
| 77 |
+
super().__init__()
|
| 78 |
+
self.merge_size = merge_size
|
| 79 |
+
|
| 80 |
+
def forward(self, x, channel_last=False):
|
| 81 |
+
if channel_last:
|
| 82 |
+
x = rearrange(x, "B H W D -> B D H W")
|
| 83 |
+
_, D, H, W = x.shape
|
| 84 |
+
merged_x = rearrange(
|
| 85 |
+
x, "B D (H h2) (W w2) -> B (D h2 w2) H W", h2=self.merge_size, w2=self.merge_size
|
| 86 |
+
)
|
| 87 |
+
return merged_x
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
class DynamicCAbstractor(nn.Module):
|
| 91 |
+
"""Dynamic C-Abstractor based on RegBlock"""
|
| 92 |
+
|
| 93 |
+
def __init__(self, config: KananaVVisualProjectorConfig, num_input_tokens: int):
|
| 94 |
+
super().__init__()
|
| 95 |
+
self.config = config
|
| 96 |
+
if num_input_tokens == -1:
|
| 97 |
+
num_input_tokens = config.pos_emb_size
|
| 98 |
+
self.num_input_tokens = num_input_tokens
|
| 99 |
+
|
| 100 |
+
self.merge_size = config.merge_size
|
| 101 |
+
self.pos_emb_size = config.pos_emb_size
|
| 102 |
+
|
| 103 |
+
self.eos_tokens = build_eos_tokens(config, config.output_hidden_size)
|
| 104 |
+
self.pos_emb = build_pos_embeds(config, num_input_tokens, config.encoder_hidden_size)
|
| 105 |
+
self.prenorm = build_prenorm(config)
|
| 106 |
+
|
| 107 |
+
self.build_net()
|
| 108 |
+
|
| 109 |
+
def build_net(self):
|
| 110 |
+
encoder_hidden_size = self.config.encoder_hidden_size
|
| 111 |
+
hidden_size = self.config.hidden_size
|
| 112 |
+
output_hidden_size = self.config.output_hidden_size
|
| 113 |
+
depth = self.config.depth
|
| 114 |
+
mlp_depth = self.config.mlp_depth
|
| 115 |
+
|
| 116 |
+
RegBlock = partial(
|
| 117 |
+
RegStage,
|
| 118 |
+
stride=1,
|
| 119 |
+
dilation=1,
|
| 120 |
+
act_layer=nn.SiLU,
|
| 121 |
+
norm_layer=LayerNorm2d,
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
s1 = RegBlock(
|
| 125 |
+
depth,
|
| 126 |
+
encoder_hidden_size,
|
| 127 |
+
hidden_size,
|
| 128 |
+
)
|
| 129 |
+
sampler = PatchMerge(merge_size=self.merge_size)
|
| 130 |
+
s2 = RegBlock(
|
| 131 |
+
depth,
|
| 132 |
+
self.merge_size**2 * hidden_size,
|
| 133 |
+
hidden_size,
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
if depth:
|
| 137 |
+
self.net = nn.ModuleList([s1, sampler, s2])
|
| 138 |
+
self.readout = build_mlp(mlp_depth, hidden_size, output_hidden_size)
|
| 139 |
+
else:
|
| 140 |
+
self.net = sampler
|
| 141 |
+
self.readout = build_mlp(mlp_depth, encoder_hidden_size, output_hidden_size)
|
| 142 |
+
|
| 143 |
+
def forward(self, flattened_visual_embeds, grid_thw, **unused_kwargs):
|
| 144 |
+
n_token_loc = torch.prod(grid_thw, dim=1)
|
| 145 |
+
split_visual_embeds = torch.split(flattened_visual_embeds, n_token_loc.tolist())
|
| 146 |
+
|
| 147 |
+
flattened_visual_embeds = []
|
| 148 |
+
for _visual_embeds, _grid_thw in zip(split_visual_embeds, grid_thw):
|
| 149 |
+
T, H, W = _grid_thw
|
| 150 |
+
assert T == 1, "T must be 1. Video is not supported yet."
|
| 151 |
+
reshaped_visual_embeds = rearrange(
|
| 152 |
+
_visual_embeds, "(t h w) d -> 1 t h w d", t=T, h=H, w=W
|
| 153 |
+
)
|
| 154 |
+
# remove temporal dim
|
| 155 |
+
reshaped_visual_embeds = reshaped_visual_embeds[:, 0]
|
| 156 |
+
|
| 157 |
+
if self.prenorm is not None:
|
| 158 |
+
reshaped_visual_embeds = self.prenorm(reshaped_visual_embeds)
|
| 159 |
+
|
| 160 |
+
if self.pos_emb is not None:
|
| 161 |
+
# interpolate pos emb and add to visual embeds
|
| 162 |
+
_local_pos_emb = resample_abs_pos_embed(
|
| 163 |
+
posemb=self.pos_emb,
|
| 164 |
+
old_size=tuple([int(self.pos_emb_size**0.5)] * 2),
|
| 165 |
+
new_size=(H, W),
|
| 166 |
+
num_prefix_tokens=0,
|
| 167 |
+
)
|
| 168 |
+
_local_pos_emb = rearrange(
|
| 169 |
+
_local_pos_emb,
|
| 170 |
+
"1 (h w) d -> 1 h w d",
|
| 171 |
+
h=H,
|
| 172 |
+
w=W,
|
| 173 |
+
)
|
| 174 |
+
reshaped_visual_embeds = reshaped_visual_embeds + _local_pos_emb
|
| 175 |
+
|
| 176 |
+
reshaped_visual_embeds = self._forward(
|
| 177 |
+
reshaped_visual_embeds,
|
| 178 |
+
input_size=(H, W),
|
| 179 |
+
)
|
| 180 |
+
flattened_visual_embeds.append(reshaped_visual_embeds)
|
| 181 |
+
reshaped_visual_embeds = torch.cat(flattened_visual_embeds, dim=0)
|
| 182 |
+
output = BaseModelOutput(last_hidden_state=reshaped_visual_embeds)
|
| 183 |
+
return output
|
| 184 |
+
|
| 185 |
+
def _forward(self, x, input_size):
|
| 186 |
+
h, w = input_size
|
| 187 |
+
x = rearrange(x, "1 h w d -> 1 d h w", h=h, w=w)
|
| 188 |
+
x = self.net[0](x)
|
| 189 |
+
x = self.net[1](x)
|
| 190 |
+
x = self.net[2](x)
|
| 191 |
+
x = rearrange(x, "1 d h w -> (h w) d")
|
| 192 |
+
x = self.readout(x)
|
| 193 |
+
return x
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
class CustomQwen2VLVE(Qwen2VisionTransformerPretrainedModel):
|
| 197 |
+
config_class = Qwen2VLVisionConfig
|
| 198 |
+
_no_split_modules = ["Qwen2VLVisionBlock"]
|
| 199 |
+
|
| 200 |
+
def __init__(self, config) -> None:
|
| 201 |
+
Qwen2VLPreTrainedModel.__init__(self, config)
|
| 202 |
+
self.spatial_merge_size = config.spatial_merge_size
|
| 203 |
+
self.gradient_checkpointing = False
|
| 204 |
+
|
| 205 |
+
self.patch_embed = PatchEmbed(
|
| 206 |
+
patch_size=config.patch_size,
|
| 207 |
+
temporal_patch_size=config.temporal_patch_size,
|
| 208 |
+
in_channels=config.in_channels,
|
| 209 |
+
embed_dim=config.embed_dim,
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
head_dim = config.embed_dim // config.num_heads
|
| 213 |
+
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
|
| 214 |
+
|
| 215 |
+
self.blocks = nn.ModuleList(
|
| 216 |
+
[Qwen2VLVisionBlock(config, config._attn_implementation) for _ in range(config.depth)]
|
| 217 |
+
)
|
| 218 |
+
|
| 219 |
+
def forward(
|
| 220 |
+
self,
|
| 221 |
+
pixel_values: torch.Tensor,
|
| 222 |
+
grid_thw: torch.Tensor,
|
| 223 |
+
output_hidden_states: Optional[bool] = None,
|
| 224 |
+
return_dict: Optional[bool] = None,
|
| 225 |
+
) -> Union[Tuple, BaseModelOutput]:
|
| 226 |
+
assert return_dict, "Only return_dict=True is supported."
|
| 227 |
+
|
| 228 |
+
encoder_states = () if output_hidden_states else None
|
| 229 |
+
|
| 230 |
+
hidden_states = self.patch_embed(pixel_values)
|
| 231 |
+
rotary_pos_emb = self.rot_pos_emb(grid_thw)
|
| 232 |
+
emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
|
| 233 |
+
position_embeddings = emb.cos(), emb.sin()
|
| 234 |
+
|
| 235 |
+
cu_seqlens = torch.repeat_interleave(
|
| 236 |
+
grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
|
| 237 |
+
).cumsum(dim=0, dtype=torch.int32)
|
| 238 |
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
| 239 |
+
|
| 240 |
+
for blk in self.blocks:
|
| 241 |
+
if output_hidden_states:
|
| 242 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 243 |
+
if self.gradient_checkpointing and self.training:
|
| 244 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 245 |
+
blk.__call__,
|
| 246 |
+
hidden_states=hidden_states,
|
| 247 |
+
cu_seqlens=cu_seqlens,
|
| 248 |
+
position_embeddings=position_embeddings,
|
| 249 |
+
use_reentrant=False,
|
| 250 |
+
)
|
| 251 |
+
else:
|
| 252 |
+
layer_outputs = blk(
|
| 253 |
+
hidden_states=hidden_states,
|
| 254 |
+
cu_seqlens=cu_seqlens,
|
| 255 |
+
position_embeddings=position_embeddings,
|
| 256 |
+
)
|
| 257 |
+
hidden_states = layer_outputs
|
| 258 |
+
if output_hidden_states:
|
| 259 |
+
encoder_states = encoder_states + (hidden_states,)
|
| 260 |
+
|
| 261 |
+
if not return_dict:
|
| 262 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
| 263 |
+
return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states)
|
| 264 |
+
|
| 265 |
+
def get_num_tokens(self):
|
| 266 |
+
return -1
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
class KananaVPreTrainedModel(PreTrainedModel):
|
| 270 |
+
"""
|
| 271 |
+
An abstract class to handle weights initialization and
|
| 272 |
+
a simple interface for downloading and loading pretrained models.
|
| 273 |
+
"""
|
| 274 |
+
|
| 275 |
+
config_class = KananaVConfig
|
| 276 |
+
base_model_prefix = "kanana-1.5-v"
|
| 277 |
+
supports_gradient_checkpointing = True
|
| 278 |
+
_skip_keys_device_placement = "past_key_values"
|
| 279 |
+
_supports_flash_attn_2 = True
|
| 280 |
+
_supports_sdpa = True
|
| 281 |
+
_supports_cache_class = True
|
| 282 |
+
_supports_static_cache = False
|
| 283 |
+
|
| 284 |
+
_keys_to_ignore_on_load_missing = [
|
| 285 |
+
r"position_ids",
|
| 286 |
+
r"language_model.encoder.embed_tokens.weight",
|
| 287 |
+
r"language_model.decoder.embed_tokens.weight",
|
| 288 |
+
r"language_model.lm_head.weight",
|
| 289 |
+
]
|
| 290 |
+
_no_split_modules = [
|
| 291 |
+
"CustomQwen2VLVE",
|
| 292 |
+
"DynamicCAbstractor",
|
| 293 |
+
"LlamaForCausalLM",
|
| 294 |
+
"Parameter",
|
| 295 |
+
]
|
| 296 |
+
|
| 297 |
+
def _init_weights(self, module):
|
| 298 |
+
"""Initialize the weights"""
|
| 299 |
+
if (
|
| 300 |
+
isinstance(module, nn.Conv2d)
|
| 301 |
+
or isinstance(module, nn.Embedding)
|
| 302 |
+
or isinstance(module, nn.Linear)
|
| 303 |
+
):
|
| 304 |
+
module.weight.data.normal_(mean=0.0, std=0.02)
|
| 305 |
+
if hasattr(module, "bias") and module.bias is not None:
|
| 306 |
+
module.bias.data.zero_()
|
| 307 |
+
elif isinstance(module, nn.LayerNorm):
|
| 308 |
+
module.bias.data.zero_()
|
| 309 |
+
module.weight.data.fill_(1.0)
|
| 310 |
+
elif isinstance(module, nn.Parameter):
|
| 311 |
+
raise ValueError()
|
| 312 |
+
|
| 313 |
+
|
| 314 |
+
class KananaVForConditionalGeneration(KananaVPreTrainedModel):
|
| 315 |
+
config_class = KananaVConfig
|
| 316 |
+
|
| 317 |
+
def __init__(self, config: KananaVConfig):
|
| 318 |
+
super().__init__(config)
|
| 319 |
+
|
| 320 |
+
logger.info("Build vision model ...")
|
| 321 |
+
self.vision_model = CustomQwen2VLVE._from_config(config.vision_config)
|
| 322 |
+
|
| 323 |
+
logger.info("Build projector ...")
|
| 324 |
+
self.abstractor = DynamicCAbstractor(config.projector_config,
|
| 325 |
+
num_input_tokens=self.vision_model.get_num_tokens())
|
| 326 |
+
|
| 327 |
+
logger.info("Build language model ...")
|
| 328 |
+
self.language_model = LlamaForCausalLM._from_config(config=config.text_config)
|
| 329 |
+
|
| 330 |
+
self.post_init()
|
| 331 |
+
|
| 332 |
+
def forward_vision(self, pixel_values, image_metas: Optional[dict] = None):
|
| 333 |
+
vision_model_args = {
|
| 334 |
+
"pixel_values": pixel_values,
|
| 335 |
+
"return_dict": True,
|
| 336 |
+
"output_hidden_states": True,
|
| 337 |
+
"grid_thw": image_metas["vision_grid_thw"],
|
| 338 |
+
}
|
| 339 |
+
v_outputs = self.vision_model(**vision_model_args)
|
| 340 |
+
layer_index = self.config.projector_config.feature_layer_index
|
| 341 |
+
visual_features = self._get_visual_feature_at(v_outputs.hidden_states, layer_index)
|
| 342 |
+
return visual_features
|
| 343 |
+
|
| 344 |
+
def forward_projector(self, visual_features, image_metas: Optional[dict] = None):
|
| 345 |
+
assert image_metas is not None
|
| 346 |
+
visual_embeds = self.abstractor(
|
| 347 |
+
visual_features,
|
| 348 |
+
grid_thw=image_metas["vision_grid_thw"],
|
| 349 |
+
)["last_hidden_state"]
|
| 350 |
+
return visual_embeds
|
| 351 |
+
|
| 352 |
+
def forward_and_project_vision(self, pixel_values, image_metas: Optional[dict] = None):
|
| 353 |
+
assert pixel_values is not None
|
| 354 |
+
visual_features = self.forward_vision(pixel_values, image_metas=image_metas)
|
| 355 |
+
visual_embeds = self.forward_projector(visual_features, image_metas=image_metas)
|
| 356 |
+
return visual_embeds
|
| 357 |
+
|
| 358 |
+
def _get_visual_feature_at(self, v_output, layer_index):
|
| 359 |
+
if isinstance(layer_index, list):
|
| 360 |
+
visual_features = torch.stack(v_output, dim=1)[:, layer_index] # [B, n_scales, L, dim]
|
| 361 |
+
else:
|
| 362 |
+
visual_features = v_output[layer_index] # [B, L, dim]
|
| 363 |
+
return visual_features
|
| 364 |
+
|
| 365 |
+
def embed_text_tokens(self, input_ids):
|
| 366 |
+
"""Embed input_ids into text_embeds, ignoring media tokens (negative values)."""
|
| 367 |
+
input_ids = input_ids.clone()
|
| 368 |
+
input_ids[input_ids < 0] = 0
|
| 369 |
+
|
| 370 |
+
text_embeds = self.language_model.get_input_embeddings()(input_ids)
|
| 371 |
+
if hasattr(self.language_model, "transformer") and hasattr(
|
| 372 |
+
self.language_model.transformer, "word_embeddings_layernorm"
|
| 373 |
+
):
|
| 374 |
+
text_embeds = self.language_model.transformer.word_embeddings_layernorm(text_embeds)
|
| 375 |
+
|
| 376 |
+
return text_embeds
|
| 377 |
+
|
| 378 |
+
def prepare_mm_inputs(
|
| 379 |
+
self,
|
| 380 |
+
input_ids: torch.FloatTensor,
|
| 381 |
+
pixel_values: Optional[list[torch.FloatTensor]] = None,
|
| 382 |
+
image_metas: Optional[dict] = None,
|
| 383 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 384 |
+
):
|
| 385 |
+
"""Prepare multimodal inputs from input_ids and pixel_values."""
|
| 386 |
+
if pixel_values is not None:
|
| 387 |
+
pixel_values = pixel_values.to(self._get_input_dtype())
|
| 388 |
+
|
| 389 |
+
if attention_mask is None:
|
| 390 |
+
attention_mask = input_ids.new_ones(*input_ids.shape)
|
| 391 |
+
|
| 392 |
+
# Get Text Embeddings
|
| 393 |
+
text_embeds = self.embed_text_tokens(input_ids)
|
| 394 |
+
flattened_text_embeds = rearrange(text_embeds, "b l d -> (b l) d")
|
| 395 |
+
flattened_input_ids = rearrange(input_ids, "b l -> (b l)")
|
| 396 |
+
|
| 397 |
+
# Get Visual Embeddings
|
| 398 |
+
if pixel_values is not None:
|
| 399 |
+
flattened_visual_embeds = self.forward_and_project_vision(
|
| 400 |
+
pixel_values, image_metas
|
| 401 |
+
)
|
| 402 |
+
flattened_text_embeds[flattened_input_ids == -1] = flattened_visual_embeds
|
| 403 |
+
|
| 404 |
+
input_embeds = rearrange(
|
| 405 |
+
flattened_text_embeds, "(b l) d -> b l d", b=input_ids.shape[0]
|
| 406 |
+
)
|
| 407 |
+
return_inputs = {
|
| 408 |
+
"inputs_embeds": input_embeds,
|
| 409 |
+
"attention_mask": attention_mask,
|
| 410 |
+
}
|
| 411 |
+
return return_inputs
|
| 412 |
+
|
| 413 |
+
def forward(
|
| 414 |
+
self,
|
| 415 |
+
pixel_values: list[torch.FloatTensor],
|
| 416 |
+
image_metas: dict[list],
|
| 417 |
+
input_ids: torch.FloatTensor,
|
| 418 |
+
seq_length: Optional[torch.LongTensor] = None,
|
| 419 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 420 |
+
labels: Optional[torch.LongTensor] = None,
|
| 421 |
+
return_dict: Optional[bool] = None,
|
| 422 |
+
):
|
| 423 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 424 |
+
inputs = self.prepare_mm_inputs(
|
| 425 |
+
input_ids=input_ids,
|
| 426 |
+
pixel_values=pixel_values,
|
| 427 |
+
image_metas=image_metas,
|
| 428 |
+
attention_mask=attention_mask,
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
outputs = self.language_model(
|
| 432 |
+
**inputs,
|
| 433 |
+
labels=labels,
|
| 434 |
+
position_ids=None,
|
| 435 |
+
return_dict=return_dict,
|
| 436 |
+
output_attentions=self.config.output_attentions,
|
| 437 |
+
)
|
| 438 |
+
|
| 439 |
+
return outputs
|
| 440 |
+
|
| 441 |
+
@torch.no_grad()
|
| 442 |
+
def generate(
|
| 443 |
+
self,
|
| 444 |
+
pixel_values: torch.FloatTensor = None,
|
| 445 |
+
image_metas: dict[list] = None,
|
| 446 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 447 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
| 448 |
+
seq_length: Optional[torch.LongTensor] = None,
|
| 449 |
+
**generate_kwargs,
|
| 450 |
+
) -> torch.LongTensor:
|
| 451 |
+
"""
|
| 452 |
+
Overrides `generate` function to be able to use the model as a conditional generator.
|
| 453 |
+
|
| 454 |
+
Args:
|
| 455 |
+
pixel_values (`torch.FloatTensor` of shape (batch_size, num_channels, height, width)):
|
| 456 |
+
Input images to be processed.
|
| 457 |
+
input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
|
| 458 |
+
The sequence used as a prompt for the generation.
|
| 459 |
+
attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
|
| 460 |
+
Mask to avoid performing attention on padding token indices
|
| 461 |
+
|
| 462 |
+
Returns:
|
| 463 |
+
captions (list): A list of strings of length batch_size * num_captions.
|
| 464 |
+
"""
|
| 465 |
+
if input_ids is None:
|
| 466 |
+
return self.language_model.generate(attention_mask=attention_mask, **generate_kwargs)
|
| 467 |
+
if pixel_values is None:
|
| 468 |
+
return self.language_model.generate(input_ids=input_ids, attention_mask=attention_mask, **generate_kwargs)
|
| 469 |
+
|
| 470 |
+
if (
|
| 471 |
+
image_metas is not None
|
| 472 |
+
and image_metas.get("vision_grid_thw") is not None
|
| 473 |
+
and isinstance(image_metas.get("vision_grid_thw"), torch.Tensor)
|
| 474 |
+
):
|
| 475 |
+
image_metas["vision_grid_thw"] = image_metas["vision_grid_thw"].to(input_ids.device)
|
| 476 |
+
|
| 477 |
+
inputs = self.prepare_mm_inputs(
|
| 478 |
+
input_ids=input_ids,
|
| 479 |
+
pixel_values=pixel_values,
|
| 480 |
+
image_metas=image_metas,
|
| 481 |
+
attention_mask=attention_mask,
|
| 482 |
+
)
|
| 483 |
+
|
| 484 |
+
outputs = self.language_model.generate(
|
| 485 |
+
**inputs,
|
| 486 |
+
**generate_kwargs,
|
| 487 |
+
)
|
| 488 |
+
|
| 489 |
+
return outputs
|
| 490 |
+
|
| 491 |
+
def _get_input_dtype(self):
|
| 492 |
+
dtype = next(self.vision_model.parameters()).dtype
|
| 493 |
+
return dtype
|
preprocessor_config.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_pixels": 1254400,
|
| 3 |
+
"merge_size": 2,
|
| 4 |
+
"min_pixels": 78400,
|
| 5 |
+
"patch_size": 14
|
| 6 |
+
}
|
processing.py
ADDED
|
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
from PIL.Image import Image
|
| 5 |
+
from transformers.processing_utils import ProcessorMixin
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
logger = logging.getLogger("kanana-1.5-v")
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
HUMAN = "Human: "
|
| 12 |
+
AI = "AI: "
|
| 13 |
+
CHAT_TEMPLATE = (
|
| 14 |
+
"""
|
| 15 |
+
{%- if bos_token is defined and bos_token %}
|
| 16 |
+
{{- bos_token }}
|
| 17 |
+
{%- endif %}
|
| 18 |
+
{%- set intro %}
|
| 19 |
+
The following is a conversation between a curious human and AI assistant. 당신은 Kakao에서 개발된 인공지능 언어모델이고 이름은 kanana입니다.
|
| 20 |
+
Knowledge Cutoff Date: June30, 2024.
|
| 21 |
+
Capabilities and Limitations:
|
| 22 |
+
- I cannot search for external content such as weather, news, or the current date and time.
|
| 23 |
+
- If a URL is provided, I cannot access it directly. Insteaed, please copy and provide the relevant content for me to process.
|
| 24 |
+
{%- endset %}
|
| 25 |
+
{{ intro }}
|
| 26 |
+
{{- '\n' }}
|
| 27 |
+
{%- for message in messages %}
|
| 28 |
+
{%- if message['role'] == 'system' %}
|
| 29 |
+
{{- message['content'] }}
|
| 30 |
+
{%- elif message['role'] == 'user' %}
|
| 31 |
+
{{- '<|USER|>' + message['content'] }}
|
| 32 |
+
{%- elif message['role'] == 'assistant' %}
|
| 33 |
+
{{- '<|ASSISTANT|>' + message['content'] + eos_token }}
|
| 34 |
+
{%- endif %}
|
| 35 |
+
{%- if not loop.last %}
|
| 36 |
+
{{- '\n' }}
|
| 37 |
+
{%- endif %}
|
| 38 |
+
{%- endfor %}
|
| 39 |
+
{%- if add_generation_prompt %}
|
| 40 |
+
{{- '\n<|ASSISTANT|>' }}
|
| 41 |
+
{%- endif %}
|
| 42 |
+
""".strip()
|
| 43 |
+
.replace("<|USER|>", HUMAN)
|
| 44 |
+
.replace("<|ASSISTANT|>", AI)
|
| 45 |
+
)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
class KananaVProcessor(ProcessorMixin):
|
| 49 |
+
attributes = ["image_processor", "tokenizer"]
|
| 50 |
+
valid_kwargs = []
|
| 51 |
+
image_processor_class = "AutoImageProcessor"
|
| 52 |
+
tokenizer_class = "AutoTokenizer"
|
| 53 |
+
|
| 54 |
+
def __init__(self, image_processor, tokenizer):
|
| 55 |
+
super().__init__(image_processor, tokenizer)
|
| 56 |
+
self.image_processor = image_processor
|
| 57 |
+
self.tokenizer = tokenizer
|
| 58 |
+
self.tokenizer.mllm_setup("dynamic")
|
| 59 |
+
|
| 60 |
+
def conv2prompt(
|
| 61 |
+
self,
|
| 62 |
+
conv: list[dict] | str,
|
| 63 |
+
chat_template=CHAT_TEMPLATE,
|
| 64 |
+
add_generation_prompt=False,
|
| 65 |
+
) -> str:
|
| 66 |
+
"""Convert conversation to prompt"""
|
| 67 |
+
if isinstance(conv, list):
|
| 68 |
+
prompt = self.tokenizer.apply_chat_template(
|
| 69 |
+
conversation=conv,
|
| 70 |
+
tokenize=False,
|
| 71 |
+
chat_template=chat_template,
|
| 72 |
+
add_generation_prompt=add_generation_prompt,
|
| 73 |
+
)
|
| 74 |
+
elif isinstance(conv, str):
|
| 75 |
+
prompt = conv
|
| 76 |
+
else:
|
| 77 |
+
raise TypeError(f"conv must be list or str, but got {type(conv)}")
|
| 78 |
+
|
| 79 |
+
return prompt
|
| 80 |
+
|
| 81 |
+
def __call__(self, data: dict, max_length, add_generation_prompt=False):
|
| 82 |
+
return self.encode(data, max_length, add_generation_prompt=add_generation_prompt)
|
| 83 |
+
|
| 84 |
+
def encode(self, data: dict, max_length, add_generation_prompt=False) -> dict:
|
| 85 |
+
"""
|
| 86 |
+
Args:
|
| 87 |
+
data (dict): {
|
| 88 |
+
"conv": [
|
| 89 |
+
{"role": "system", "content": "The following is a conversation between a curious human and AI assistant."},
|
| 90 |
+
{"role": "user", "content": IMAGE},
|
| 91 |
+
{"role": "user", "content": "Hello, how are you?"},
|
| 92 |
+
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
|
| 93 |
+
...
|
| 94 |
+
],
|
| 95 |
+
"image": [
|
| 96 |
+
PIL.Image,
|
| 97 |
+
...
|
| 98 |
+
]
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
Return:
|
| 102 |
+
data (dict): {
|
| 103 |
+
"text": text_tokens_from_tokenizer,
|
| 104 |
+
"text_raw": prompt,
|
| 105 |
+
"image": pixel_values,
|
| 106 |
+
"image_meta": image_meta (dict of list) includes image resolution, etc.
|
| 107 |
+
}
|
| 108 |
+
"""
|
| 109 |
+
assert "images" not in data
|
| 110 |
+
|
| 111 |
+
conv = data["conv"]
|
| 112 |
+
images: list[Image] = data.get("image") # PIL images
|
| 113 |
+
|
| 114 |
+
data = {
|
| 115 |
+
"text": None,
|
| 116 |
+
"text_raw": None,
|
| 117 |
+
"image": None,
|
| 118 |
+
"image_meta": None,
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
# image
|
| 122 |
+
if images:
|
| 123 |
+
processor_output = [
|
| 124 |
+
self.image_processor(image) for image in images if image
|
| 125 |
+
]
|
| 126 |
+
pixel_values = [
|
| 127 |
+
processor_output["pixel_values"] for processor_output in processor_output
|
| 128 |
+
]
|
| 129 |
+
image_meta = [processor_output["image_meta"] for processor_output in processor_output]
|
| 130 |
+
if pixel_values:
|
| 131 |
+
pixel_values = torch.concat(pixel_values, dim=0)
|
| 132 |
+
data["image"] = pixel_values
|
| 133 |
+
data["image_meta"] = {k: [d[k] for d in image_meta] for k in image_meta[0]}
|
| 134 |
+
|
| 135 |
+
# text
|
| 136 |
+
prompt = self.conv2prompt(conv, add_generation_prompt=add_generation_prompt)
|
| 137 |
+
text_tokens = self.tokenizer.encode_prompt(
|
| 138 |
+
prompt,
|
| 139 |
+
max_length,
|
| 140 |
+
image_meta=data["image_meta"],
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
data["text"] = text_tokens
|
| 144 |
+
data["text_raw"] = prompt
|
| 145 |
+
|
| 146 |
+
return data
|
| 147 |
+
|
| 148 |
+
def batch_encode_collate(
|
| 149 |
+
self,
|
| 150 |
+
data_list: list[dict],
|
| 151 |
+
padding: str = "longest",
|
| 152 |
+
padding_side: str = "right",
|
| 153 |
+
max_length: int | None = None,
|
| 154 |
+
add_generation_prompt=False,
|
| 155 |
+
):
|
| 156 |
+
"""Encode batch and collate them"""
|
| 157 |
+
batch = [
|
| 158 |
+
self.encode(data, max_length, add_generation_prompt=add_generation_prompt)
|
| 159 |
+
for data in data_list
|
| 160 |
+
]
|
| 161 |
+
batch = self.collate(
|
| 162 |
+
batch,
|
| 163 |
+
padding=padding,
|
| 164 |
+
padding_side=padding_side,
|
| 165 |
+
max_length=max_length,
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
return batch
|
| 169 |
+
|
| 170 |
+
def collate(
|
| 171 |
+
self,
|
| 172 |
+
batch,
|
| 173 |
+
padding,
|
| 174 |
+
padding_side,
|
| 175 |
+
max_length,
|
| 176 |
+
):
|
| 177 |
+
"""Collate encoded results to model inputs"""
|
| 178 |
+
text_batch = [data["text"] for data in batch]
|
| 179 |
+
|
| 180 |
+
text_batch = self.tokenizer.batch_collate_pad(
|
| 181 |
+
text_batch,
|
| 182 |
+
padding=padding,
|
| 183 |
+
padding_side=padding_side,
|
| 184 |
+
max_length=max_length,
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
image_list = [data["image"] for data in batch if data["image"] is not None]
|
| 188 |
+
image_meta = [data["image_meta"] for data in batch if data["image_meta"] is not None]
|
| 189 |
+
if len(image_meta) > 0:
|
| 190 |
+
image_meta = {
|
| 191 |
+
k: sum([d[k] for d in image_meta], []) for k in image_meta[0]
|
| 192 |
+
}
|
| 193 |
+
if image_meta.get("vision_grid_thw"):
|
| 194 |
+
image_meta["vision_grid_thw"] = torch.tensor(image_meta["vision_grid_thw"])
|
| 195 |
+
else:
|
| 196 |
+
image_meta = None
|
| 197 |
+
|
| 198 |
+
output_batch = text_batch
|
| 199 |
+
|
| 200 |
+
output_batch["pixel_values"] = torch.cat(image_list, dim=0) if len(image_list) > 0 else None
|
| 201 |
+
output_batch["image_metas"] = image_meta
|
| 202 |
+
return output_batch
|
| 203 |
+
|
| 204 |
+
def decode(self, *args, **kwargs):
|
| 205 |
+
return self.tokenizer.decode(*args, **kwargs)
|
| 206 |
+
|
| 207 |
+
def batch_decode(self, *args, **kwargs):
|
| 208 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
processing_image.py
ADDED
|
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import math
|
| 3 |
+
from typing import Optional, Union
|
| 4 |
+
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
from einops import rearrange
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from transformers.image_processing_utils import BaseImageProcessor
|
| 10 |
+
from transformers.image_transforms import convert_to_rgb, resize
|
| 11 |
+
from transformers.image_utils import (
|
| 12 |
+
ChannelDimension,
|
| 13 |
+
ImageInput,
|
| 14 |
+
PILImageResampling,
|
| 15 |
+
get_image_size,
|
| 16 |
+
infer_channel_dimension_format,
|
| 17 |
+
is_scaled_image,
|
| 18 |
+
make_list_of_images,
|
| 19 |
+
to_numpy_array,
|
| 20 |
+
)
|
| 21 |
+
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
|
| 22 |
+
|
| 23 |
+
logger = logging.getLogger("kanana-1.5-v")
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def smart_resize(
|
| 27 |
+
height: int,
|
| 28 |
+
width: int,
|
| 29 |
+
factor: int = 28,
|
| 30 |
+
min_pixels: int = 56 * 56,
|
| 31 |
+
max_pixels: int = 14 * 14 * 4 * 1280,
|
| 32 |
+
):
|
| 33 |
+
"""Rescales the image so that the following conditions are met:
|
| 34 |
+
|
| 35 |
+
1. Both dimensions (height and width) are divisible by 'factor'.
|
| 36 |
+
|
| 37 |
+
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
|
| 38 |
+
|
| 39 |
+
3. The aspect ratio of the image is maintained as closely as possible.
|
| 40 |
+
|
| 41 |
+
"""
|
| 42 |
+
if height < factor or width < factor:
|
| 43 |
+
raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}")
|
| 44 |
+
elif max(height, width) / min(height, width) > 200:
|
| 45 |
+
raise ValueError(
|
| 46 |
+
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
|
| 47 |
+
)
|
| 48 |
+
h_bar = round(height / factor) * factor
|
| 49 |
+
w_bar = round(width / factor) * factor
|
| 50 |
+
if h_bar * w_bar > max_pixels:
|
| 51 |
+
beta = math.sqrt((height * width) / max_pixels)
|
| 52 |
+
h_bar = math.floor(height / beta / factor) * factor
|
| 53 |
+
w_bar = math.floor(width / beta / factor) * factor
|
| 54 |
+
elif h_bar * w_bar < min_pixels:
|
| 55 |
+
beta = math.sqrt(min_pixels / (height * width))
|
| 56 |
+
h_bar = math.ceil(height * beta / factor) * factor
|
| 57 |
+
w_bar = math.ceil(width * beta / factor) * factor
|
| 58 |
+
return h_bar, w_bar
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class KananaVImageProcessor(BaseImageProcessor):
|
| 62 |
+
def __init__(
|
| 63 |
+
self,
|
| 64 |
+
do_resize: bool = True,
|
| 65 |
+
do_rescale: bool = True,
|
| 66 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
| 67 |
+
do_normalize: bool = True,
|
| 68 |
+
image_mean: Optional[Union[float, list[float]]] = OPENAI_CLIP_MEAN,
|
| 69 |
+
image_std: Optional[Union[float, list[float]]] = OPENAI_CLIP_STD,
|
| 70 |
+
do_convert_rgb: bool = True,
|
| 71 |
+
min_pixels: int = 56 * 56,
|
| 72 |
+
max_pixels: int = 14 * 14 * 4 * 1280,
|
| 73 |
+
patch_size: int = 14,
|
| 74 |
+
temporal_patch_size: int = 2,
|
| 75 |
+
merge_size: int = 2,
|
| 76 |
+
**kwargs,
|
| 77 |
+
) -> None:
|
| 78 |
+
super().__init__(**kwargs)
|
| 79 |
+
self.do_resize = do_resize
|
| 80 |
+
self.resample = Image.BICUBIC
|
| 81 |
+
self.do_rescale = do_rescale
|
| 82 |
+
self.rescale_factor = rescale_factor
|
| 83 |
+
self.do_normalize = do_normalize
|
| 84 |
+
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
| 85 |
+
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
| 86 |
+
self.min_pixels = min_pixels
|
| 87 |
+
self.max_pixels = max_pixels
|
| 88 |
+
self.patch_size = patch_size
|
| 89 |
+
self.temporal_patch_size = temporal_patch_size
|
| 90 |
+
self.merge_size = merge_size
|
| 91 |
+
self.size = {"min_pixels": min_pixels, "max_pixels": max_pixels}
|
| 92 |
+
self.do_convert_rgb = do_convert_rgb
|
| 93 |
+
self.input_data_format = ChannelDimension.LAST
|
| 94 |
+
|
| 95 |
+
def _preprocess(
|
| 96 |
+
self,
|
| 97 |
+
images: Union[ImageInput],
|
| 98 |
+
do_resize: bool = True,
|
| 99 |
+
resample: PILImageResampling = None,
|
| 100 |
+
do_rescale: bool = None,
|
| 101 |
+
rescale_factor: float = None,
|
| 102 |
+
do_normalize: bool = None,
|
| 103 |
+
image_mean: Optional[Union[float, list[float]]] = None,
|
| 104 |
+
image_std: Optional[Union[float, list[float]]] = None,
|
| 105 |
+
do_convert_rgb: bool = None,
|
| 106 |
+
data_format: Optional[ChannelDimension] = ChannelDimension.FIRST,
|
| 107 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
| 108 |
+
):
|
| 109 |
+
"""
|
| 110 |
+
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
|
| 111 |
+
(samuel) From image_processing_qwen2_vl.py
|
| 112 |
+
|
| 113 |
+
Args:
|
| 114 |
+
images (`ImageInput`):
|
| 115 |
+
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
|
| 116 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
| 117 |
+
Whether to resize the image.
|
| 118 |
+
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
| 119 |
+
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
|
| 120 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
| 121 |
+
Whether to rescale the image.
|
| 122 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
| 123 |
+
Scale factor to use if rescaling the image.
|
| 124 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
| 125 |
+
Whether to normalize the image.
|
| 126 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
| 127 |
+
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
| 128 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
| 129 |
+
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
| 130 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
| 131 |
+
Whether to convert the image to RGB.
|
| 132 |
+
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
|
| 133 |
+
The channel dimension format for the output image. Can be one of:
|
| 134 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 135 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 136 |
+
- Unset: Use the channel dimension format of the input image.
|
| 137 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
| 138 |
+
The channel dimension format for the input image. Can be one of:
|
| 139 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
| 140 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
| 141 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
| 142 |
+
"""
|
| 143 |
+
images = make_list_of_images(images)
|
| 144 |
+
|
| 145 |
+
if do_convert_rgb:
|
| 146 |
+
images = [convert_to_rgb(image) for image in images]
|
| 147 |
+
|
| 148 |
+
# All transformations expect numpy arrays.
|
| 149 |
+
images = [to_numpy_array(image) for image in images]
|
| 150 |
+
|
| 151 |
+
if is_scaled_image(images[0]) and do_rescale:
|
| 152 |
+
logger.warning_once(
|
| 153 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
| 154 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
| 155 |
+
)
|
| 156 |
+
if input_data_format is None:
|
| 157 |
+
# We assume that all images have the same channel dimension format.
|
| 158 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
| 159 |
+
|
| 160 |
+
height, width = get_image_size(images[0], channel_dim=input_data_format)
|
| 161 |
+
resized_height, resized_width = height, width
|
| 162 |
+
processed_images = []
|
| 163 |
+
for image in images:
|
| 164 |
+
if do_resize:
|
| 165 |
+
resized_height, resized_width = smart_resize(
|
| 166 |
+
height,
|
| 167 |
+
width,
|
| 168 |
+
factor=self.patch_size * self.merge_size,
|
| 169 |
+
min_pixels=self.min_pixels,
|
| 170 |
+
max_pixels=self.max_pixels,
|
| 171 |
+
)
|
| 172 |
+
image = resize(
|
| 173 |
+
image,
|
| 174 |
+
size=(resized_height, resized_width),
|
| 175 |
+
resample=resample,
|
| 176 |
+
input_data_format=input_data_format,
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
if do_rescale:
|
| 180 |
+
image = self.rescale(
|
| 181 |
+
image, scale=rescale_factor, input_data_format=input_data_format
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
if do_normalize:
|
| 185 |
+
image = self.normalize(
|
| 186 |
+
image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
|
| 187 |
+
)
|
| 188 |
+
processed_images.append(image)
|
| 189 |
+
|
| 190 |
+
patches = np.array(processed_images)
|
| 191 |
+
if data_format == ChannelDimension.LAST:
|
| 192 |
+
# Convert from (num_images, height, width, num_channels) format.
|
| 193 |
+
patches = rearrange(patches, "N H W C -> N C H W")
|
| 194 |
+
if patches.shape[0] == 1:
|
| 195 |
+
patches = np.tile(patches, (self.temporal_patch_size, 1, 1, 1))
|
| 196 |
+
grid_t = patches.shape[0] // self.temporal_patch_size
|
| 197 |
+
grid_h, grid_w = resized_height // self.patch_size, resized_width // self.patch_size
|
| 198 |
+
flatten_patches = rearrange(
|
| 199 |
+
patches,
|
| 200 |
+
"(nT T) C (nH sH H) (nW sW W) -> (nT nH nW sH sW) (C T H W)",
|
| 201 |
+
T=self.temporal_patch_size,
|
| 202 |
+
H=self.patch_size,
|
| 203 |
+
W=self.patch_size,
|
| 204 |
+
nH=grid_h // self.merge_size,
|
| 205 |
+
nW=grid_w // self.merge_size,
|
| 206 |
+
sH=self.merge_size,
|
| 207 |
+
sW=self.merge_size,
|
| 208 |
+
)
|
| 209 |
+
return (
|
| 210 |
+
flatten_patches,
|
| 211 |
+
(grid_t, grid_h, grid_w),
|
| 212 |
+
(resized_height, resized_width),
|
| 213 |
+
(height, width),
|
| 214 |
+
)
|
| 215 |
+
|
| 216 |
+
def resize_pil_image(self, image):
|
| 217 |
+
"""
|
| 218 |
+
if width * height < self.min_pixels:
|
| 219 |
+
expansion_ratio = np.ceil(1 / np.sqrt((width * height / self.min_pixels)))
|
| 220 |
+
width, height = (width * expansion_ratio, height * expansion_ratio)
|
| 221 |
+
"""
|
| 222 |
+
ori_width, ori_height = image.size
|
| 223 |
+
width, height = (ori_width, ori_height)
|
| 224 |
+
if min(width, height) < self.patch_size * self.merge_size:
|
| 225 |
+
scale = self.patch_size * self.merge_size / min(width, height)
|
| 226 |
+
width, height = (int(width * scale), int(height * scale))
|
| 227 |
+
if (width, height) != (ori_width, ori_height):
|
| 228 |
+
image = image.resize((width, height), resample=Image.BICUBIC)
|
| 229 |
+
|
| 230 |
+
return image
|
| 231 |
+
|
| 232 |
+
def __call__(self, image):
|
| 233 |
+
"""
|
| 234 |
+
Args:
|
| 235 |
+
image:
|
| 236 |
+
|
| 237 |
+
Return:
|
| 238 |
+
image_input (tensors): (number of tiles, 3, H, W)
|
| 239 |
+
hw_tiles (tuple): (height, width) of the tiles
|
| 240 |
+
hw_best_resolution (tuple): (height, width) of the best resolution (with padding)
|
| 241 |
+
hw_orig_resolution (tuple): (height, width) of the original resolution
|
| 242 |
+
"""
|
| 243 |
+
do_resize = self.do_resize
|
| 244 |
+
resample = self.resample
|
| 245 |
+
do_rescale = self.do_rescale
|
| 246 |
+
rescale_factor = self.rescale_factor
|
| 247 |
+
do_normalize = self.do_normalize
|
| 248 |
+
image_mean = self.image_mean
|
| 249 |
+
image_std = self.image_std
|
| 250 |
+
do_convert_rgb = self.do_convert_rgb
|
| 251 |
+
input_data_format = self.input_data_format
|
| 252 |
+
|
| 253 |
+
if image is not None:
|
| 254 |
+
# resize imagee if the shortest side is smaller than patch_size * merge_size
|
| 255 |
+
image = self.resize_pil_image(image)
|
| 256 |
+
|
| 257 |
+
patches, image_grid_thw, resized_hw, original_hw = self._preprocess(
|
| 258 |
+
images=image,
|
| 259 |
+
do_resize=do_resize,
|
| 260 |
+
resample=resample,
|
| 261 |
+
do_rescale=do_rescale,
|
| 262 |
+
rescale_factor=rescale_factor,
|
| 263 |
+
do_normalize=do_normalize,
|
| 264 |
+
image_mean=image_mean,
|
| 265 |
+
image_std=image_std,
|
| 266 |
+
do_convert_rgb=do_convert_rgb,
|
| 267 |
+
input_data_format=input_data_format,
|
| 268 |
+
data_format=ChannelDimension.LAST,
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
pixel_values = torch.tensor(patches)
|
| 272 |
+
image_meta = {
|
| 273 |
+
"vision_grid_thw": image_grid_thw,
|
| 274 |
+
"hw_best_resolution": resized_hw,
|
| 275 |
+
"hw_orig_resolution": original_hw,
|
| 276 |
+
"image_token_thw": (
|
| 277 |
+
image_grid_thw[0],
|
| 278 |
+
image_grid_thw[1] // self.merge_size,
|
| 279 |
+
image_grid_thw[2] // self.merge_size,
|
| 280 |
+
),
|
| 281 |
+
}
|
| 282 |
+
else:
|
| 283 |
+
pixel_values = None
|
| 284 |
+
image_meta = None
|
| 285 |
+
|
| 286 |
+
return {
|
| 287 |
+
"pixel_values": pixel_values,
|
| 288 |
+
"image_meta": image_meta,
|
| 289 |
+
}
|
tokenization.py
ADDED
|
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import re
|
| 3 |
+
from typing import Optional
|
| 4 |
+
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import PreTrainedTokenizer, PreTrainedTokenizerFast
|
| 7 |
+
|
| 8 |
+
# Role tokens
|
| 9 |
+
AI = "AI: "
|
| 10 |
+
HUMAN = "Human: "
|
| 11 |
+
_AI = "\n" + AI
|
| 12 |
+
_HUMAN = "\n" + HUMAN
|
| 13 |
+
|
| 14 |
+
# special media tokens
|
| 15 |
+
IMAGE = "<image>"
|
| 16 |
+
IMAGE_ROW_SEPARATOR = "\n"
|
| 17 |
+
IMAGE_GLOBAL_LOCAL_SEPARATOR = "\n"
|
| 18 |
+
MEDIA_TOKENS = {
|
| 19 |
+
"image": [IMAGE],
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
_INFINITE = int(1e12) # infinite token length for no-truncation
|
| 23 |
+
|
| 24 |
+
logger = logging.getLogger("kanana-1.5-v")
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def _pad_trunc(
|
| 28 |
+
x: list[list[int]],
|
| 29 |
+
padding: str,
|
| 30 |
+
padding_side: str,
|
| 31 |
+
pad_value: int,
|
| 32 |
+
max_length: int,
|
| 33 |
+
) -> torch.LongTensor:
|
| 34 |
+
"""Pad and truncate sequences to the same length
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
x (list[list[int]])
|
| 38 |
+
padding ("longest" or "max_length")
|
| 39 |
+
padding_side ("left" or "right")
|
| 40 |
+
pad_value (int)
|
| 41 |
+
max_length (int or None): if padding == "max_length", max_length should be given.
|
| 42 |
+
"""
|
| 43 |
+
assert padding in ["longest", "max_length"]
|
| 44 |
+
assert padding_side in ["left", "right"]
|
| 45 |
+
|
| 46 |
+
lengths = [len(sample) for sample in x]
|
| 47 |
+
if padding == "longest":
|
| 48 |
+
max_length = max(lengths)
|
| 49 |
+
|
| 50 |
+
new_x = []
|
| 51 |
+
for sample, length in zip(x, lengths):
|
| 52 |
+
if torch.is_tensor(sample):
|
| 53 |
+
sample = sample.tolist()
|
| 54 |
+
|
| 55 |
+
if length >= max_length:
|
| 56 |
+
new_x.append(sample[:max_length])
|
| 57 |
+
continue
|
| 58 |
+
|
| 59 |
+
padding_size = max_length - length
|
| 60 |
+
pads = [pad_value] * padding_size
|
| 61 |
+
if padding_side == "right":
|
| 62 |
+
new_x.append(sample + pads)
|
| 63 |
+
else:
|
| 64 |
+
new_x.append(pads + sample)
|
| 65 |
+
|
| 66 |
+
return torch.as_tensor(new_x, dtype=torch.long)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class KananaVTokenizerMixin:
|
| 70 |
+
def mllm_setup(self, num_visual_tokens: int):
|
| 71 |
+
self.num_visual_tokens = num_visual_tokens
|
| 72 |
+
|
| 73 |
+
# Currently we only support the image modality for media modality.
|
| 74 |
+
self.media_tokens = {k: -int(i + 1) for i, k in enumerate(MEDIA_TOKENS["image"])}
|
| 75 |
+
self.media_lengths = {MEDIA_TOKENS["image"][0]: num_visual_tokens}
|
| 76 |
+
|
| 77 |
+
def repeat_image_tokens(
|
| 78 |
+
self, hw_tokens, with_row_separator=True, add_global_local_separator=False
|
| 79 |
+
):
|
| 80 |
+
if len(hw_tokens) == 3:
|
| 81 |
+
T, H, W = hw_tokens
|
| 82 |
+
else:
|
| 83 |
+
H, W = hw_tokens
|
| 84 |
+
|
| 85 |
+
repeated_tokens = []
|
| 86 |
+
|
| 87 |
+
if add_global_local_separator:
|
| 88 |
+
global_local_separator = self(IMAGE_GLOBAL_LOCAL_SEPARATOR, add_special_tokens=False)[
|
| 89 |
+
"input_ids"
|
| 90 |
+
]
|
| 91 |
+
|
| 92 |
+
repeated_tokens += global_local_separator
|
| 93 |
+
|
| 94 |
+
if with_row_separator:
|
| 95 |
+
row_sep = self(IMAGE_ROW_SEPARATOR, add_special_tokens=False)["input_ids"]
|
| 96 |
+
|
| 97 |
+
for h_idx in range(H):
|
| 98 |
+
repeated_tokens += [self.media_tokens[IMAGE]] * W
|
| 99 |
+
if with_row_separator and h_idx != H - 1:
|
| 100 |
+
repeated_tokens += row_sep
|
| 101 |
+
|
| 102 |
+
return repeated_tokens
|
| 103 |
+
|
| 104 |
+
def encode_text_only(self, prompt: str, add_special_tokens: bool = False) -> list:
|
| 105 |
+
# Text-only Data
|
| 106 |
+
# split prompt into chunks by role tokens
|
| 107 |
+
tokens_to_split = [_AI, _HUMAN]
|
| 108 |
+
pattern = "|".join(map(re.escape, tokens_to_split))
|
| 109 |
+
chunk_strs = re.split(f"({pattern})", prompt)
|
| 110 |
+
chunk_strs = [x for x in chunk_strs if len(x) > 0]
|
| 111 |
+
|
| 112 |
+
enc_chunk = []
|
| 113 |
+
for idx, chunk_str in enumerate(chunk_strs):
|
| 114 |
+
curr_chunk = self(chunk_str, add_special_tokens=False)["input_ids"]
|
| 115 |
+
enc_chunk += curr_chunk
|
| 116 |
+
return enc_chunk
|
| 117 |
+
|
| 118 |
+
def encode_prompt(
|
| 119 |
+
self, prompt: str, max_length: int | None = None, image_meta: dict | None = None
|
| 120 |
+
) -> dict:
|
| 121 |
+
"""Tokenize prompt which consists of image-text or text only, with role tokens.
|
| 122 |
+
Role pattern is "AI: " or "Human: ".
|
| 123 |
+
|
| 124 |
+
Args:
|
| 125 |
+
prompt
|
| 126 |
+
max_length (int or None): here, max_length is used for truncation.
|
| 127 |
+
If max_length is None, no truncation is applied.
|
| 128 |
+
"""
|
| 129 |
+
max_length = max_length or _INFINITE # if None, set to infinite for no-truncation
|
| 130 |
+
|
| 131 |
+
# output enc_chunk
|
| 132 |
+
enc_chunk = []
|
| 133 |
+
|
| 134 |
+
# Text-only or Image-Text Data
|
| 135 |
+
# split prompt into chunks by media and role tokens
|
| 136 |
+
tokens_to_split = list(self.media_tokens.keys()) + [_AI, _HUMAN]
|
| 137 |
+
pattern = "|".join(map(re.escape, tokens_to_split))
|
| 138 |
+
chunk_strs = re.split(f"({pattern})", prompt)
|
| 139 |
+
chunk_strs = [x for x in chunk_strs if len(x) > 0]
|
| 140 |
+
# tokenize chunks
|
| 141 |
+
img_idx = 0 # for sync with image_meta
|
| 142 |
+
for idx, chunk_str in enumerate(chunk_strs):
|
| 143 |
+
if chunk_str in self.media_tokens:
|
| 144 |
+
if chunk_str == IMAGE:
|
| 145 |
+
image_token_thw = (
|
| 146 |
+
image_meta["image_token_thw"][img_idx]
|
| 147 |
+
if image_meta.get("image_token_thw")
|
| 148 |
+
else None
|
| 149 |
+
)
|
| 150 |
+
|
| 151 |
+
media_tokens = self.repeat_image_tokens(
|
| 152 |
+
image_token_thw,
|
| 153 |
+
with_row_separator=True,
|
| 154 |
+
add_global_local_separator=True,
|
| 155 |
+
)
|
| 156 |
+
# increment image index
|
| 157 |
+
img_idx += 1
|
| 158 |
+
|
| 159 |
+
else:
|
| 160 |
+
raise ValueError("Unknown chunk str", chunk_str)
|
| 161 |
+
|
| 162 |
+
enc_chunk += media_tokens
|
| 163 |
+
|
| 164 |
+
else:
|
| 165 |
+
curr_chunk = self(chunk_str, add_special_tokens=False)["input_ids"]
|
| 166 |
+
enc_chunk += curr_chunk
|
| 167 |
+
|
| 168 |
+
L = len(enc_chunk)
|
| 169 |
+
|
| 170 |
+
input_ids = torch.as_tensor(enc_chunk, dtype=torch.long)
|
| 171 |
+
attention_mask = torch.ones_like(input_ids)
|
| 172 |
+
|
| 173 |
+
assert L <= max_length, (
|
| 174 |
+
f"[Length exceeded] Input sequence length ({L}) is greater than "
|
| 175 |
+
f"the allowed max_length ({max_length}). "
|
| 176 |
+
"Please truncate the sequence or increase max_length."
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
return {
|
| 180 |
+
"input_ids": input_ids, # [L]
|
| 181 |
+
"seq_length": L, # int
|
| 182 |
+
"attention_mask": attention_mask, # [L]
|
| 183 |
+
}
|
| 184 |
+
|
| 185 |
+
def batch_collate_pad(
|
| 186 |
+
self,
|
| 187 |
+
batch: list,
|
| 188 |
+
padding: str,
|
| 189 |
+
padding_side: str,
|
| 190 |
+
max_length: int | None,
|
| 191 |
+
) -> dict[str, torch.LongTensor]:
|
| 192 |
+
"""Collate batch and pad/truncate to the same length
|
| 193 |
+
|
| 194 |
+
Args:
|
| 195 |
+
batch
|
| 196 |
+
padding ("longest" or "max_length")
|
| 197 |
+
padding_side ("left" or "right")
|
| 198 |
+
pad_value (int)
|
| 199 |
+
max_length (int or None): if padding == "max_length", max_length should be given
|
| 200 |
+
"""
|
| 201 |
+
if padding == "max_length":
|
| 202 |
+
assert max_length is not None, "max_length should be given if padding == 'max_length'"
|
| 203 |
+
else:
|
| 204 |
+
# if padding == 'longest' and max_length is None, set to infinite for no-truncation
|
| 205 |
+
max_length = max_length or _INFINITE
|
| 206 |
+
|
| 207 |
+
input_ids = [sample["input_ids"] for sample in batch]
|
| 208 |
+
attention_mask = [sample["attention_mask"] for sample in batch]
|
| 209 |
+
seq_length = [sample["seq_length"] for sample in batch]
|
| 210 |
+
|
| 211 |
+
input_ids = _pad_trunc(input_ids, padding, padding_side, self.pad_token_id, max_length)
|
| 212 |
+
attention_mask = _pad_trunc(attention_mask, padding, padding_side, 0, max_length)
|
| 213 |
+
seq_length = torch.as_tensor(seq_length, dtype=torch.long)
|
| 214 |
+
|
| 215 |
+
return {
|
| 216 |
+
"input_ids": input_ids,
|
| 217 |
+
"attention_mask": attention_mask,
|
| 218 |
+
"seq_length": seq_length,
|
| 219 |
+
}
|
| 220 |
+
|
| 221 |
+
def get_chat_template(self) -> str:
|
| 222 |
+
"""Method for bw-compat: old HF transformers (e.g., 4.41.0) does not have get_chat_template
|
| 223 |
+
"""
|
| 224 |
+
return self.chat_template
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
class KananaVTokenizer(PreTrainedTokenizer, KananaVTokenizerMixin):
|
| 228 |
+
def __init__(self, **kwargs):
|
| 229 |
+
super().__init__(**kwargs)
|
| 230 |
+
|
| 231 |
+
def encode(self, text, add_special_tokens=False) -> list:
|
| 232 |
+
return self.encode_text_only(prompt=text, add_special_tokens=add_special_tokens)
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
class KananaVTokenizerFast(PreTrainedTokenizerFast, KananaVTokenizerMixin):
|
| 236 |
+
def __init__(self, **kwargs):
|
| 237 |
+
super().__init__(**kwargs)
|
| 238 |
+
|
| 239 |
+
def encode(self, text, add_special_tokens=False) -> list:
|
| 240 |
+
return self.encode_text_only(prompt=text, add_special_tokens=add_special_tokens)
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d44e2a3cfdfa7530be35f0d72c39b37ff438d4a1e69cc285b3ee461987d0bfa7
|
| 3 |
+
size 17210623
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,2095 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"auto_map": {
|
| 3 |
+
"AutoTokenizer": ["tokenization.KananaVTokenizer", "tokenization.KananaVTokenizerFast"]
|
| 4 |
+
},
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"128000": {
|
| 7 |
+
"content": "<|begin_of_text|>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"128001": {
|
| 15 |
+
"content": "<|end_of_text|>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"128002": {
|
| 23 |
+
"content": "<|reserved_special_token_0|>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
},
|
| 30 |
+
"128003": {
|
| 31 |
+
"content": "<|reserved_special_token_1|>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
"128004": {
|
| 39 |
+
"content": "<|reserved_special_token_2|>",
|
| 40 |
+
"lstrip": false,
|
| 41 |
+
"normalized": false,
|
| 42 |
+
"rstrip": false,
|
| 43 |
+
"single_word": false,
|
| 44 |
+
"special": true
|
| 45 |
+
},
|
| 46 |
+
"128005": {
|
| 47 |
+
"content": "<|reserved_special_token_3|>",
|
| 48 |
+
"lstrip": false,
|
| 49 |
+
"normalized": false,
|
| 50 |
+
"rstrip": false,
|
| 51 |
+
"single_word": false,
|
| 52 |
+
"special": true
|
| 53 |
+
},
|
| 54 |
+
"128006": {
|
| 55 |
+
"content": "<|start_header_id|>",
|
| 56 |
+
"lstrip": false,
|
| 57 |
+
"normalized": false,
|
| 58 |
+
"rstrip": false,
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"special": true
|
| 61 |
+
},
|
| 62 |
+
"128007": {
|
| 63 |
+
"content": "<|end_header_id|>",
|
| 64 |
+
"lstrip": false,
|
| 65 |
+
"normalized": false,
|
| 66 |
+
"rstrip": false,
|
| 67 |
+
"single_word": false,
|
| 68 |
+
"special": true
|
| 69 |
+
},
|
| 70 |
+
"128008": {
|
| 71 |
+
"content": "<|reserved_special_token_4|>",
|
| 72 |
+
"lstrip": false,
|
| 73 |
+
"normalized": false,
|
| 74 |
+
"rstrip": false,
|
| 75 |
+
"single_word": false,
|
| 76 |
+
"special": true
|
| 77 |
+
},
|
| 78 |
+
"128009": {
|
| 79 |
+
"content": "<|eot_id|>",
|
| 80 |
+
"lstrip": false,
|
| 81 |
+
"normalized": false,
|
| 82 |
+
"rstrip": false,
|
| 83 |
+
"single_word": false,
|
| 84 |
+
"special": true
|
| 85 |
+
},
|
| 86 |
+
"128010": {
|
| 87 |
+
"content": "<|reserved_special_token_5|>",
|
| 88 |
+
"lstrip": false,
|
| 89 |
+
"normalized": false,
|
| 90 |
+
"rstrip": false,
|
| 91 |
+
"single_word": false,
|
| 92 |
+
"special": true
|
| 93 |
+
},
|
| 94 |
+
"128011": {
|
| 95 |
+
"content": "<|reserved_special_token_6|>",
|
| 96 |
+
"lstrip": false,
|
| 97 |
+
"normalized": false,
|
| 98 |
+
"rstrip": false,
|
| 99 |
+
"single_word": false,
|
| 100 |
+
"special": true
|
| 101 |
+
},
|
| 102 |
+
"128012": {
|
| 103 |
+
"content": "<|reserved_special_token_7|>",
|
| 104 |
+
"lstrip": false,
|
| 105 |
+
"normalized": false,
|
| 106 |
+
"rstrip": false,
|
| 107 |
+
"single_word": false,
|
| 108 |
+
"special": true
|
| 109 |
+
},
|
| 110 |
+
"128013": {
|
| 111 |
+
"content": "<|reserved_special_token_8|>",
|
| 112 |
+
"lstrip": false,
|
| 113 |
+
"normalized": false,
|
| 114 |
+
"rstrip": false,
|
| 115 |
+
"single_word": false,
|
| 116 |
+
"special": true
|
| 117 |
+
},
|
| 118 |
+
"128014": {
|
| 119 |
+
"content": "<|reserved_special_token_9|>",
|
| 120 |
+
"lstrip": false,
|
| 121 |
+
"normalized": false,
|
| 122 |
+
"rstrip": false,
|
| 123 |
+
"single_word": false,
|
| 124 |
+
"special": true
|
| 125 |
+
},
|
| 126 |
+
"128015": {
|
| 127 |
+
"content": "<|reserved_special_token_10|>",
|
| 128 |
+
"lstrip": false,
|
| 129 |
+
"normalized": false,
|
| 130 |
+
"rstrip": false,
|
| 131 |
+
"single_word": false,
|
| 132 |
+
"special": true
|
| 133 |
+
},
|
| 134 |
+
"128016": {
|
| 135 |
+
"content": "<|reserved_special_token_11|>",
|
| 136 |
+
"lstrip": false,
|
| 137 |
+
"normalized": false,
|
| 138 |
+
"rstrip": false,
|
| 139 |
+
"single_word": false,
|
| 140 |
+
"special": true
|
| 141 |
+
},
|
| 142 |
+
"128017": {
|
| 143 |
+
"content": "<|reserved_special_token_12|>",
|
| 144 |
+
"lstrip": false,
|
| 145 |
+
"normalized": false,
|
| 146 |
+
"rstrip": false,
|
| 147 |
+
"single_word": false,
|
| 148 |
+
"special": true
|
| 149 |
+
},
|
| 150 |
+
"128018": {
|
| 151 |
+
"content": "<|reserved_special_token_13|>",
|
| 152 |
+
"lstrip": false,
|
| 153 |
+
"normalized": false,
|
| 154 |
+
"rstrip": false,
|
| 155 |
+
"single_word": false,
|
| 156 |
+
"special": true
|
| 157 |
+
},
|
| 158 |
+
"128019": {
|
| 159 |
+
"content": "<|reserved_special_token_14|>",
|
| 160 |
+
"lstrip": false,
|
| 161 |
+
"normalized": false,
|
| 162 |
+
"rstrip": false,
|
| 163 |
+
"single_word": false,
|
| 164 |
+
"special": true
|
| 165 |
+
},
|
| 166 |
+
"128020": {
|
| 167 |
+
"content": "<|reserved_special_token_15|>",
|
| 168 |
+
"lstrip": false,
|
| 169 |
+
"normalized": false,
|
| 170 |
+
"rstrip": false,
|
| 171 |
+
"single_word": false,
|
| 172 |
+
"special": true
|
| 173 |
+
},
|
| 174 |
+
"128021": {
|
| 175 |
+
"content": "<|reserved_special_token_16|>",
|
| 176 |
+
"lstrip": false,
|
| 177 |
+
"normalized": false,
|
| 178 |
+
"rstrip": false,
|
| 179 |
+
"single_word": false,
|
| 180 |
+
"special": true
|
| 181 |
+
},
|
| 182 |
+
"128022": {
|
| 183 |
+
"content": "<|reserved_special_token_17|>",
|
| 184 |
+
"lstrip": false,
|
| 185 |
+
"normalized": false,
|
| 186 |
+
"rstrip": false,
|
| 187 |
+
"single_word": false,
|
| 188 |
+
"special": true
|
| 189 |
+
},
|
| 190 |
+
"128023": {
|
| 191 |
+
"content": "<|reserved_special_token_18|>",
|
| 192 |
+
"lstrip": false,
|
| 193 |
+
"normalized": false,
|
| 194 |
+
"rstrip": false,
|
| 195 |
+
"single_word": false,
|
| 196 |
+
"special": true
|
| 197 |
+
},
|
| 198 |
+
"128024": {
|
| 199 |
+
"content": "<|reserved_special_token_19|>",
|
| 200 |
+
"lstrip": false,
|
| 201 |
+
"normalized": false,
|
| 202 |
+
"rstrip": false,
|
| 203 |
+
"single_word": false,
|
| 204 |
+
"special": true
|
| 205 |
+
},
|
| 206 |
+
"128025": {
|
| 207 |
+
"content": "<|reserved_special_token_20|>",
|
| 208 |
+
"lstrip": false,
|
| 209 |
+
"normalized": false,
|
| 210 |
+
"rstrip": false,
|
| 211 |
+
"single_word": false,
|
| 212 |
+
"special": true
|
| 213 |
+
},
|
| 214 |
+
"128026": {
|
| 215 |
+
"content": "<|reserved_special_token_21|>",
|
| 216 |
+
"lstrip": false,
|
| 217 |
+
"normalized": false,
|
| 218 |
+
"rstrip": false,
|
| 219 |
+
"single_word": false,
|
| 220 |
+
"special": true
|
| 221 |
+
},
|
| 222 |
+
"128027": {
|
| 223 |
+
"content": "<|reserved_special_token_22|>",
|
| 224 |
+
"lstrip": false,
|
| 225 |
+
"normalized": false,
|
| 226 |
+
"rstrip": false,
|
| 227 |
+
"single_word": false,
|
| 228 |
+
"special": true
|
| 229 |
+
},
|
| 230 |
+
"128028": {
|
| 231 |
+
"content": "<|reserved_special_token_23|>",
|
| 232 |
+
"lstrip": false,
|
| 233 |
+
"normalized": false,
|
| 234 |
+
"rstrip": false,
|
| 235 |
+
"single_word": false,
|
| 236 |
+
"special": true
|
| 237 |
+
},
|
| 238 |
+
"128029": {
|
| 239 |
+
"content": "<|reserved_special_token_24|>",
|
| 240 |
+
"lstrip": false,
|
| 241 |
+
"normalized": false,
|
| 242 |
+
"rstrip": false,
|
| 243 |
+
"single_word": false,
|
| 244 |
+
"special": true
|
| 245 |
+
},
|
| 246 |
+
"128030": {
|
| 247 |
+
"content": "<|reserved_special_token_25|>",
|
| 248 |
+
"lstrip": false,
|
| 249 |
+
"normalized": false,
|
| 250 |
+
"rstrip": false,
|
| 251 |
+
"single_word": false,
|
| 252 |
+
"special": true
|
| 253 |
+
},
|
| 254 |
+
"128031": {
|
| 255 |
+
"content": "<|reserved_special_token_26|>",
|
| 256 |
+
"lstrip": false,
|
| 257 |
+
"normalized": false,
|
| 258 |
+
"rstrip": false,
|
| 259 |
+
"single_word": false,
|
| 260 |
+
"special": true
|
| 261 |
+
},
|
| 262 |
+
"128032": {
|
| 263 |
+
"content": "<|reserved_special_token_27|>",
|
| 264 |
+
"lstrip": false,
|
| 265 |
+
"normalized": false,
|
| 266 |
+
"rstrip": false,
|
| 267 |
+
"single_word": false,
|
| 268 |
+
"special": true
|
| 269 |
+
},
|
| 270 |
+
"128033": {
|
| 271 |
+
"content": "<|reserved_special_token_28|>",
|
| 272 |
+
"lstrip": false,
|
| 273 |
+
"normalized": false,
|
| 274 |
+
"rstrip": false,
|
| 275 |
+
"single_word": false,
|
| 276 |
+
"special": true
|
| 277 |
+
},
|
| 278 |
+
"128034": {
|
| 279 |
+
"content": "<|reserved_special_token_29|>",
|
| 280 |
+
"lstrip": false,
|
| 281 |
+
"normalized": false,
|
| 282 |
+
"rstrip": false,
|
| 283 |
+
"single_word": false,
|
| 284 |
+
"special": true
|
| 285 |
+
},
|
| 286 |
+
"128035": {
|
| 287 |
+
"content": "<|reserved_special_token_30|>",
|
| 288 |
+
"lstrip": false,
|
| 289 |
+
"normalized": false,
|
| 290 |
+
"rstrip": false,
|
| 291 |
+
"single_word": false,
|
| 292 |
+
"special": true
|
| 293 |
+
},
|
| 294 |
+
"128036": {
|
| 295 |
+
"content": "<|reserved_special_token_31|>",
|
| 296 |
+
"lstrip": false,
|
| 297 |
+
"normalized": false,
|
| 298 |
+
"rstrip": false,
|
| 299 |
+
"single_word": false,
|
| 300 |
+
"special": true
|
| 301 |
+
},
|
| 302 |
+
"128037": {
|
| 303 |
+
"content": "<|reserved_special_token_32|>",
|
| 304 |
+
"lstrip": false,
|
| 305 |
+
"normalized": false,
|
| 306 |
+
"rstrip": false,
|
| 307 |
+
"single_word": false,
|
| 308 |
+
"special": true
|
| 309 |
+
},
|
| 310 |
+
"128038": {
|
| 311 |
+
"content": "<|reserved_special_token_33|>",
|
| 312 |
+
"lstrip": false,
|
| 313 |
+
"normalized": false,
|
| 314 |
+
"rstrip": false,
|
| 315 |
+
"single_word": false,
|
| 316 |
+
"special": true
|
| 317 |
+
},
|
| 318 |
+
"128039": {
|
| 319 |
+
"content": "<|reserved_special_token_34|>",
|
| 320 |
+
"lstrip": false,
|
| 321 |
+
"normalized": false,
|
| 322 |
+
"rstrip": false,
|
| 323 |
+
"single_word": false,
|
| 324 |
+
"special": true
|
| 325 |
+
},
|
| 326 |
+
"128040": {
|
| 327 |
+
"content": "<|reserved_special_token_35|>",
|
| 328 |
+
"lstrip": false,
|
| 329 |
+
"normalized": false,
|
| 330 |
+
"rstrip": false,
|
| 331 |
+
"single_word": false,
|
| 332 |
+
"special": true
|
| 333 |
+
},
|
| 334 |
+
"128041": {
|
| 335 |
+
"content": "<|reserved_special_token_36|>",
|
| 336 |
+
"lstrip": false,
|
| 337 |
+
"normalized": false,
|
| 338 |
+
"rstrip": false,
|
| 339 |
+
"single_word": false,
|
| 340 |
+
"special": true
|
| 341 |
+
},
|
| 342 |
+
"128042": {
|
| 343 |
+
"content": "<|reserved_special_token_37|>",
|
| 344 |
+
"lstrip": false,
|
| 345 |
+
"normalized": false,
|
| 346 |
+
"rstrip": false,
|
| 347 |
+
"single_word": false,
|
| 348 |
+
"special": true
|
| 349 |
+
},
|
| 350 |
+
"128043": {
|
| 351 |
+
"content": "<|reserved_special_token_38|>",
|
| 352 |
+
"lstrip": false,
|
| 353 |
+
"normalized": false,
|
| 354 |
+
"rstrip": false,
|
| 355 |
+
"single_word": false,
|
| 356 |
+
"special": true
|
| 357 |
+
},
|
| 358 |
+
"128044": {
|
| 359 |
+
"content": "<|reserved_special_token_39|>",
|
| 360 |
+
"lstrip": false,
|
| 361 |
+
"normalized": false,
|
| 362 |
+
"rstrip": false,
|
| 363 |
+
"single_word": false,
|
| 364 |
+
"special": true
|
| 365 |
+
},
|
| 366 |
+
"128045": {
|
| 367 |
+
"content": "<|reserved_special_token_40|>",
|
| 368 |
+
"lstrip": false,
|
| 369 |
+
"normalized": false,
|
| 370 |
+
"rstrip": false,
|
| 371 |
+
"single_word": false,
|
| 372 |
+
"special": true
|
| 373 |
+
},
|
| 374 |
+
"128046": {
|
| 375 |
+
"content": "<|reserved_special_token_41|>",
|
| 376 |
+
"lstrip": false,
|
| 377 |
+
"normalized": false,
|
| 378 |
+
"rstrip": false,
|
| 379 |
+
"single_word": false,
|
| 380 |
+
"special": true
|
| 381 |
+
},
|
| 382 |
+
"128047": {
|
| 383 |
+
"content": "<|reserved_special_token_42|>",
|
| 384 |
+
"lstrip": false,
|
| 385 |
+
"normalized": false,
|
| 386 |
+
"rstrip": false,
|
| 387 |
+
"single_word": false,
|
| 388 |
+
"special": true
|
| 389 |
+
},
|
| 390 |
+
"128048": {
|
| 391 |
+
"content": "<|reserved_special_token_43|>",
|
| 392 |
+
"lstrip": false,
|
| 393 |
+
"normalized": false,
|
| 394 |
+
"rstrip": false,
|
| 395 |
+
"single_word": false,
|
| 396 |
+
"special": true
|
| 397 |
+
},
|
| 398 |
+
"128049": {
|
| 399 |
+
"content": "<|reserved_special_token_44|>",
|
| 400 |
+
"lstrip": false,
|
| 401 |
+
"normalized": false,
|
| 402 |
+
"rstrip": false,
|
| 403 |
+
"single_word": false,
|
| 404 |
+
"special": true
|
| 405 |
+
},
|
| 406 |
+
"128050": {
|
| 407 |
+
"content": "<|reserved_special_token_45|>",
|
| 408 |
+
"lstrip": false,
|
| 409 |
+
"normalized": false,
|
| 410 |
+
"rstrip": false,
|
| 411 |
+
"single_word": false,
|
| 412 |
+
"special": true
|
| 413 |
+
},
|
| 414 |
+
"128051": {
|
| 415 |
+
"content": "<|reserved_special_token_46|>",
|
| 416 |
+
"lstrip": false,
|
| 417 |
+
"normalized": false,
|
| 418 |
+
"rstrip": false,
|
| 419 |
+
"single_word": false,
|
| 420 |
+
"special": true
|
| 421 |
+
},
|
| 422 |
+
"128052": {
|
| 423 |
+
"content": "<|reserved_special_token_47|>",
|
| 424 |
+
"lstrip": false,
|
| 425 |
+
"normalized": false,
|
| 426 |
+
"rstrip": false,
|
| 427 |
+
"single_word": false,
|
| 428 |
+
"special": true
|
| 429 |
+
},
|
| 430 |
+
"128053": {
|
| 431 |
+
"content": "<|reserved_special_token_48|>",
|
| 432 |
+
"lstrip": false,
|
| 433 |
+
"normalized": false,
|
| 434 |
+
"rstrip": false,
|
| 435 |
+
"single_word": false,
|
| 436 |
+
"special": true
|
| 437 |
+
},
|
| 438 |
+
"128054": {
|
| 439 |
+
"content": "<|reserved_special_token_49|>",
|
| 440 |
+
"lstrip": false,
|
| 441 |
+
"normalized": false,
|
| 442 |
+
"rstrip": false,
|
| 443 |
+
"single_word": false,
|
| 444 |
+
"special": true
|
| 445 |
+
},
|
| 446 |
+
"128055": {
|
| 447 |
+
"content": "<|reserved_special_token_50|>",
|
| 448 |
+
"lstrip": false,
|
| 449 |
+
"normalized": false,
|
| 450 |
+
"rstrip": false,
|
| 451 |
+
"single_word": false,
|
| 452 |
+
"special": true
|
| 453 |
+
},
|
| 454 |
+
"128056": {
|
| 455 |
+
"content": "<|reserved_special_token_51|>",
|
| 456 |
+
"lstrip": false,
|
| 457 |
+
"normalized": false,
|
| 458 |
+
"rstrip": false,
|
| 459 |
+
"single_word": false,
|
| 460 |
+
"special": true
|
| 461 |
+
},
|
| 462 |
+
"128057": {
|
| 463 |
+
"content": "<|reserved_special_token_52|>",
|
| 464 |
+
"lstrip": false,
|
| 465 |
+
"normalized": false,
|
| 466 |
+
"rstrip": false,
|
| 467 |
+
"single_word": false,
|
| 468 |
+
"special": true
|
| 469 |
+
},
|
| 470 |
+
"128058": {
|
| 471 |
+
"content": "<|reserved_special_token_53|>",
|
| 472 |
+
"lstrip": false,
|
| 473 |
+
"normalized": false,
|
| 474 |
+
"rstrip": false,
|
| 475 |
+
"single_word": false,
|
| 476 |
+
"special": true
|
| 477 |
+
},
|
| 478 |
+
"128059": {
|
| 479 |
+
"content": "<|reserved_special_token_54|>",
|
| 480 |
+
"lstrip": false,
|
| 481 |
+
"normalized": false,
|
| 482 |
+
"rstrip": false,
|
| 483 |
+
"single_word": false,
|
| 484 |
+
"special": true
|
| 485 |
+
},
|
| 486 |
+
"128060": {
|
| 487 |
+
"content": "<|reserved_special_token_55|>",
|
| 488 |
+
"lstrip": false,
|
| 489 |
+
"normalized": false,
|
| 490 |
+
"rstrip": false,
|
| 491 |
+
"single_word": false,
|
| 492 |
+
"special": true
|
| 493 |
+
},
|
| 494 |
+
"128061": {
|
| 495 |
+
"content": "<|reserved_special_token_56|>",
|
| 496 |
+
"lstrip": false,
|
| 497 |
+
"normalized": false,
|
| 498 |
+
"rstrip": false,
|
| 499 |
+
"single_word": false,
|
| 500 |
+
"special": true
|
| 501 |
+
},
|
| 502 |
+
"128062": {
|
| 503 |
+
"content": "<|reserved_special_token_57|>",
|
| 504 |
+
"lstrip": false,
|
| 505 |
+
"normalized": false,
|
| 506 |
+
"rstrip": false,
|
| 507 |
+
"single_word": false,
|
| 508 |
+
"special": true
|
| 509 |
+
},
|
| 510 |
+
"128063": {
|
| 511 |
+
"content": "<|reserved_special_token_58|>",
|
| 512 |
+
"lstrip": false,
|
| 513 |
+
"normalized": false,
|
| 514 |
+
"rstrip": false,
|
| 515 |
+
"single_word": false,
|
| 516 |
+
"special": true
|
| 517 |
+
},
|
| 518 |
+
"128064": {
|
| 519 |
+
"content": "<|reserved_special_token_59|>",
|
| 520 |
+
"lstrip": false,
|
| 521 |
+
"normalized": false,
|
| 522 |
+
"rstrip": false,
|
| 523 |
+
"single_word": false,
|
| 524 |
+
"special": true
|
| 525 |
+
},
|
| 526 |
+
"128065": {
|
| 527 |
+
"content": "<|reserved_special_token_60|>",
|
| 528 |
+
"lstrip": false,
|
| 529 |
+
"normalized": false,
|
| 530 |
+
"rstrip": false,
|
| 531 |
+
"single_word": false,
|
| 532 |
+
"special": true
|
| 533 |
+
},
|
| 534 |
+
"128066": {
|
| 535 |
+
"content": "<|reserved_special_token_61|>",
|
| 536 |
+
"lstrip": false,
|
| 537 |
+
"normalized": false,
|
| 538 |
+
"rstrip": false,
|
| 539 |
+
"single_word": false,
|
| 540 |
+
"special": true
|
| 541 |
+
},
|
| 542 |
+
"128067": {
|
| 543 |
+
"content": "<|reserved_special_token_62|>",
|
| 544 |
+
"lstrip": false,
|
| 545 |
+
"normalized": false,
|
| 546 |
+
"rstrip": false,
|
| 547 |
+
"single_word": false,
|
| 548 |
+
"special": true
|
| 549 |
+
},
|
| 550 |
+
"128068": {
|
| 551 |
+
"content": "<|reserved_special_token_63|>",
|
| 552 |
+
"lstrip": false,
|
| 553 |
+
"normalized": false,
|
| 554 |
+
"rstrip": false,
|
| 555 |
+
"single_word": false,
|
| 556 |
+
"special": true
|
| 557 |
+
},
|
| 558 |
+
"128069": {
|
| 559 |
+
"content": "<|reserved_special_token_64|>",
|
| 560 |
+
"lstrip": false,
|
| 561 |
+
"normalized": false,
|
| 562 |
+
"rstrip": false,
|
| 563 |
+
"single_word": false,
|
| 564 |
+
"special": true
|
| 565 |
+
},
|
| 566 |
+
"128070": {
|
| 567 |
+
"content": "<|reserved_special_token_65|>",
|
| 568 |
+
"lstrip": false,
|
| 569 |
+
"normalized": false,
|
| 570 |
+
"rstrip": false,
|
| 571 |
+
"single_word": false,
|
| 572 |
+
"special": true
|
| 573 |
+
},
|
| 574 |
+
"128071": {
|
| 575 |
+
"content": "<|reserved_special_token_66|>",
|
| 576 |
+
"lstrip": false,
|
| 577 |
+
"normalized": false,
|
| 578 |
+
"rstrip": false,
|
| 579 |
+
"single_word": false,
|
| 580 |
+
"special": true
|
| 581 |
+
},
|
| 582 |
+
"128072": {
|
| 583 |
+
"content": "<|reserved_special_token_67|>",
|
| 584 |
+
"lstrip": false,
|
| 585 |
+
"normalized": false,
|
| 586 |
+
"rstrip": false,
|
| 587 |
+
"single_word": false,
|
| 588 |
+
"special": true
|
| 589 |
+
},
|
| 590 |
+
"128073": {
|
| 591 |
+
"content": "<|reserved_special_token_68|>",
|
| 592 |
+
"lstrip": false,
|
| 593 |
+
"normalized": false,
|
| 594 |
+
"rstrip": false,
|
| 595 |
+
"single_word": false,
|
| 596 |
+
"special": true
|
| 597 |
+
},
|
| 598 |
+
"128074": {
|
| 599 |
+
"content": "<|reserved_special_token_69|>",
|
| 600 |
+
"lstrip": false,
|
| 601 |
+
"normalized": false,
|
| 602 |
+
"rstrip": false,
|
| 603 |
+
"single_word": false,
|
| 604 |
+
"special": true
|
| 605 |
+
},
|
| 606 |
+
"128075": {
|
| 607 |
+
"content": "<|reserved_special_token_70|>",
|
| 608 |
+
"lstrip": false,
|
| 609 |
+
"normalized": false,
|
| 610 |
+
"rstrip": false,
|
| 611 |
+
"single_word": false,
|
| 612 |
+
"special": true
|
| 613 |
+
},
|
| 614 |
+
"128076": {
|
| 615 |
+
"content": "<|reserved_special_token_71|>",
|
| 616 |
+
"lstrip": false,
|
| 617 |
+
"normalized": false,
|
| 618 |
+
"rstrip": false,
|
| 619 |
+
"single_word": false,
|
| 620 |
+
"special": true
|
| 621 |
+
},
|
| 622 |
+
"128077": {
|
| 623 |
+
"content": "<|reserved_special_token_72|>",
|
| 624 |
+
"lstrip": false,
|
| 625 |
+
"normalized": false,
|
| 626 |
+
"rstrip": false,
|
| 627 |
+
"single_word": false,
|
| 628 |
+
"special": true
|
| 629 |
+
},
|
| 630 |
+
"128078": {
|
| 631 |
+
"content": "<|reserved_special_token_73|>",
|
| 632 |
+
"lstrip": false,
|
| 633 |
+
"normalized": false,
|
| 634 |
+
"rstrip": false,
|
| 635 |
+
"single_word": false,
|
| 636 |
+
"special": true
|
| 637 |
+
},
|
| 638 |
+
"128079": {
|
| 639 |
+
"content": "<|reserved_special_token_74|>",
|
| 640 |
+
"lstrip": false,
|
| 641 |
+
"normalized": false,
|
| 642 |
+
"rstrip": false,
|
| 643 |
+
"single_word": false,
|
| 644 |
+
"special": true
|
| 645 |
+
},
|
| 646 |
+
"128080": {
|
| 647 |
+
"content": "<|reserved_special_token_75|>",
|
| 648 |
+
"lstrip": false,
|
| 649 |
+
"normalized": false,
|
| 650 |
+
"rstrip": false,
|
| 651 |
+
"single_word": false,
|
| 652 |
+
"special": true
|
| 653 |
+
},
|
| 654 |
+
"128081": {
|
| 655 |
+
"content": "<|reserved_special_token_76|>",
|
| 656 |
+
"lstrip": false,
|
| 657 |
+
"normalized": false,
|
| 658 |
+
"rstrip": false,
|
| 659 |
+
"single_word": false,
|
| 660 |
+
"special": true
|
| 661 |
+
},
|
| 662 |
+
"128082": {
|
| 663 |
+
"content": "<|reserved_special_token_77|>",
|
| 664 |
+
"lstrip": false,
|
| 665 |
+
"normalized": false,
|
| 666 |
+
"rstrip": false,
|
| 667 |
+
"single_word": false,
|
| 668 |
+
"special": true
|
| 669 |
+
},
|
| 670 |
+
"128083": {
|
| 671 |
+
"content": "<|reserved_special_token_78|>",
|
| 672 |
+
"lstrip": false,
|
| 673 |
+
"normalized": false,
|
| 674 |
+
"rstrip": false,
|
| 675 |
+
"single_word": false,
|
| 676 |
+
"special": true
|
| 677 |
+
},
|
| 678 |
+
"128084": {
|
| 679 |
+
"content": "<|reserved_special_token_79|>",
|
| 680 |
+
"lstrip": false,
|
| 681 |
+
"normalized": false,
|
| 682 |
+
"rstrip": false,
|
| 683 |
+
"single_word": false,
|
| 684 |
+
"special": true
|
| 685 |
+
},
|
| 686 |
+
"128085": {
|
| 687 |
+
"content": "<|reserved_special_token_80|>",
|
| 688 |
+
"lstrip": false,
|
| 689 |
+
"normalized": false,
|
| 690 |
+
"rstrip": false,
|
| 691 |
+
"single_word": false,
|
| 692 |
+
"special": true
|
| 693 |
+
},
|
| 694 |
+
"128086": {
|
| 695 |
+
"content": "<|reserved_special_token_81|>",
|
| 696 |
+
"lstrip": false,
|
| 697 |
+
"normalized": false,
|
| 698 |
+
"rstrip": false,
|
| 699 |
+
"single_word": false,
|
| 700 |
+
"special": true
|
| 701 |
+
},
|
| 702 |
+
"128087": {
|
| 703 |
+
"content": "<|reserved_special_token_82|>",
|
| 704 |
+
"lstrip": false,
|
| 705 |
+
"normalized": false,
|
| 706 |
+
"rstrip": false,
|
| 707 |
+
"single_word": false,
|
| 708 |
+
"special": true
|
| 709 |
+
},
|
| 710 |
+
"128088": {
|
| 711 |
+
"content": "<|reserved_special_token_83|>",
|
| 712 |
+
"lstrip": false,
|
| 713 |
+
"normalized": false,
|
| 714 |
+
"rstrip": false,
|
| 715 |
+
"single_word": false,
|
| 716 |
+
"special": true
|
| 717 |
+
},
|
| 718 |
+
"128089": {
|
| 719 |
+
"content": "<|reserved_special_token_84|>",
|
| 720 |
+
"lstrip": false,
|
| 721 |
+
"normalized": false,
|
| 722 |
+
"rstrip": false,
|
| 723 |
+
"single_word": false,
|
| 724 |
+
"special": true
|
| 725 |
+
},
|
| 726 |
+
"128090": {
|
| 727 |
+
"content": "<|reserved_special_token_85|>",
|
| 728 |
+
"lstrip": false,
|
| 729 |
+
"normalized": false,
|
| 730 |
+
"rstrip": false,
|
| 731 |
+
"single_word": false,
|
| 732 |
+
"special": true
|
| 733 |
+
},
|
| 734 |
+
"128091": {
|
| 735 |
+
"content": "<|reserved_special_token_86|>",
|
| 736 |
+
"lstrip": false,
|
| 737 |
+
"normalized": false,
|
| 738 |
+
"rstrip": false,
|
| 739 |
+
"single_word": false,
|
| 740 |
+
"special": true
|
| 741 |
+
},
|
| 742 |
+
"128092": {
|
| 743 |
+
"content": "<|reserved_special_token_87|>",
|
| 744 |
+
"lstrip": false,
|
| 745 |
+
"normalized": false,
|
| 746 |
+
"rstrip": false,
|
| 747 |
+
"single_word": false,
|
| 748 |
+
"special": true
|
| 749 |
+
},
|
| 750 |
+
"128093": {
|
| 751 |
+
"content": "<|reserved_special_token_88|>",
|
| 752 |
+
"lstrip": false,
|
| 753 |
+
"normalized": false,
|
| 754 |
+
"rstrip": false,
|
| 755 |
+
"single_word": false,
|
| 756 |
+
"special": true
|
| 757 |
+
},
|
| 758 |
+
"128094": {
|
| 759 |
+
"content": "<|reserved_special_token_89|>",
|
| 760 |
+
"lstrip": false,
|
| 761 |
+
"normalized": false,
|
| 762 |
+
"rstrip": false,
|
| 763 |
+
"single_word": false,
|
| 764 |
+
"special": true
|
| 765 |
+
},
|
| 766 |
+
"128095": {
|
| 767 |
+
"content": "<|reserved_special_token_90|>",
|
| 768 |
+
"lstrip": false,
|
| 769 |
+
"normalized": false,
|
| 770 |
+
"rstrip": false,
|
| 771 |
+
"single_word": false,
|
| 772 |
+
"special": true
|
| 773 |
+
},
|
| 774 |
+
"128096": {
|
| 775 |
+
"content": "<|reserved_special_token_91|>",
|
| 776 |
+
"lstrip": false,
|
| 777 |
+
"normalized": false,
|
| 778 |
+
"rstrip": false,
|
| 779 |
+
"single_word": false,
|
| 780 |
+
"special": true
|
| 781 |
+
},
|
| 782 |
+
"128097": {
|
| 783 |
+
"content": "<|reserved_special_token_92|>",
|
| 784 |
+
"lstrip": false,
|
| 785 |
+
"normalized": false,
|
| 786 |
+
"rstrip": false,
|
| 787 |
+
"single_word": false,
|
| 788 |
+
"special": true
|
| 789 |
+
},
|
| 790 |
+
"128098": {
|
| 791 |
+
"content": "<|reserved_special_token_93|>",
|
| 792 |
+
"lstrip": false,
|
| 793 |
+
"normalized": false,
|
| 794 |
+
"rstrip": false,
|
| 795 |
+
"single_word": false,
|
| 796 |
+
"special": true
|
| 797 |
+
},
|
| 798 |
+
"128099": {
|
| 799 |
+
"content": "<|reserved_special_token_94|>",
|
| 800 |
+
"lstrip": false,
|
| 801 |
+
"normalized": false,
|
| 802 |
+
"rstrip": false,
|
| 803 |
+
"single_word": false,
|
| 804 |
+
"special": true
|
| 805 |
+
},
|
| 806 |
+
"128100": {
|
| 807 |
+
"content": "<|reserved_special_token_95|>",
|
| 808 |
+
"lstrip": false,
|
| 809 |
+
"normalized": false,
|
| 810 |
+
"rstrip": false,
|
| 811 |
+
"single_word": false,
|
| 812 |
+
"special": true
|
| 813 |
+
},
|
| 814 |
+
"128101": {
|
| 815 |
+
"content": "<|reserved_special_token_96|>",
|
| 816 |
+
"lstrip": false,
|
| 817 |
+
"normalized": false,
|
| 818 |
+
"rstrip": false,
|
| 819 |
+
"single_word": false,
|
| 820 |
+
"special": true
|
| 821 |
+
},
|
| 822 |
+
"128102": {
|
| 823 |
+
"content": "<|reserved_special_token_97|>",
|
| 824 |
+
"lstrip": false,
|
| 825 |
+
"normalized": false,
|
| 826 |
+
"rstrip": false,
|
| 827 |
+
"single_word": false,
|
| 828 |
+
"special": true
|
| 829 |
+
},
|
| 830 |
+
"128103": {
|
| 831 |
+
"content": "<|reserved_special_token_98|>",
|
| 832 |
+
"lstrip": false,
|
| 833 |
+
"normalized": false,
|
| 834 |
+
"rstrip": false,
|
| 835 |
+
"single_word": false,
|
| 836 |
+
"special": true
|
| 837 |
+
},
|
| 838 |
+
"128104": {
|
| 839 |
+
"content": "<|reserved_special_token_99|>",
|
| 840 |
+
"lstrip": false,
|
| 841 |
+
"normalized": false,
|
| 842 |
+
"rstrip": false,
|
| 843 |
+
"single_word": false,
|
| 844 |
+
"special": true
|
| 845 |
+
},
|
| 846 |
+
"128105": {
|
| 847 |
+
"content": "<|reserved_special_token_100|>",
|
| 848 |
+
"lstrip": false,
|
| 849 |
+
"normalized": false,
|
| 850 |
+
"rstrip": false,
|
| 851 |
+
"single_word": false,
|
| 852 |
+
"special": true
|
| 853 |
+
},
|
| 854 |
+
"128106": {
|
| 855 |
+
"content": "<|reserved_special_token_101|>",
|
| 856 |
+
"lstrip": false,
|
| 857 |
+
"normalized": false,
|
| 858 |
+
"rstrip": false,
|
| 859 |
+
"single_word": false,
|
| 860 |
+
"special": true
|
| 861 |
+
},
|
| 862 |
+
"128107": {
|
| 863 |
+
"content": "<|reserved_special_token_102|>",
|
| 864 |
+
"lstrip": false,
|
| 865 |
+
"normalized": false,
|
| 866 |
+
"rstrip": false,
|
| 867 |
+
"single_word": false,
|
| 868 |
+
"special": true
|
| 869 |
+
},
|
| 870 |
+
"128108": {
|
| 871 |
+
"content": "<|reserved_special_token_103|>",
|
| 872 |
+
"lstrip": false,
|
| 873 |
+
"normalized": false,
|
| 874 |
+
"rstrip": false,
|
| 875 |
+
"single_word": false,
|
| 876 |
+
"special": true
|
| 877 |
+
},
|
| 878 |
+
"128109": {
|
| 879 |
+
"content": "<|reserved_special_token_104|>",
|
| 880 |
+
"lstrip": false,
|
| 881 |
+
"normalized": false,
|
| 882 |
+
"rstrip": false,
|
| 883 |
+
"single_word": false,
|
| 884 |
+
"special": true
|
| 885 |
+
},
|
| 886 |
+
"128110": {
|
| 887 |
+
"content": "<|reserved_special_token_105|>",
|
| 888 |
+
"lstrip": false,
|
| 889 |
+
"normalized": false,
|
| 890 |
+
"rstrip": false,
|
| 891 |
+
"single_word": false,
|
| 892 |
+
"special": true
|
| 893 |
+
},
|
| 894 |
+
"128111": {
|
| 895 |
+
"content": "<|reserved_special_token_106|>",
|
| 896 |
+
"lstrip": false,
|
| 897 |
+
"normalized": false,
|
| 898 |
+
"rstrip": false,
|
| 899 |
+
"single_word": false,
|
| 900 |
+
"special": true
|
| 901 |
+
},
|
| 902 |
+
"128112": {
|
| 903 |
+
"content": "<|reserved_special_token_107|>",
|
| 904 |
+
"lstrip": false,
|
| 905 |
+
"normalized": false,
|
| 906 |
+
"rstrip": false,
|
| 907 |
+
"single_word": false,
|
| 908 |
+
"special": true
|
| 909 |
+
},
|
| 910 |
+
"128113": {
|
| 911 |
+
"content": "<|reserved_special_token_108|>",
|
| 912 |
+
"lstrip": false,
|
| 913 |
+
"normalized": false,
|
| 914 |
+
"rstrip": false,
|
| 915 |
+
"single_word": false,
|
| 916 |
+
"special": true
|
| 917 |
+
},
|
| 918 |
+
"128114": {
|
| 919 |
+
"content": "<|reserved_special_token_109|>",
|
| 920 |
+
"lstrip": false,
|
| 921 |
+
"normalized": false,
|
| 922 |
+
"rstrip": false,
|
| 923 |
+
"single_word": false,
|
| 924 |
+
"special": true
|
| 925 |
+
},
|
| 926 |
+
"128115": {
|
| 927 |
+
"content": "<|reserved_special_token_110|>",
|
| 928 |
+
"lstrip": false,
|
| 929 |
+
"normalized": false,
|
| 930 |
+
"rstrip": false,
|
| 931 |
+
"single_word": false,
|
| 932 |
+
"special": true
|
| 933 |
+
},
|
| 934 |
+
"128116": {
|
| 935 |
+
"content": "<|reserved_special_token_111|>",
|
| 936 |
+
"lstrip": false,
|
| 937 |
+
"normalized": false,
|
| 938 |
+
"rstrip": false,
|
| 939 |
+
"single_word": false,
|
| 940 |
+
"special": true
|
| 941 |
+
},
|
| 942 |
+
"128117": {
|
| 943 |
+
"content": "<|reserved_special_token_112|>",
|
| 944 |
+
"lstrip": false,
|
| 945 |
+
"normalized": false,
|
| 946 |
+
"rstrip": false,
|
| 947 |
+
"single_word": false,
|
| 948 |
+
"special": true
|
| 949 |
+
},
|
| 950 |
+
"128118": {
|
| 951 |
+
"content": "<|reserved_special_token_113|>",
|
| 952 |
+
"lstrip": false,
|
| 953 |
+
"normalized": false,
|
| 954 |
+
"rstrip": false,
|
| 955 |
+
"single_word": false,
|
| 956 |
+
"special": true
|
| 957 |
+
},
|
| 958 |
+
"128119": {
|
| 959 |
+
"content": "<|reserved_special_token_114|>",
|
| 960 |
+
"lstrip": false,
|
| 961 |
+
"normalized": false,
|
| 962 |
+
"rstrip": false,
|
| 963 |
+
"single_word": false,
|
| 964 |
+
"special": true
|
| 965 |
+
},
|
| 966 |
+
"128120": {
|
| 967 |
+
"content": "<|reserved_special_token_115|>",
|
| 968 |
+
"lstrip": false,
|
| 969 |
+
"normalized": false,
|
| 970 |
+
"rstrip": false,
|
| 971 |
+
"single_word": false,
|
| 972 |
+
"special": true
|
| 973 |
+
},
|
| 974 |
+
"128121": {
|
| 975 |
+
"content": "<|reserved_special_token_116|>",
|
| 976 |
+
"lstrip": false,
|
| 977 |
+
"normalized": false,
|
| 978 |
+
"rstrip": false,
|
| 979 |
+
"single_word": false,
|
| 980 |
+
"special": true
|
| 981 |
+
},
|
| 982 |
+
"128122": {
|
| 983 |
+
"content": "<|reserved_special_token_117|>",
|
| 984 |
+
"lstrip": false,
|
| 985 |
+
"normalized": false,
|
| 986 |
+
"rstrip": false,
|
| 987 |
+
"single_word": false,
|
| 988 |
+
"special": true
|
| 989 |
+
},
|
| 990 |
+
"128123": {
|
| 991 |
+
"content": "<|reserved_special_token_118|>",
|
| 992 |
+
"lstrip": false,
|
| 993 |
+
"normalized": false,
|
| 994 |
+
"rstrip": false,
|
| 995 |
+
"single_word": false,
|
| 996 |
+
"special": true
|
| 997 |
+
},
|
| 998 |
+
"128124": {
|
| 999 |
+
"content": "<|reserved_special_token_119|>",
|
| 1000 |
+
"lstrip": false,
|
| 1001 |
+
"normalized": false,
|
| 1002 |
+
"rstrip": false,
|
| 1003 |
+
"single_word": false,
|
| 1004 |
+
"special": true
|
| 1005 |
+
},
|
| 1006 |
+
"128125": {
|
| 1007 |
+
"content": "<|reserved_special_token_120|>",
|
| 1008 |
+
"lstrip": false,
|
| 1009 |
+
"normalized": false,
|
| 1010 |
+
"rstrip": false,
|
| 1011 |
+
"single_word": false,
|
| 1012 |
+
"special": true
|
| 1013 |
+
},
|
| 1014 |
+
"128126": {
|
| 1015 |
+
"content": "<|reserved_special_token_121|>",
|
| 1016 |
+
"lstrip": false,
|
| 1017 |
+
"normalized": false,
|
| 1018 |
+
"rstrip": false,
|
| 1019 |
+
"single_word": false,
|
| 1020 |
+
"special": true
|
| 1021 |
+
},
|
| 1022 |
+
"128127": {
|
| 1023 |
+
"content": "<|reserved_special_token_122|>",
|
| 1024 |
+
"lstrip": false,
|
| 1025 |
+
"normalized": false,
|
| 1026 |
+
"rstrip": false,
|
| 1027 |
+
"single_word": false,
|
| 1028 |
+
"special": true
|
| 1029 |
+
},
|
| 1030 |
+
"128128": {
|
| 1031 |
+
"content": "<|reserved_special_token_123|>",
|
| 1032 |
+
"lstrip": false,
|
| 1033 |
+
"normalized": false,
|
| 1034 |
+
"rstrip": false,
|
| 1035 |
+
"single_word": false,
|
| 1036 |
+
"special": true
|
| 1037 |
+
},
|
| 1038 |
+
"128129": {
|
| 1039 |
+
"content": "<|reserved_special_token_124|>",
|
| 1040 |
+
"lstrip": false,
|
| 1041 |
+
"normalized": false,
|
| 1042 |
+
"rstrip": false,
|
| 1043 |
+
"single_word": false,
|
| 1044 |
+
"special": true
|
| 1045 |
+
},
|
| 1046 |
+
"128130": {
|
| 1047 |
+
"content": "<|reserved_special_token_125|>",
|
| 1048 |
+
"lstrip": false,
|
| 1049 |
+
"normalized": false,
|
| 1050 |
+
"rstrip": false,
|
| 1051 |
+
"single_word": false,
|
| 1052 |
+
"special": true
|
| 1053 |
+
},
|
| 1054 |
+
"128131": {
|
| 1055 |
+
"content": "<|reserved_special_token_126|>",
|
| 1056 |
+
"lstrip": false,
|
| 1057 |
+
"normalized": false,
|
| 1058 |
+
"rstrip": false,
|
| 1059 |
+
"single_word": false,
|
| 1060 |
+
"special": true
|
| 1061 |
+
},
|
| 1062 |
+
"128132": {
|
| 1063 |
+
"content": "<|reserved_special_token_127|>",
|
| 1064 |
+
"lstrip": false,
|
| 1065 |
+
"normalized": false,
|
| 1066 |
+
"rstrip": false,
|
| 1067 |
+
"single_word": false,
|
| 1068 |
+
"special": true
|
| 1069 |
+
},
|
| 1070 |
+
"128133": {
|
| 1071 |
+
"content": "<|reserved_special_token_128|>",
|
| 1072 |
+
"lstrip": false,
|
| 1073 |
+
"normalized": false,
|
| 1074 |
+
"rstrip": false,
|
| 1075 |
+
"single_word": false,
|
| 1076 |
+
"special": true
|
| 1077 |
+
},
|
| 1078 |
+
"128134": {
|
| 1079 |
+
"content": "<|reserved_special_token_129|>",
|
| 1080 |
+
"lstrip": false,
|
| 1081 |
+
"normalized": false,
|
| 1082 |
+
"rstrip": false,
|
| 1083 |
+
"single_word": false,
|
| 1084 |
+
"special": true
|
| 1085 |
+
},
|
| 1086 |
+
"128135": {
|
| 1087 |
+
"content": "<|reserved_special_token_130|>",
|
| 1088 |
+
"lstrip": false,
|
| 1089 |
+
"normalized": false,
|
| 1090 |
+
"rstrip": false,
|
| 1091 |
+
"single_word": false,
|
| 1092 |
+
"special": true
|
| 1093 |
+
},
|
| 1094 |
+
"128136": {
|
| 1095 |
+
"content": "<|reserved_special_token_131|>",
|
| 1096 |
+
"lstrip": false,
|
| 1097 |
+
"normalized": false,
|
| 1098 |
+
"rstrip": false,
|
| 1099 |
+
"single_word": false,
|
| 1100 |
+
"special": true
|
| 1101 |
+
},
|
| 1102 |
+
"128137": {
|
| 1103 |
+
"content": "<|reserved_special_token_132|>",
|
| 1104 |
+
"lstrip": false,
|
| 1105 |
+
"normalized": false,
|
| 1106 |
+
"rstrip": false,
|
| 1107 |
+
"single_word": false,
|
| 1108 |
+
"special": true
|
| 1109 |
+
},
|
| 1110 |
+
"128138": {
|
| 1111 |
+
"content": "<|reserved_special_token_133|>",
|
| 1112 |
+
"lstrip": false,
|
| 1113 |
+
"normalized": false,
|
| 1114 |
+
"rstrip": false,
|
| 1115 |
+
"single_word": false,
|
| 1116 |
+
"special": true
|
| 1117 |
+
},
|
| 1118 |
+
"128139": {
|
| 1119 |
+
"content": "<|reserved_special_token_134|>",
|
| 1120 |
+
"lstrip": false,
|
| 1121 |
+
"normalized": false,
|
| 1122 |
+
"rstrip": false,
|
| 1123 |
+
"single_word": false,
|
| 1124 |
+
"special": true
|
| 1125 |
+
},
|
| 1126 |
+
"128140": {
|
| 1127 |
+
"content": "<|reserved_special_token_135|>",
|
| 1128 |
+
"lstrip": false,
|
| 1129 |
+
"normalized": false,
|
| 1130 |
+
"rstrip": false,
|
| 1131 |
+
"single_word": false,
|
| 1132 |
+
"special": true
|
| 1133 |
+
},
|
| 1134 |
+
"128141": {
|
| 1135 |
+
"content": "<|reserved_special_token_136|>",
|
| 1136 |
+
"lstrip": false,
|
| 1137 |
+
"normalized": false,
|
| 1138 |
+
"rstrip": false,
|
| 1139 |
+
"single_word": false,
|
| 1140 |
+
"special": true
|
| 1141 |
+
},
|
| 1142 |
+
"128142": {
|
| 1143 |
+
"content": "<|reserved_special_token_137|>",
|
| 1144 |
+
"lstrip": false,
|
| 1145 |
+
"normalized": false,
|
| 1146 |
+
"rstrip": false,
|
| 1147 |
+
"single_word": false,
|
| 1148 |
+
"special": true
|
| 1149 |
+
},
|
| 1150 |
+
"128143": {
|
| 1151 |
+
"content": "<|reserved_special_token_138|>",
|
| 1152 |
+
"lstrip": false,
|
| 1153 |
+
"normalized": false,
|
| 1154 |
+
"rstrip": false,
|
| 1155 |
+
"single_word": false,
|
| 1156 |
+
"special": true
|
| 1157 |
+
},
|
| 1158 |
+
"128144": {
|
| 1159 |
+
"content": "<|reserved_special_token_139|>",
|
| 1160 |
+
"lstrip": false,
|
| 1161 |
+
"normalized": false,
|
| 1162 |
+
"rstrip": false,
|
| 1163 |
+
"single_word": false,
|
| 1164 |
+
"special": true
|
| 1165 |
+
},
|
| 1166 |
+
"128145": {
|
| 1167 |
+
"content": "<|reserved_special_token_140|>",
|
| 1168 |
+
"lstrip": false,
|
| 1169 |
+
"normalized": false,
|
| 1170 |
+
"rstrip": false,
|
| 1171 |
+
"single_word": false,
|
| 1172 |
+
"special": true
|
| 1173 |
+
},
|
| 1174 |
+
"128146": {
|
| 1175 |
+
"content": "<|reserved_special_token_141|>",
|
| 1176 |
+
"lstrip": false,
|
| 1177 |
+
"normalized": false,
|
| 1178 |
+
"rstrip": false,
|
| 1179 |
+
"single_word": false,
|
| 1180 |
+
"special": true
|
| 1181 |
+
},
|
| 1182 |
+
"128147": {
|
| 1183 |
+
"content": "<|reserved_special_token_142|>",
|
| 1184 |
+
"lstrip": false,
|
| 1185 |
+
"normalized": false,
|
| 1186 |
+
"rstrip": false,
|
| 1187 |
+
"single_word": false,
|
| 1188 |
+
"special": true
|
| 1189 |
+
},
|
| 1190 |
+
"128148": {
|
| 1191 |
+
"content": "<|reserved_special_token_143|>",
|
| 1192 |
+
"lstrip": false,
|
| 1193 |
+
"normalized": false,
|
| 1194 |
+
"rstrip": false,
|
| 1195 |
+
"single_word": false,
|
| 1196 |
+
"special": true
|
| 1197 |
+
},
|
| 1198 |
+
"128149": {
|
| 1199 |
+
"content": "<|reserved_special_token_144|>",
|
| 1200 |
+
"lstrip": false,
|
| 1201 |
+
"normalized": false,
|
| 1202 |
+
"rstrip": false,
|
| 1203 |
+
"single_word": false,
|
| 1204 |
+
"special": true
|
| 1205 |
+
},
|
| 1206 |
+
"128150": {
|
| 1207 |
+
"content": "<|reserved_special_token_145|>",
|
| 1208 |
+
"lstrip": false,
|
| 1209 |
+
"normalized": false,
|
| 1210 |
+
"rstrip": false,
|
| 1211 |
+
"single_word": false,
|
| 1212 |
+
"special": true
|
| 1213 |
+
},
|
| 1214 |
+
"128151": {
|
| 1215 |
+
"content": "<|reserved_special_token_146|>",
|
| 1216 |
+
"lstrip": false,
|
| 1217 |
+
"normalized": false,
|
| 1218 |
+
"rstrip": false,
|
| 1219 |
+
"single_word": false,
|
| 1220 |
+
"special": true
|
| 1221 |
+
},
|
| 1222 |
+
"128152": {
|
| 1223 |
+
"content": "<|reserved_special_token_147|>",
|
| 1224 |
+
"lstrip": false,
|
| 1225 |
+
"normalized": false,
|
| 1226 |
+
"rstrip": false,
|
| 1227 |
+
"single_word": false,
|
| 1228 |
+
"special": true
|
| 1229 |
+
},
|
| 1230 |
+
"128153": {
|
| 1231 |
+
"content": "<|reserved_special_token_148|>",
|
| 1232 |
+
"lstrip": false,
|
| 1233 |
+
"normalized": false,
|
| 1234 |
+
"rstrip": false,
|
| 1235 |
+
"single_word": false,
|
| 1236 |
+
"special": true
|
| 1237 |
+
},
|
| 1238 |
+
"128154": {
|
| 1239 |
+
"content": "<|reserved_special_token_149|>",
|
| 1240 |
+
"lstrip": false,
|
| 1241 |
+
"normalized": false,
|
| 1242 |
+
"rstrip": false,
|
| 1243 |
+
"single_word": false,
|
| 1244 |
+
"special": true
|
| 1245 |
+
},
|
| 1246 |
+
"128155": {
|
| 1247 |
+
"content": "<|reserved_special_token_150|>",
|
| 1248 |
+
"lstrip": false,
|
| 1249 |
+
"normalized": false,
|
| 1250 |
+
"rstrip": false,
|
| 1251 |
+
"single_word": false,
|
| 1252 |
+
"special": true
|
| 1253 |
+
},
|
| 1254 |
+
"128156": {
|
| 1255 |
+
"content": "<|reserved_special_token_151|>",
|
| 1256 |
+
"lstrip": false,
|
| 1257 |
+
"normalized": false,
|
| 1258 |
+
"rstrip": false,
|
| 1259 |
+
"single_word": false,
|
| 1260 |
+
"special": true
|
| 1261 |
+
},
|
| 1262 |
+
"128157": {
|
| 1263 |
+
"content": "<|reserved_special_token_152|>",
|
| 1264 |
+
"lstrip": false,
|
| 1265 |
+
"normalized": false,
|
| 1266 |
+
"rstrip": false,
|
| 1267 |
+
"single_word": false,
|
| 1268 |
+
"special": true
|
| 1269 |
+
},
|
| 1270 |
+
"128158": {
|
| 1271 |
+
"content": "<|reserved_special_token_153|>",
|
| 1272 |
+
"lstrip": false,
|
| 1273 |
+
"normalized": false,
|
| 1274 |
+
"rstrip": false,
|
| 1275 |
+
"single_word": false,
|
| 1276 |
+
"special": true
|
| 1277 |
+
},
|
| 1278 |
+
"128159": {
|
| 1279 |
+
"content": "<|reserved_special_token_154|>",
|
| 1280 |
+
"lstrip": false,
|
| 1281 |
+
"normalized": false,
|
| 1282 |
+
"rstrip": false,
|
| 1283 |
+
"single_word": false,
|
| 1284 |
+
"special": true
|
| 1285 |
+
},
|
| 1286 |
+
"128160": {
|
| 1287 |
+
"content": "<|reserved_special_token_155|>",
|
| 1288 |
+
"lstrip": false,
|
| 1289 |
+
"normalized": false,
|
| 1290 |
+
"rstrip": false,
|
| 1291 |
+
"single_word": false,
|
| 1292 |
+
"special": true
|
| 1293 |
+
},
|
| 1294 |
+
"128161": {
|
| 1295 |
+
"content": "<|reserved_special_token_156|>",
|
| 1296 |
+
"lstrip": false,
|
| 1297 |
+
"normalized": false,
|
| 1298 |
+
"rstrip": false,
|
| 1299 |
+
"single_word": false,
|
| 1300 |
+
"special": true
|
| 1301 |
+
},
|
| 1302 |
+
"128162": {
|
| 1303 |
+
"content": "<|reserved_special_token_157|>",
|
| 1304 |
+
"lstrip": false,
|
| 1305 |
+
"normalized": false,
|
| 1306 |
+
"rstrip": false,
|
| 1307 |
+
"single_word": false,
|
| 1308 |
+
"special": true
|
| 1309 |
+
},
|
| 1310 |
+
"128163": {
|
| 1311 |
+
"content": "<|reserved_special_token_158|>",
|
| 1312 |
+
"lstrip": false,
|
| 1313 |
+
"normalized": false,
|
| 1314 |
+
"rstrip": false,
|
| 1315 |
+
"single_word": false,
|
| 1316 |
+
"special": true
|
| 1317 |
+
},
|
| 1318 |
+
"128164": {
|
| 1319 |
+
"content": "<|reserved_special_token_159|>",
|
| 1320 |
+
"lstrip": false,
|
| 1321 |
+
"normalized": false,
|
| 1322 |
+
"rstrip": false,
|
| 1323 |
+
"single_word": false,
|
| 1324 |
+
"special": true
|
| 1325 |
+
},
|
| 1326 |
+
"128165": {
|
| 1327 |
+
"content": "<|reserved_special_token_160|>",
|
| 1328 |
+
"lstrip": false,
|
| 1329 |
+
"normalized": false,
|
| 1330 |
+
"rstrip": false,
|
| 1331 |
+
"single_word": false,
|
| 1332 |
+
"special": true
|
| 1333 |
+
},
|
| 1334 |
+
"128166": {
|
| 1335 |
+
"content": "<|reserved_special_token_161|>",
|
| 1336 |
+
"lstrip": false,
|
| 1337 |
+
"normalized": false,
|
| 1338 |
+
"rstrip": false,
|
| 1339 |
+
"single_word": false,
|
| 1340 |
+
"special": true
|
| 1341 |
+
},
|
| 1342 |
+
"128167": {
|
| 1343 |
+
"content": "<|reserved_special_token_162|>",
|
| 1344 |
+
"lstrip": false,
|
| 1345 |
+
"normalized": false,
|
| 1346 |
+
"rstrip": false,
|
| 1347 |
+
"single_word": false,
|
| 1348 |
+
"special": true
|
| 1349 |
+
},
|
| 1350 |
+
"128168": {
|
| 1351 |
+
"content": "<|reserved_special_token_163|>",
|
| 1352 |
+
"lstrip": false,
|
| 1353 |
+
"normalized": false,
|
| 1354 |
+
"rstrip": false,
|
| 1355 |
+
"single_word": false,
|
| 1356 |
+
"special": true
|
| 1357 |
+
},
|
| 1358 |
+
"128169": {
|
| 1359 |
+
"content": "<|reserved_special_token_164|>",
|
| 1360 |
+
"lstrip": false,
|
| 1361 |
+
"normalized": false,
|
| 1362 |
+
"rstrip": false,
|
| 1363 |
+
"single_word": false,
|
| 1364 |
+
"special": true
|
| 1365 |
+
},
|
| 1366 |
+
"128170": {
|
| 1367 |
+
"content": "<|reserved_special_token_165|>",
|
| 1368 |
+
"lstrip": false,
|
| 1369 |
+
"normalized": false,
|
| 1370 |
+
"rstrip": false,
|
| 1371 |
+
"single_word": false,
|
| 1372 |
+
"special": true
|
| 1373 |
+
},
|
| 1374 |
+
"128171": {
|
| 1375 |
+
"content": "<|reserved_special_token_166|>",
|
| 1376 |
+
"lstrip": false,
|
| 1377 |
+
"normalized": false,
|
| 1378 |
+
"rstrip": false,
|
| 1379 |
+
"single_word": false,
|
| 1380 |
+
"special": true
|
| 1381 |
+
},
|
| 1382 |
+
"128172": {
|
| 1383 |
+
"content": "<|reserved_special_token_167|>",
|
| 1384 |
+
"lstrip": false,
|
| 1385 |
+
"normalized": false,
|
| 1386 |
+
"rstrip": false,
|
| 1387 |
+
"single_word": false,
|
| 1388 |
+
"special": true
|
| 1389 |
+
},
|
| 1390 |
+
"128173": {
|
| 1391 |
+
"content": "<|reserved_special_token_168|>",
|
| 1392 |
+
"lstrip": false,
|
| 1393 |
+
"normalized": false,
|
| 1394 |
+
"rstrip": false,
|
| 1395 |
+
"single_word": false,
|
| 1396 |
+
"special": true
|
| 1397 |
+
},
|
| 1398 |
+
"128174": {
|
| 1399 |
+
"content": "<|reserved_special_token_169|>",
|
| 1400 |
+
"lstrip": false,
|
| 1401 |
+
"normalized": false,
|
| 1402 |
+
"rstrip": false,
|
| 1403 |
+
"single_word": false,
|
| 1404 |
+
"special": true
|
| 1405 |
+
},
|
| 1406 |
+
"128175": {
|
| 1407 |
+
"content": "<|reserved_special_token_170|>",
|
| 1408 |
+
"lstrip": false,
|
| 1409 |
+
"normalized": false,
|
| 1410 |
+
"rstrip": false,
|
| 1411 |
+
"single_word": false,
|
| 1412 |
+
"special": true
|
| 1413 |
+
},
|
| 1414 |
+
"128176": {
|
| 1415 |
+
"content": "<|reserved_special_token_171|>",
|
| 1416 |
+
"lstrip": false,
|
| 1417 |
+
"normalized": false,
|
| 1418 |
+
"rstrip": false,
|
| 1419 |
+
"single_word": false,
|
| 1420 |
+
"special": true
|
| 1421 |
+
},
|
| 1422 |
+
"128177": {
|
| 1423 |
+
"content": "<|reserved_special_token_172|>",
|
| 1424 |
+
"lstrip": false,
|
| 1425 |
+
"normalized": false,
|
| 1426 |
+
"rstrip": false,
|
| 1427 |
+
"single_word": false,
|
| 1428 |
+
"special": true
|
| 1429 |
+
},
|
| 1430 |
+
"128178": {
|
| 1431 |
+
"content": "<|reserved_special_token_173|>",
|
| 1432 |
+
"lstrip": false,
|
| 1433 |
+
"normalized": false,
|
| 1434 |
+
"rstrip": false,
|
| 1435 |
+
"single_word": false,
|
| 1436 |
+
"special": true
|
| 1437 |
+
},
|
| 1438 |
+
"128179": {
|
| 1439 |
+
"content": "<|reserved_special_token_174|>",
|
| 1440 |
+
"lstrip": false,
|
| 1441 |
+
"normalized": false,
|
| 1442 |
+
"rstrip": false,
|
| 1443 |
+
"single_word": false,
|
| 1444 |
+
"special": true
|
| 1445 |
+
},
|
| 1446 |
+
"128180": {
|
| 1447 |
+
"content": "<|reserved_special_token_175|>",
|
| 1448 |
+
"lstrip": false,
|
| 1449 |
+
"normalized": false,
|
| 1450 |
+
"rstrip": false,
|
| 1451 |
+
"single_word": false,
|
| 1452 |
+
"special": true
|
| 1453 |
+
},
|
| 1454 |
+
"128181": {
|
| 1455 |
+
"content": "<|reserved_special_token_176|>",
|
| 1456 |
+
"lstrip": false,
|
| 1457 |
+
"normalized": false,
|
| 1458 |
+
"rstrip": false,
|
| 1459 |
+
"single_word": false,
|
| 1460 |
+
"special": true
|
| 1461 |
+
},
|
| 1462 |
+
"128182": {
|
| 1463 |
+
"content": "<|reserved_special_token_177|>",
|
| 1464 |
+
"lstrip": false,
|
| 1465 |
+
"normalized": false,
|
| 1466 |
+
"rstrip": false,
|
| 1467 |
+
"single_word": false,
|
| 1468 |
+
"special": true
|
| 1469 |
+
},
|
| 1470 |
+
"128183": {
|
| 1471 |
+
"content": "<|reserved_special_token_178|>",
|
| 1472 |
+
"lstrip": false,
|
| 1473 |
+
"normalized": false,
|
| 1474 |
+
"rstrip": false,
|
| 1475 |
+
"single_word": false,
|
| 1476 |
+
"special": true
|
| 1477 |
+
},
|
| 1478 |
+
"128184": {
|
| 1479 |
+
"content": "<|reserved_special_token_179|>",
|
| 1480 |
+
"lstrip": false,
|
| 1481 |
+
"normalized": false,
|
| 1482 |
+
"rstrip": false,
|
| 1483 |
+
"single_word": false,
|
| 1484 |
+
"special": true
|
| 1485 |
+
},
|
| 1486 |
+
"128185": {
|
| 1487 |
+
"content": "<|reserved_special_token_180|>",
|
| 1488 |
+
"lstrip": false,
|
| 1489 |
+
"normalized": false,
|
| 1490 |
+
"rstrip": false,
|
| 1491 |
+
"single_word": false,
|
| 1492 |
+
"special": true
|
| 1493 |
+
},
|
| 1494 |
+
"128186": {
|
| 1495 |
+
"content": "<|reserved_special_token_181|>",
|
| 1496 |
+
"lstrip": false,
|
| 1497 |
+
"normalized": false,
|
| 1498 |
+
"rstrip": false,
|
| 1499 |
+
"single_word": false,
|
| 1500 |
+
"special": true
|
| 1501 |
+
},
|
| 1502 |
+
"128187": {
|
| 1503 |
+
"content": "<|reserved_special_token_182|>",
|
| 1504 |
+
"lstrip": false,
|
| 1505 |
+
"normalized": false,
|
| 1506 |
+
"rstrip": false,
|
| 1507 |
+
"single_word": false,
|
| 1508 |
+
"special": true
|
| 1509 |
+
},
|
| 1510 |
+
"128188": {
|
| 1511 |
+
"content": "<|reserved_special_token_183|>",
|
| 1512 |
+
"lstrip": false,
|
| 1513 |
+
"normalized": false,
|
| 1514 |
+
"rstrip": false,
|
| 1515 |
+
"single_word": false,
|
| 1516 |
+
"special": true
|
| 1517 |
+
},
|
| 1518 |
+
"128189": {
|
| 1519 |
+
"content": "<|reserved_special_token_184|>",
|
| 1520 |
+
"lstrip": false,
|
| 1521 |
+
"normalized": false,
|
| 1522 |
+
"rstrip": false,
|
| 1523 |
+
"single_word": false,
|
| 1524 |
+
"special": true
|
| 1525 |
+
},
|
| 1526 |
+
"128190": {
|
| 1527 |
+
"content": "<|reserved_special_token_185|>",
|
| 1528 |
+
"lstrip": false,
|
| 1529 |
+
"normalized": false,
|
| 1530 |
+
"rstrip": false,
|
| 1531 |
+
"single_word": false,
|
| 1532 |
+
"special": true
|
| 1533 |
+
},
|
| 1534 |
+
"128191": {
|
| 1535 |
+
"content": "<|reserved_special_token_186|>",
|
| 1536 |
+
"lstrip": false,
|
| 1537 |
+
"normalized": false,
|
| 1538 |
+
"rstrip": false,
|
| 1539 |
+
"single_word": false,
|
| 1540 |
+
"special": true
|
| 1541 |
+
},
|
| 1542 |
+
"128192": {
|
| 1543 |
+
"content": "<|reserved_special_token_187|>",
|
| 1544 |
+
"lstrip": false,
|
| 1545 |
+
"normalized": false,
|
| 1546 |
+
"rstrip": false,
|
| 1547 |
+
"single_word": false,
|
| 1548 |
+
"special": true
|
| 1549 |
+
},
|
| 1550 |
+
"128193": {
|
| 1551 |
+
"content": "<|reserved_special_token_188|>",
|
| 1552 |
+
"lstrip": false,
|
| 1553 |
+
"normalized": false,
|
| 1554 |
+
"rstrip": false,
|
| 1555 |
+
"single_word": false,
|
| 1556 |
+
"special": true
|
| 1557 |
+
},
|
| 1558 |
+
"128194": {
|
| 1559 |
+
"content": "<|reserved_special_token_189|>",
|
| 1560 |
+
"lstrip": false,
|
| 1561 |
+
"normalized": false,
|
| 1562 |
+
"rstrip": false,
|
| 1563 |
+
"single_word": false,
|
| 1564 |
+
"special": true
|
| 1565 |
+
},
|
| 1566 |
+
"128195": {
|
| 1567 |
+
"content": "<|reserved_special_token_190|>",
|
| 1568 |
+
"lstrip": false,
|
| 1569 |
+
"normalized": false,
|
| 1570 |
+
"rstrip": false,
|
| 1571 |
+
"single_word": false,
|
| 1572 |
+
"special": true
|
| 1573 |
+
},
|
| 1574 |
+
"128196": {
|
| 1575 |
+
"content": "<|reserved_special_token_191|>",
|
| 1576 |
+
"lstrip": false,
|
| 1577 |
+
"normalized": false,
|
| 1578 |
+
"rstrip": false,
|
| 1579 |
+
"single_word": false,
|
| 1580 |
+
"special": true
|
| 1581 |
+
},
|
| 1582 |
+
"128197": {
|
| 1583 |
+
"content": "<|reserved_special_token_192|>",
|
| 1584 |
+
"lstrip": false,
|
| 1585 |
+
"normalized": false,
|
| 1586 |
+
"rstrip": false,
|
| 1587 |
+
"single_word": false,
|
| 1588 |
+
"special": true
|
| 1589 |
+
},
|
| 1590 |
+
"128198": {
|
| 1591 |
+
"content": "<|reserved_special_token_193|>",
|
| 1592 |
+
"lstrip": false,
|
| 1593 |
+
"normalized": false,
|
| 1594 |
+
"rstrip": false,
|
| 1595 |
+
"single_word": false,
|
| 1596 |
+
"special": true
|
| 1597 |
+
},
|
| 1598 |
+
"128199": {
|
| 1599 |
+
"content": "<|reserved_special_token_194|>",
|
| 1600 |
+
"lstrip": false,
|
| 1601 |
+
"normalized": false,
|
| 1602 |
+
"rstrip": false,
|
| 1603 |
+
"single_word": false,
|
| 1604 |
+
"special": true
|
| 1605 |
+
},
|
| 1606 |
+
"128200": {
|
| 1607 |
+
"content": "<|reserved_special_token_195|>",
|
| 1608 |
+
"lstrip": false,
|
| 1609 |
+
"normalized": false,
|
| 1610 |
+
"rstrip": false,
|
| 1611 |
+
"single_word": false,
|
| 1612 |
+
"special": true
|
| 1613 |
+
},
|
| 1614 |
+
"128201": {
|
| 1615 |
+
"content": "<|reserved_special_token_196|>",
|
| 1616 |
+
"lstrip": false,
|
| 1617 |
+
"normalized": false,
|
| 1618 |
+
"rstrip": false,
|
| 1619 |
+
"single_word": false,
|
| 1620 |
+
"special": true
|
| 1621 |
+
},
|
| 1622 |
+
"128202": {
|
| 1623 |
+
"content": "<|reserved_special_token_197|>",
|
| 1624 |
+
"lstrip": false,
|
| 1625 |
+
"normalized": false,
|
| 1626 |
+
"rstrip": false,
|
| 1627 |
+
"single_word": false,
|
| 1628 |
+
"special": true
|
| 1629 |
+
},
|
| 1630 |
+
"128203": {
|
| 1631 |
+
"content": "<|reserved_special_token_198|>",
|
| 1632 |
+
"lstrip": false,
|
| 1633 |
+
"normalized": false,
|
| 1634 |
+
"rstrip": false,
|
| 1635 |
+
"single_word": false,
|
| 1636 |
+
"special": true
|
| 1637 |
+
},
|
| 1638 |
+
"128204": {
|
| 1639 |
+
"content": "<|reserved_special_token_199|>",
|
| 1640 |
+
"lstrip": false,
|
| 1641 |
+
"normalized": false,
|
| 1642 |
+
"rstrip": false,
|
| 1643 |
+
"single_word": false,
|
| 1644 |
+
"special": true
|
| 1645 |
+
},
|
| 1646 |
+
"128205": {
|
| 1647 |
+
"content": "<|reserved_special_token_200|>",
|
| 1648 |
+
"lstrip": false,
|
| 1649 |
+
"normalized": false,
|
| 1650 |
+
"rstrip": false,
|
| 1651 |
+
"single_word": false,
|
| 1652 |
+
"special": true
|
| 1653 |
+
},
|
| 1654 |
+
"128206": {
|
| 1655 |
+
"content": "<|reserved_special_token_201|>",
|
| 1656 |
+
"lstrip": false,
|
| 1657 |
+
"normalized": false,
|
| 1658 |
+
"rstrip": false,
|
| 1659 |
+
"single_word": false,
|
| 1660 |
+
"special": true
|
| 1661 |
+
},
|
| 1662 |
+
"128207": {
|
| 1663 |
+
"content": "<|reserved_special_token_202|>",
|
| 1664 |
+
"lstrip": false,
|
| 1665 |
+
"normalized": false,
|
| 1666 |
+
"rstrip": false,
|
| 1667 |
+
"single_word": false,
|
| 1668 |
+
"special": true
|
| 1669 |
+
},
|
| 1670 |
+
"128208": {
|
| 1671 |
+
"content": "<|reserved_special_token_203|>",
|
| 1672 |
+
"lstrip": false,
|
| 1673 |
+
"normalized": false,
|
| 1674 |
+
"rstrip": false,
|
| 1675 |
+
"single_word": false,
|
| 1676 |
+
"special": true
|
| 1677 |
+
},
|
| 1678 |
+
"128209": {
|
| 1679 |
+
"content": "<|reserved_special_token_204|>",
|
| 1680 |
+
"lstrip": false,
|
| 1681 |
+
"normalized": false,
|
| 1682 |
+
"rstrip": false,
|
| 1683 |
+
"single_word": false,
|
| 1684 |
+
"special": true
|
| 1685 |
+
},
|
| 1686 |
+
"128210": {
|
| 1687 |
+
"content": "<|reserved_special_token_205|>",
|
| 1688 |
+
"lstrip": false,
|
| 1689 |
+
"normalized": false,
|
| 1690 |
+
"rstrip": false,
|
| 1691 |
+
"single_word": false,
|
| 1692 |
+
"special": true
|
| 1693 |
+
},
|
| 1694 |
+
"128211": {
|
| 1695 |
+
"content": "<|reserved_special_token_206|>",
|
| 1696 |
+
"lstrip": false,
|
| 1697 |
+
"normalized": false,
|
| 1698 |
+
"rstrip": false,
|
| 1699 |
+
"single_word": false,
|
| 1700 |
+
"special": true
|
| 1701 |
+
},
|
| 1702 |
+
"128212": {
|
| 1703 |
+
"content": "<|reserved_special_token_207|>",
|
| 1704 |
+
"lstrip": false,
|
| 1705 |
+
"normalized": false,
|
| 1706 |
+
"rstrip": false,
|
| 1707 |
+
"single_word": false,
|
| 1708 |
+
"special": true
|
| 1709 |
+
},
|
| 1710 |
+
"128213": {
|
| 1711 |
+
"content": "<|reserved_special_token_208|>",
|
| 1712 |
+
"lstrip": false,
|
| 1713 |
+
"normalized": false,
|
| 1714 |
+
"rstrip": false,
|
| 1715 |
+
"single_word": false,
|
| 1716 |
+
"special": true
|
| 1717 |
+
},
|
| 1718 |
+
"128214": {
|
| 1719 |
+
"content": "<|reserved_special_token_209|>",
|
| 1720 |
+
"lstrip": false,
|
| 1721 |
+
"normalized": false,
|
| 1722 |
+
"rstrip": false,
|
| 1723 |
+
"single_word": false,
|
| 1724 |
+
"special": true
|
| 1725 |
+
},
|
| 1726 |
+
"128215": {
|
| 1727 |
+
"content": "<|reserved_special_token_210|>",
|
| 1728 |
+
"lstrip": false,
|
| 1729 |
+
"normalized": false,
|
| 1730 |
+
"rstrip": false,
|
| 1731 |
+
"single_word": false,
|
| 1732 |
+
"special": true
|
| 1733 |
+
},
|
| 1734 |
+
"128216": {
|
| 1735 |
+
"content": "<|reserved_special_token_211|>",
|
| 1736 |
+
"lstrip": false,
|
| 1737 |
+
"normalized": false,
|
| 1738 |
+
"rstrip": false,
|
| 1739 |
+
"single_word": false,
|
| 1740 |
+
"special": true
|
| 1741 |
+
},
|
| 1742 |
+
"128217": {
|
| 1743 |
+
"content": "<|reserved_special_token_212|>",
|
| 1744 |
+
"lstrip": false,
|
| 1745 |
+
"normalized": false,
|
| 1746 |
+
"rstrip": false,
|
| 1747 |
+
"single_word": false,
|
| 1748 |
+
"special": true
|
| 1749 |
+
},
|
| 1750 |
+
"128218": {
|
| 1751 |
+
"content": "<|reserved_special_token_213|>",
|
| 1752 |
+
"lstrip": false,
|
| 1753 |
+
"normalized": false,
|
| 1754 |
+
"rstrip": false,
|
| 1755 |
+
"single_word": false,
|
| 1756 |
+
"special": true
|
| 1757 |
+
},
|
| 1758 |
+
"128219": {
|
| 1759 |
+
"content": "<|reserved_special_token_214|>",
|
| 1760 |
+
"lstrip": false,
|
| 1761 |
+
"normalized": false,
|
| 1762 |
+
"rstrip": false,
|
| 1763 |
+
"single_word": false,
|
| 1764 |
+
"special": true
|
| 1765 |
+
},
|
| 1766 |
+
"128220": {
|
| 1767 |
+
"content": "<|reserved_special_token_215|>",
|
| 1768 |
+
"lstrip": false,
|
| 1769 |
+
"normalized": false,
|
| 1770 |
+
"rstrip": false,
|
| 1771 |
+
"single_word": false,
|
| 1772 |
+
"special": true
|
| 1773 |
+
},
|
| 1774 |
+
"128221": {
|
| 1775 |
+
"content": "<|reserved_special_token_216|>",
|
| 1776 |
+
"lstrip": false,
|
| 1777 |
+
"normalized": false,
|
| 1778 |
+
"rstrip": false,
|
| 1779 |
+
"single_word": false,
|
| 1780 |
+
"special": true
|
| 1781 |
+
},
|
| 1782 |
+
"128222": {
|
| 1783 |
+
"content": "<|reserved_special_token_217|>",
|
| 1784 |
+
"lstrip": false,
|
| 1785 |
+
"normalized": false,
|
| 1786 |
+
"rstrip": false,
|
| 1787 |
+
"single_word": false,
|
| 1788 |
+
"special": true
|
| 1789 |
+
},
|
| 1790 |
+
"128223": {
|
| 1791 |
+
"content": "<|reserved_special_token_218|>",
|
| 1792 |
+
"lstrip": false,
|
| 1793 |
+
"normalized": false,
|
| 1794 |
+
"rstrip": false,
|
| 1795 |
+
"single_word": false,
|
| 1796 |
+
"special": true
|
| 1797 |
+
},
|
| 1798 |
+
"128224": {
|
| 1799 |
+
"content": "<|reserved_special_token_219|>",
|
| 1800 |
+
"lstrip": false,
|
| 1801 |
+
"normalized": false,
|
| 1802 |
+
"rstrip": false,
|
| 1803 |
+
"single_word": false,
|
| 1804 |
+
"special": true
|
| 1805 |
+
},
|
| 1806 |
+
"128225": {
|
| 1807 |
+
"content": "<|reserved_special_token_220|>",
|
| 1808 |
+
"lstrip": false,
|
| 1809 |
+
"normalized": false,
|
| 1810 |
+
"rstrip": false,
|
| 1811 |
+
"single_word": false,
|
| 1812 |
+
"special": true
|
| 1813 |
+
},
|
| 1814 |
+
"128226": {
|
| 1815 |
+
"content": "<|reserved_special_token_221|>",
|
| 1816 |
+
"lstrip": false,
|
| 1817 |
+
"normalized": false,
|
| 1818 |
+
"rstrip": false,
|
| 1819 |
+
"single_word": false,
|
| 1820 |
+
"special": true
|
| 1821 |
+
},
|
| 1822 |
+
"128227": {
|
| 1823 |
+
"content": "<|reserved_special_token_222|>",
|
| 1824 |
+
"lstrip": false,
|
| 1825 |
+
"normalized": false,
|
| 1826 |
+
"rstrip": false,
|
| 1827 |
+
"single_word": false,
|
| 1828 |
+
"special": true
|
| 1829 |
+
},
|
| 1830 |
+
"128228": {
|
| 1831 |
+
"content": "<|reserved_special_token_223|>",
|
| 1832 |
+
"lstrip": false,
|
| 1833 |
+
"normalized": false,
|
| 1834 |
+
"rstrip": false,
|
| 1835 |
+
"single_word": false,
|
| 1836 |
+
"special": true
|
| 1837 |
+
},
|
| 1838 |
+
"128229": {
|
| 1839 |
+
"content": "<|reserved_special_token_224|>",
|
| 1840 |
+
"lstrip": false,
|
| 1841 |
+
"normalized": false,
|
| 1842 |
+
"rstrip": false,
|
| 1843 |
+
"single_word": false,
|
| 1844 |
+
"special": true
|
| 1845 |
+
},
|
| 1846 |
+
"128230": {
|
| 1847 |
+
"content": "<|reserved_special_token_225|>",
|
| 1848 |
+
"lstrip": false,
|
| 1849 |
+
"normalized": false,
|
| 1850 |
+
"rstrip": false,
|
| 1851 |
+
"single_word": false,
|
| 1852 |
+
"special": true
|
| 1853 |
+
},
|
| 1854 |
+
"128231": {
|
| 1855 |
+
"content": "<|reserved_special_token_226|>",
|
| 1856 |
+
"lstrip": false,
|
| 1857 |
+
"normalized": false,
|
| 1858 |
+
"rstrip": false,
|
| 1859 |
+
"single_word": false,
|
| 1860 |
+
"special": true
|
| 1861 |
+
},
|
| 1862 |
+
"128232": {
|
| 1863 |
+
"content": "<|reserved_special_token_227|>",
|
| 1864 |
+
"lstrip": false,
|
| 1865 |
+
"normalized": false,
|
| 1866 |
+
"rstrip": false,
|
| 1867 |
+
"single_word": false,
|
| 1868 |
+
"special": true
|
| 1869 |
+
},
|
| 1870 |
+
"128233": {
|
| 1871 |
+
"content": "<|reserved_special_token_228|>",
|
| 1872 |
+
"lstrip": false,
|
| 1873 |
+
"normalized": false,
|
| 1874 |
+
"rstrip": false,
|
| 1875 |
+
"single_word": false,
|
| 1876 |
+
"special": true
|
| 1877 |
+
},
|
| 1878 |
+
"128234": {
|
| 1879 |
+
"content": "<|reserved_special_token_229|>",
|
| 1880 |
+
"lstrip": false,
|
| 1881 |
+
"normalized": false,
|
| 1882 |
+
"rstrip": false,
|
| 1883 |
+
"single_word": false,
|
| 1884 |
+
"special": true
|
| 1885 |
+
},
|
| 1886 |
+
"128235": {
|
| 1887 |
+
"content": "<|reserved_special_token_230|>",
|
| 1888 |
+
"lstrip": false,
|
| 1889 |
+
"normalized": false,
|
| 1890 |
+
"rstrip": false,
|
| 1891 |
+
"single_word": false,
|
| 1892 |
+
"special": true
|
| 1893 |
+
},
|
| 1894 |
+
"128236": {
|
| 1895 |
+
"content": "<|reserved_special_token_231|>",
|
| 1896 |
+
"lstrip": false,
|
| 1897 |
+
"normalized": false,
|
| 1898 |
+
"rstrip": false,
|
| 1899 |
+
"single_word": false,
|
| 1900 |
+
"special": true
|
| 1901 |
+
},
|
| 1902 |
+
"128237": {
|
| 1903 |
+
"content": "<|reserved_special_token_232|>",
|
| 1904 |
+
"lstrip": false,
|
| 1905 |
+
"normalized": false,
|
| 1906 |
+
"rstrip": false,
|
| 1907 |
+
"single_word": false,
|
| 1908 |
+
"special": true
|
| 1909 |
+
},
|
| 1910 |
+
"128238": {
|
| 1911 |
+
"content": "<|reserved_special_token_233|>",
|
| 1912 |
+
"lstrip": false,
|
| 1913 |
+
"normalized": false,
|
| 1914 |
+
"rstrip": false,
|
| 1915 |
+
"single_word": false,
|
| 1916 |
+
"special": true
|
| 1917 |
+
},
|
| 1918 |
+
"128239": {
|
| 1919 |
+
"content": "<|reserved_special_token_234|>",
|
| 1920 |
+
"lstrip": false,
|
| 1921 |
+
"normalized": false,
|
| 1922 |
+
"rstrip": false,
|
| 1923 |
+
"single_word": false,
|
| 1924 |
+
"special": true
|
| 1925 |
+
},
|
| 1926 |
+
"128240": {
|
| 1927 |
+
"content": "<|reserved_special_token_235|>",
|
| 1928 |
+
"lstrip": false,
|
| 1929 |
+
"normalized": false,
|
| 1930 |
+
"rstrip": false,
|
| 1931 |
+
"single_word": false,
|
| 1932 |
+
"special": true
|
| 1933 |
+
},
|
| 1934 |
+
"128241": {
|
| 1935 |
+
"content": "<|reserved_special_token_236|>",
|
| 1936 |
+
"lstrip": false,
|
| 1937 |
+
"normalized": false,
|
| 1938 |
+
"rstrip": false,
|
| 1939 |
+
"single_word": false,
|
| 1940 |
+
"special": true
|
| 1941 |
+
},
|
| 1942 |
+
"128242": {
|
| 1943 |
+
"content": "<|reserved_special_token_237|>",
|
| 1944 |
+
"lstrip": false,
|
| 1945 |
+
"normalized": false,
|
| 1946 |
+
"rstrip": false,
|
| 1947 |
+
"single_word": false,
|
| 1948 |
+
"special": true
|
| 1949 |
+
},
|
| 1950 |
+
"128243": {
|
| 1951 |
+
"content": "<|reserved_special_token_238|>",
|
| 1952 |
+
"lstrip": false,
|
| 1953 |
+
"normalized": false,
|
| 1954 |
+
"rstrip": false,
|
| 1955 |
+
"single_word": false,
|
| 1956 |
+
"special": true
|
| 1957 |
+
},
|
| 1958 |
+
"128244": {
|
| 1959 |
+
"content": "<|reserved_special_token_239|>",
|
| 1960 |
+
"lstrip": false,
|
| 1961 |
+
"normalized": false,
|
| 1962 |
+
"rstrip": false,
|
| 1963 |
+
"single_word": false,
|
| 1964 |
+
"special": true
|
| 1965 |
+
},
|
| 1966 |
+
"128245": {
|
| 1967 |
+
"content": "<|reserved_special_token_240|>",
|
| 1968 |
+
"lstrip": false,
|
| 1969 |
+
"normalized": false,
|
| 1970 |
+
"rstrip": false,
|
| 1971 |
+
"single_word": false,
|
| 1972 |
+
"special": true
|
| 1973 |
+
},
|
| 1974 |
+
"128246": {
|
| 1975 |
+
"content": "<|reserved_special_token_241|>",
|
| 1976 |
+
"lstrip": false,
|
| 1977 |
+
"normalized": false,
|
| 1978 |
+
"rstrip": false,
|
| 1979 |
+
"single_word": false,
|
| 1980 |
+
"special": true
|
| 1981 |
+
},
|
| 1982 |
+
"128247": {
|
| 1983 |
+
"content": "<|reserved_special_token_242|>",
|
| 1984 |
+
"lstrip": false,
|
| 1985 |
+
"normalized": false,
|
| 1986 |
+
"rstrip": false,
|
| 1987 |
+
"single_word": false,
|
| 1988 |
+
"special": true
|
| 1989 |
+
},
|
| 1990 |
+
"128248": {
|
| 1991 |
+
"content": "<|reserved_special_token_243|>",
|
| 1992 |
+
"lstrip": false,
|
| 1993 |
+
"normalized": false,
|
| 1994 |
+
"rstrip": false,
|
| 1995 |
+
"single_word": false,
|
| 1996 |
+
"special": true
|
| 1997 |
+
},
|
| 1998 |
+
"128249": {
|
| 1999 |
+
"content": "<|reserved_special_token_244|>",
|
| 2000 |
+
"lstrip": false,
|
| 2001 |
+
"normalized": false,
|
| 2002 |
+
"rstrip": false,
|
| 2003 |
+
"single_word": false,
|
| 2004 |
+
"special": true
|
| 2005 |
+
},
|
| 2006 |
+
"128250": {
|
| 2007 |
+
"content": "<|reserved_special_token_245|>",
|
| 2008 |
+
"lstrip": false,
|
| 2009 |
+
"normalized": false,
|
| 2010 |
+
"rstrip": false,
|
| 2011 |
+
"single_word": false,
|
| 2012 |
+
"special": true
|
| 2013 |
+
},
|
| 2014 |
+
"128251": {
|
| 2015 |
+
"content": "<|reserved_special_token_246|>",
|
| 2016 |
+
"lstrip": false,
|
| 2017 |
+
"normalized": false,
|
| 2018 |
+
"rstrip": false,
|
| 2019 |
+
"single_word": false,
|
| 2020 |
+
"special": true
|
| 2021 |
+
},
|
| 2022 |
+
"128252": {
|
| 2023 |
+
"content": "<|reserved_special_token_247|>",
|
| 2024 |
+
"lstrip": false,
|
| 2025 |
+
"normalized": false,
|
| 2026 |
+
"rstrip": false,
|
| 2027 |
+
"single_word": false,
|
| 2028 |
+
"special": true
|
| 2029 |
+
},
|
| 2030 |
+
"128253": {
|
| 2031 |
+
"content": "<|reserved_special_token_248|>",
|
| 2032 |
+
"lstrip": false,
|
| 2033 |
+
"normalized": false,
|
| 2034 |
+
"rstrip": false,
|
| 2035 |
+
"single_word": false,
|
| 2036 |
+
"special": true
|
| 2037 |
+
},
|
| 2038 |
+
"128254": {
|
| 2039 |
+
"content": "<|reserved_special_token_249|>",
|
| 2040 |
+
"lstrip": false,
|
| 2041 |
+
"normalized": false,
|
| 2042 |
+
"rstrip": false,
|
| 2043 |
+
"single_word": false,
|
| 2044 |
+
"special": true
|
| 2045 |
+
},
|
| 2046 |
+
"128255": {
|
| 2047 |
+
"content": "<|reserved_special_token_250|>",
|
| 2048 |
+
"lstrip": false,
|
| 2049 |
+
"normalized": false,
|
| 2050 |
+
"rstrip": false,
|
| 2051 |
+
"single_word": false,
|
| 2052 |
+
"special": true
|
| 2053 |
+
},
|
| 2054 |
+
"128256": {
|
| 2055 |
+
"content": "<|eom_id|>",
|
| 2056 |
+
"lstrip": false,
|
| 2057 |
+
"normalized": false,
|
| 2058 |
+
"rstrip": false,
|
| 2059 |
+
"single_word": false,
|
| 2060 |
+
"special": true
|
| 2061 |
+
},
|
| 2062 |
+
"128257": {
|
| 2063 |
+
"content": "<|python_tag|>",
|
| 2064 |
+
"lstrip": false,
|
| 2065 |
+
"normalized": false,
|
| 2066 |
+
"rstrip": false,
|
| 2067 |
+
"single_word": false,
|
| 2068 |
+
"special": true
|
| 2069 |
+
},
|
| 2070 |
+
"128258": {
|
| 2071 |
+
"content": "<|NONE|>",
|
| 2072 |
+
"lstrip": false,
|
| 2073 |
+
"normalized": false,
|
| 2074 |
+
"rstrip": false,
|
| 2075 |
+
"single_word": false,
|
| 2076 |
+
"special": true
|
| 2077 |
+
}
|
| 2078 |
+
},
|
| 2079 |
+
"bos_token": "<|begin_of_text|>",
|
| 2080 |
+
"chat_template": "{# version=v3-llama3.1 #}{%- macro append_new_param_info(param_declaration, comment_info, examples_info, depth) -%}\n {%- set offset = \"\" -%}\n {%- if depth >= 1 -%}\n {%- set offset = \" \" * depth -%}\n {%- endif -%}\n {%- if comment_info != \"<|NONE|>\" -%}\n {{ \"\\n\" + offset + comment_info }}\n {%- if examples_info | length > 0 -%}\n {# Append each example info #}\n {%- for example in examples_info -%}\n {{ \"\\n\" + offset + \"// \" + example|string|replace(\"'\", '\"') }}\n {%- endfor -%}\n {%- endif -%}\n {%- endif -%}\n {{ \"\\n\" + offset + param_declaration }}\n{%- endmacro -%}\n\n{%- macro convert_data_type(param_type) -%}\n {%- if param_type == \"integer\" or param_type == \"float\" -%}\n {{ \"number\" }}\n {%- else -%}\n {{ param_type }}\n {%- endif -%}\n{%- endmacro -%}\n\n{%- macro get_param_type(param) -%}\n {%- set param_type = \"any\" -%}\n\n {%- if \"type\" in param -%}\n {%- set raw_param_type = param[\"type\"] -%}\n {%- if raw_param_type is iterable and raw_param_type is not string -%}\n {%- set param_type = raw_param_type | join(\" | \") -%}\n {%- else -%}\n {%- set param_type = raw_param_type -%}\n {%- endif -%}\n {{ convert_data_type(param_type) }}\n {%- elif \"oneOf\" in param -%}\n {%- set one_of_types = param[\"oneOf\"]|selectattr(\"type\", \"defined\")|list -%}\n {%- set one_of_types = one_of_types|map(attribute=\"type\")|unique|list -%}\n {{ convert_data_type(one_of_types | join(\" | \")) }}\n {%- endif -%}\n{%- endmacro -%}\n\n{%- macro get_format_param(param) -%}\n {%- if \"format\" in param -%}\n {{ param[\"format\"] }}\n {%- elif \"oneOf\" in param -%}\n {%- set formats = [] -%}\n {%- for item in param[\"oneOf\"] -%}\n {%- if \"format\" in item -%}\n {%- if item[\"format\"] == param[\"oneOf\"][-1][\"format\"] -%}\n {{ item[\"format\"] }}\n {%- else -%}\n {{ item[\"format\"] + \" or \"}}\n {%- endif -%}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ \"<|NONE|>\" }}\n {%- endif -%}\n{%- endmacro -%}\n\n{%- macro get_param_info(param) -%}\n {%- set param_type = param.get(\"type\", \"any\") -%}\n {%- set format_param = get_format_param(param) -%}\n\n {%- if \"description\" in param or \"default\" in param or format_param != \"<|NONE|>\" or param[\"maximum\"] or param[\"minimum\"] or param[\"maxLength\"] or param[\"minLength\"] -%}\n {{ \"//\" }}\n {%- if \"description\" in param -%}\n {%- set desc = param[\"description\"] -%}\n {%- if not desc.endswith(\".\") -%}\n {%- set desc = desc + \".\" -%}\n {%- endif -%}\n {{ \" \" + desc }}\n {%- endif -%}\n\n {%- if \"default\" in param -%}\n {%- set default_value = param[\"default\"] -%}\n {%- if param_type == \"string\" -%}\n {%- set default_value = '\"' ~ default_value ~ '\"' -%}\n {%- endif -%}\n {{ \" Default=\" ~ default_value ~ \".\" }}\n {%- endif -%}\n\n {%- set format_param = get_format_param(param) -%}\n {%- if format_param != \"<|NONE|>\" -%}\n {{ \" Format=\" ~ format_param }}\n {%- endif -%}\n\n {%- for field, field_name in [(\"maximum\", \"Maximum\"), (\"minimum\", \"Minimum\"), (\"maxLength\", \"Maximum length\"), (\"minLength\", \"Minimum length\")] -%}\n {%- if field in param -%}\n {{ \" \" + field_name ~ \"=\" ~ param[field] }}\n {%- endif -%}\n {%- endfor -%}\n {%- else -%}\n {{ \"<|NONE|>\"}}\n {%- endif -%}\n{%- endmacro -%}\n\n{%- macro get_enum_option_str(enum_options) -%}\n {%- for v in enum_options -%}\n {%- if v is string -%}\n {{ '\"' + v + '\"' }}\n {%- else -%}\n {{ v }}\n {%- endif -%}\n {%- if enum_options|length > 0 and v != enum_options[-1] -%}\n {{ \" | \" }}\n {%- endif -%}\n {%- endfor -%}\n{%- endmacro -%}\n\n{%- macro get_array_typescript(param_name, param_dic, depth) -%}\n {%- set offset = '' -%}\n {%- if depth >= 1 -%}\n {%- set offset = \" \" * depth -%}\n {%- endif -%}\n {%- set items_info = param_dic.get('items', {}) -%}\n\n {%- if items_info|length == 0 -%}\n {%- if param_name -%}\n {{ \"\\n\" + offset + param_name + \": []\" }}\n {%- else -%}\n {{ \"\\n\" + offset + \"[]\" }}\n {%- endif -%}\n {%- else -%}\n {%- set array_type = get_param_type(items_info) -%}\n {%- if array_type == 'object' -%}\n {%- if param_name -%}\n {{ \"\\n\" + offset + param_name + \": {\" }}\n {%- else -%}\n {{ \"\\n\" + offset + \"{\" }}\n {%- endif -%}\n {{ get_parameter_typescript(items_info.get('properties', {}), items_info.get('required', []), depth + 1) -}}\n {{- \"\\n\" + offset + \"}[]\" }}\n {%- elif array_type == 'array' -%}\n {%- set item_info = get_array_typescript(None, items_info, depth + 1) -%}\n {%- if not param_name -%}\n {{ \"\\n\" + item_info + \"[]\" }}\n {%- else -%}\n {{ \"\\n\" + offset + param_name + \": \" + item_info|trim + \"[]\" }}\n {%- endif -%}\n {%- else -%}\n {%- if 'enum' in items_info -%}\n {%- set item_type = get_enum_option_str(items_info['enum']) -%}\n {%- if param_name is none -%}\n {{ \"(\" + item_type + \")[]\"}}\n {%- else -%}\n {{ \"\\n\" + offset + param_name + \": (\" + item_type + \")[]\" }}\n {%- endif -%}\n {%- else -%}\n {%- if param_name is none -%}\n {{ \"\\n\" + array_type + \"[]\" }}\n {%- else -%}\n {{ \"\\n\" + offset + param_name + \": \" + array_type + \"[],\" }}\n {%- endif -%}\n {%- endif -%}\n {%- endif -%}\n {%- endif -%}\n{%- endmacro -%}\n\n{%- macro get_parameter_typescript(properties, required_params, depth=0) -%}\n {%- set res = \"\" -%}\n {%- for param_name, param in properties.items() -%}\n {%- if param is mapping -%}\n {%- set comment_info = get_param_info(param) -%}\n {# Param Examples #}\n {%- set examples_info = [] -%}\n {%- if \"examples\" in param -%}\n {%- set examples_info = [\"Example \" + param_name + \":\"] -%}\n {%- set examples_info = examples_info + param[\"examples\"] -%}\n {%- endif -%}\n\n {# Param Name declaration #}\n {%- set param_declaration = param_name -%}\n {%- if required_params is iterable and param_name not in required_params -%}\n {%- set param_declaration = param_declaration + \"?\" -%}\n {%- endif -%}\n\n {%- set param_type = get_param_type(param) -%}\n\n {# Handle indentation based on depth #}\n {%- set offset = \"\" -%}\n {%- if depth >= 1 -%}\n {%- set offset = \" \" * depth -%}\n {%- endif -%}\n\n {%- if param_type == \"object\" -%}\n {%- if comment_info != \"<|NONE|>\" -%}\n {{ \"\\n\" + offset + comment_info }}\n {%- endif -%}\n {%- if examples_info|length > 0 -%}\n {%- for example in examples_info -%}\n {{ \"\\n\" + offset + \"// \" + example|string|replace(\"'\", '\"') }}\n {%- endfor -%}\n {%- endif -%}\n {%- set param_declaration = param_declaration + \": {\" -%}\n {{ \"\\n\" + offset + param_declaration -}}\n {{- get_parameter_typescript(param.get(\"properties\", {}), param.get(\"required\", []), depth + 1) -}}\n {{- \"\\n\" + offset + \"},\" }}\n {%- elif param_type == \"array\" -%}\n {%- set item_info = param.get(\"items\", {}) -%}\n {%- if \"type\" not in item_info -%}\n {%- set param_declaration = param_declaration + \": [],\" -%}\n {{ append_new_param_info(param_declaration, comment_info, examples_info, depth) }}\n {%- else -%}\n {%- if comment_info != \"<|NONE|>\" -%}\n {{ \"\\n\" + offset + comment_info }}\n {%- endif -%}\n {%- if examples_info|length > 0 -%}\n {%- for example in examples_info -%}\n {{ \"\\n\" + offset + \"// \" + example|string|replace(\"'\", '\"') }}\n {%- endfor -%}\n {%- endif -%}\n {%- set array_declaration = get_array_typescript(param_declaration, param, depth) -%}\n {%- if not array_declaration.endswith(\",\") -%}\n {%- set array_declaration = array_declaration + \",\" -%}\n {%- endif -%}\n {{ array_declaration}}\n {%- endif -%}\n {%- else -%}\n {%- if \"enum\" in param -%}\n {%- set param_type = get_enum_option_str(param[\"enum\"]) -%}\n {%- endif -%}\n {%- if \"nullable\" in param and param[\"nullable\"] -%}\n {%- set param_type = param_type + \" | null\" -%}\n {%- endif -%}\n {%- set param_declaration = param_declaration + \": \" + param_type + \",\" -%}\n {{ append_new_param_info(param_declaration, comment_info, examples_info, depth) }}\n {%- endif -%}\n {%- endif -%}\n {%- endfor -%}\n{%- endmacro -%}\n\n{%- macro generate_schema_from_functions(functions, namespace='functions') -%}\n {{ \"// Supported function definitions that should be called when necessary.\\n\" -}}\n {{- \"namespace \" + namespace + \" {\\n\\n\" -}}\n\n {%- for function in functions -%}\n {%- if function.get(\"function\") -%}\n {%- set function = function.get(\"function\") -%}\n {%- endif -%}\n\n {%- set function_name = function.get(\"name\") -%}\n {%- if function_name -%}\n {%- set description = function.get('description', '') -%}\n {%- set parameters = function.get('parameters', {}) -%}\n {{- \"// \" + description + \"\\n\" -}}\n {{- \"type \" + function_name -}}\n {%- if parameters and parameters.get(\"properties\") -%}\n {{- \" = (_: {\" -}}\n {%- set required_params = parameters.get(\"required\", []) -%}\n {{ get_parameter_typescript(parameters.get(\"properties\"), required_params, 0) -}}\n {{- \"\\n}) => any;\\n\\n\" }}\n {%- else -%}\n {{ \" = () => any;\\n\\n\" }}\n {%- endif -%}\n {%- endif -%}\n {%- endfor -%}\n {{ \"} // namespace \" + namespace }}\n{%- endmacro -%}\n\n{%- if not tools is defined -%}\n {%- set tools = none -%}\n{%- endif -%}\n\n{%- set has_code_interpreter = tools | selectattr(\"type\", \"equalto\", \"code_interpreter\") | list | length > 0 -%}\n{%- if has_code_interpreter -%}\n {%- set tools = tools | rejectattr(\"type\", \"equalto\", \"code_interpreter\") | list -%}\n{%- endif -%}\n\n{#- System message + builtin tools #}\n{{- bos_token + \"<|start_header_id|>system<|end_header_id|>\\n\\n\" }}\n{%- if has_code_interpreter %}\n {{- \"Environment: ipython\\n\\n\" }}\n{%- else -%}\n {{ \"\"}}\n{%- endif %}\n{%- if tools %}\n {{- \"\\nYou have access to the following functions:\\n\\n\" }}\n {%- for t in tools %}\n {%- if \"type\" in t -%}\n {{ \"Use the function '\" + t[\"function\"][\"name\"] + \"' to '\" + t[\"function\"][\"description\"] + \"'\\n\" + t[\"function\"] | tojson() }}\n {%- else -%}\n {{ \"Use the function '\" + t[\"name\"] + \"' to '\" + t[\"description\"] + \"'\\n\" + t | tojson }}\n {%- endif -%}\n {{- \"\\n\\n\" }}\n {%- endfor %}\n {{- '\\nThink very carefully before calling functions.\\nIf a you choose to call a function ONLY reply in the following format:\\n<{start_tag}={function_name}>{parameters}{end_tag}\\nwhere\\n\\nstart_tag => `<function`\\nparameters => a JSON dict with the function argument name as key and function argument value as value.\\nend_tag => `</function>`\\n\\nHere is an example,\\n<function=example_function_name>{\"example_name\": \"example_value\"}</function>\\n\\nReminder:\\n- If looking for real time information use relevant functions before falling back to brave_search\\n- Function calls MUST follow the specified format, start with <function= and end with </function>\\n- Required parameters MUST be specified\\n- Only call one function at a time\\n- Put the entire function call reply on one line\\n\\n' -}}\n{%- endif %}\n{{- \"<|eot_id|>\" -}}\n\n{%- for message in messages -%}\n {%- if message['role'] == 'user' or message['role'] == 'system' -%}\n {{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n' + message['content'] + '<|eot_id|>' }}\n {%- elif message['role'] == 'tool' -%}\n {{ '<|start_header_id|>ipython<|end_header_id|>\\n\\n' + message['content'] + '<|eot_id|>' }}\n {%- else -%}\n {%- if (message['content'] and message['content']|length > 0) or ('tool_calls' in message and message['tool_calls'] and message['tool_calls']|length > 0) -%}\n {{ '<|start_header_id|>' + message['role'] + '<|end_header_id|>\\n\\n'}}\n {%- endif -%}\n {%- if message['content'] and message['content']|length > 0 -%}\n {{ message['content'] }}\n {%- endif -%}\n {%- if 'tool_calls' in message and message['tool_calls'] and message['tool_calls']|length > 0 -%}\n {%- for tool_call in message['tool_calls'] -%}\n {%- if tool_call[\"function\"][\"name\"] == \"python\" -%}\n {{ '<|python_tag|>' + tool_call['function']['arguments'] }}\n {%- else -%}\n {{ '<function=' + tool_call['function']['name'] + '>' + tool_call['function']['arguments'] + '</function>' }}\n {%- endif -%}\n {%- endfor -%}\n {{ '<|eom_id|>' }}\n {%- elif message['content'] and message['content']|length > 0 -%}\n {{ '<|eot_id|>' }}\n {%- endif -%}\n {%- endif -%}\n{%- endfor -%}\n{%- if add_generation_prompt -%}\n {{ '<|start_header_id|>assistant<|end_header_id|>\\n\\n' }}\n{%- endif -%}\n",
|
| 2081 |
+
"clean_up_tokenization_spaces": true,
|
| 2082 |
+
"eos_token": "<|eot_id|>",
|
| 2083 |
+
"extra_special_tokens": {},
|
| 2084 |
+
"max_length": 8192,
|
| 2085 |
+
"model_input_names": [
|
| 2086 |
+
"input_ids",
|
| 2087 |
+
"attention_mask"
|
| 2088 |
+
],
|
| 2089 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 2090 |
+
"pad_token": "<|end_of_text|>",
|
| 2091 |
+
"stride": 0,
|
| 2092 |
+
"tokenizer_class": "PreTrainedTokenizer",
|
| 2093 |
+
"truncation_side": "right",
|
| 2094 |
+
"truncation_strategy": "longest_first"
|
| 2095 |
+
}
|