peterroh's picture
Update modeling.py for compatibility
7617bea verified
from functools import partial
import logging
import re
from typing import Optional, Tuple, Union
from einops import rearrange
from timm.layers import LayerNorm, LayerNorm2d
from timm.layers.pos_embed import resample_abs_pos_embed
from timm.models.regnet import RegStage
import torch
from torch import nn
import torch.nn.functional as F
import torch.utils.checkpoint
from transformers import LlamaForCausalLM
from transformers.modeling_outputs import BaseModelOutput
from transformers.modeling_utils import PreTrainedModel
from transformers.models.auto import AutoModelForCausalLM
from transformers.models.qwen2_vl.configuration_qwen2_vl import (
Qwen2VLVisionConfig,
)
from transformers.models.qwen2_vl.modeling_qwen2_vl import (
PatchEmbed,
Qwen2VLPreTrainedModel,
Qwen2VisionTransformerPretrainedModel,
Qwen2VLVisionBlock,
VisionRotaryEmbedding
)
from .configuration import KananaVVisualProjectorConfig, KananaVConfig
logger = logging.getLogger("kanana-1.5-v")
def build_pos_embeds(
config: KananaVVisualProjectorConfig, num_input_tokens: int, vision_hidden_size: int
):
# pos emb
if config.pos_emb:
pos_emb = torch.nn.Parameter(torch.zeros(1, num_input_tokens, vision_hidden_size))
nn.init.trunc_normal_(pos_emb, mean=0.0, std=0.02)
else:
pos_emb = None
return pos_emb
def build_eos_tokens(config: KananaVVisualProjectorConfig, output_hidden_size: int):
# think tokens
num_eos_tokens = config.num_eos_tokens
if num_eos_tokens:
eos_tokens = torch.nn.Parameter(torch.randn(1, num_eos_tokens, output_hidden_size))
nn.init.trunc_normal_(eos_tokens, mean=0.0, std=config.initializer_range)
else:
eos_tokens = None
return eos_tokens
def build_prenorm(config: KananaVVisualProjectorConfig):
if getattr(config, "prenorm", False):
prenorm = LayerNorm(config.encoder_hidden_size)
else:
prenorm = None
return prenorm
def build_mlp(depth: int, hidden_size: int, output_hidden_size: int):
layers = [nn.Linear(hidden_size, output_hidden_size)]
for _ in range(1, depth):
layers.append(nn.SiLU())
layers.append(nn.Linear(output_hidden_size, output_hidden_size))
return nn.Sequential(*layers)
class PatchMerge(nn.Module):
def __init__(self, merge_size):
super().__init__()
self.merge_size = merge_size
def forward(self, x, channel_last=False):
if channel_last:
x = rearrange(x, "B H W D -> B D H W")
_, D, H, W = x.shape
merged_x = rearrange(
x, "B D (H h2) (W w2) -> B (D h2 w2) H W", h2=self.merge_size, w2=self.merge_size
)
return merged_x
class DynamicCAbstractor(nn.Module):
"""Dynamic C-Abstractor based on RegBlock"""
def __init__(self, config: KananaVVisualProjectorConfig, num_input_tokens: int):
super().__init__()
self.config = config
if num_input_tokens == -1:
num_input_tokens = config.pos_emb_size
self.num_input_tokens = num_input_tokens
self.merge_size = config.merge_size
self.pos_emb_size = config.pos_emb_size
self.eos_tokens = build_eos_tokens(config, config.output_hidden_size)
self.pos_emb = build_pos_embeds(config, num_input_tokens, config.encoder_hidden_size)
self.prenorm = build_prenorm(config)
self.build_net()
def build_net(self):
encoder_hidden_size = self.config.encoder_hidden_size
hidden_size = self.config.hidden_size
output_hidden_size = self.config.output_hidden_size
depth = self.config.depth
mlp_depth = self.config.mlp_depth
RegBlock = partial(
RegStage,
stride=1,
dilation=1,
act_layer=nn.SiLU,
norm_layer=LayerNorm2d,
)
s1 = RegBlock(
depth,
encoder_hidden_size,
hidden_size,
)
sampler = PatchMerge(merge_size=self.merge_size)
s2 = RegBlock(
depth,
self.merge_size**2 * hidden_size,
hidden_size,
)
if depth:
self.net = nn.ModuleList([s1, sampler, s2])
self.readout = build_mlp(mlp_depth, hidden_size, output_hidden_size)
else:
self.net = sampler
self.readout = build_mlp(mlp_depth, encoder_hidden_size, output_hidden_size)
def forward(self, flattened_visual_embeds, grid_thw, **unused_kwargs):
n_token_loc = torch.prod(grid_thw, dim=1)
split_visual_embeds = torch.split(flattened_visual_embeds, n_token_loc.tolist())
flattened_visual_embeds = []
for _visual_embeds, _grid_thw in zip(split_visual_embeds, grid_thw):
T, H, W = _grid_thw
assert T == 1, "T must be 1. Video is not supported yet."
reshaped_visual_embeds = rearrange(
_visual_embeds, "(t h w) d -> 1 t h w d", t=T, h=H, w=W
)
# remove temporal dim
reshaped_visual_embeds = reshaped_visual_embeds[:, 0]
if self.prenorm is not None:
reshaped_visual_embeds = self.prenorm(reshaped_visual_embeds)
if self.pos_emb is not None:
# interpolate pos emb and add to visual embeds
_local_pos_emb = resample_abs_pos_embed(
posemb=self.pos_emb,
old_size=tuple([int(self.pos_emb_size**0.5)] * 2),
new_size=(H, W),
num_prefix_tokens=0,
)
_local_pos_emb = rearrange(
_local_pos_emb,
"1 (h w) d -> 1 h w d",
h=H,
w=W,
)
reshaped_visual_embeds = reshaped_visual_embeds + _local_pos_emb
reshaped_visual_embeds = self._forward(
reshaped_visual_embeds,
input_size=(H, W),
)
flattened_visual_embeds.append(reshaped_visual_embeds)
reshaped_visual_embeds = torch.cat(flattened_visual_embeds, dim=0)
output = BaseModelOutput(last_hidden_state=reshaped_visual_embeds)
return output
def _forward(self, x, input_size):
h, w = input_size
x = rearrange(x, "1 h w d -> 1 d h w", h=h, w=w)
x = self.net[0](x)
x = self.net[1](x)
x = self.net[2](x)
x = rearrange(x, "1 d h w -> (h w) d")
x = self.readout(x)
return x
class CustomQwen2VLVE(Qwen2VisionTransformerPretrainedModel):
config_class = Qwen2VLVisionConfig
_no_split_modules = ["Qwen2VLVisionBlock"]
def __init__(self, config) -> None:
Qwen2VLPreTrainedModel.__init__(self, config)
self.spatial_merge_size = config.spatial_merge_size
self.gradient_checkpointing = False
self.patch_embed = PatchEmbed(
patch_size=config.patch_size,
temporal_patch_size=config.temporal_patch_size,
in_channels=config.in_channels,
embed_dim=config.embed_dim,
)
head_dim = config.embed_dim // config.num_heads
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
self.blocks = nn.ModuleList(
[Qwen2VLVisionBlock(config, config._attn_implementation) for _ in range(config.depth)]
)
def forward(
self,
pixel_values: torch.Tensor,
grid_thw: torch.Tensor,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
) -> Union[Tuple, BaseModelOutput]:
assert return_dict, "Only return_dict=True is supported."
encoder_states = () if output_hidden_states else None
hidden_states = self.patch_embed(pixel_values)
rotary_pos_emb = self.rot_pos_emb(grid_thw)
cu_seqlens = torch.repeat_interleave(
grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]
).cumsum(dim=0, dtype=torch.int32)
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
for blk in self.blocks:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if self.gradient_checkpointing and self.training:
layer_outputs = self._gradient_checkpointing_func(
blk.__call__,
hidden_states,
cu_seqlens,
rotary_pos_emb,
)
else:
layer_outputs = blk(
hidden_states,
cu_seqlens=cu_seqlens,
rotary_pos_emb=rotary_pos_emb,
)
hidden_states = layer_outputs
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
return BaseModelOutput(last_hidden_state=hidden_states, hidden_states=encoder_states)
def get_num_tokens(self):
return -1
class KananaVPreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and
a simple interface for downloading and loading pretrained models.
"""
config_class = KananaVConfig
base_model_prefix = "kanana-1.5-v"
supports_gradient_checkpointing = True
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_static_cache = False
_keys_to_ignore_on_load_missing = [
r"position_ids",
r"language_model.encoder.embed_tokens.weight",
r"language_model.decoder.embed_tokens.weight",
r"language_model.lm_head.weight",
]
_no_split_modules = [
"CustomQwen2VLVE",
"DynamicCAbstractor",
"LlamaForCausalLM",
"Parameter",
]
def _init_weights(self, module):
"""Initialize the weights"""
if (
isinstance(module, nn.Conv2d)
or isinstance(module, nn.Embedding)
or isinstance(module, nn.Linear)
):
module.weight.data.normal_(mean=0.0, std=0.02)
if hasattr(module, "bias") and module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, nn.Parameter):
raise ValueError()
class KananaVForConditionalGeneration(KananaVPreTrainedModel):
config_class = KananaVConfig
def __init__(self, config: KananaVConfig):
super().__init__(config)
logger.info("Build vision model ...")
self.vision_model = CustomQwen2VLVE._from_config(config.vision_config)
logger.info("Build projector ...")
self.abstractor = DynamicCAbstractor(config.projector_config,
num_input_tokens=self.vision_model.get_num_tokens())
logger.info("Build language model ...")
self.language_model = LlamaForCausalLM._from_config(config=config.text_config)
self.post_init()
def forward_vision(self, pixel_values, image_metas: Optional[dict] = None):
vision_model_args = {
"pixel_values": pixel_values,
"return_dict": True,
"output_hidden_states": True,
"grid_thw": image_metas["vision_grid_thw"],
}
v_outputs = self.vision_model(**vision_model_args)
layer_index = self.config.projector_config.feature_layer_index
visual_features = self._get_visual_feature_at(v_outputs.hidden_states, layer_index)
return visual_features
def forward_projector(self, visual_features, image_metas: Optional[dict] = None):
assert image_metas is not None
visual_embeds = self.abstractor(
visual_features,
grid_thw=image_metas["vision_grid_thw"],
)["last_hidden_state"]
return visual_embeds
def forward_and_project_vision(self, pixel_values, image_metas: Optional[dict] = None):
assert pixel_values is not None
visual_features = self.forward_vision(pixel_values, image_metas=image_metas)
visual_embeds = self.forward_projector(visual_features, image_metas=image_metas)
return visual_embeds
def _get_visual_feature_at(self, v_output, layer_index):
if isinstance(layer_index, list):
visual_features = torch.stack(v_output, dim=1)[:, layer_index] # [B, n_scales, L, dim]
else:
visual_features = v_output[layer_index] # [B, L, dim]
return visual_features
def embed_text_tokens(self, input_ids):
"""Embed input_ids into text_embeds, ignoring media tokens (negative values)."""
input_ids = input_ids.clone()
input_ids[input_ids < 0] = 0
text_embeds = self.language_model.get_input_embeddings()(input_ids)
if hasattr(self.language_model, "transformer") and hasattr(
self.language_model.transformer, "word_embeddings_layernorm"
):
text_embeds = self.language_model.transformer.word_embeddings_layernorm(text_embeds)
return text_embeds
def prepare_mm_inputs(
self,
input_ids: torch.FloatTensor,
pixel_values: Optional[list[torch.FloatTensor]] = None,
image_metas: Optional[dict] = None,
attention_mask: Optional[torch.LongTensor] = None,
):
"""Prepare multimodal inputs from input_ids and pixel_values."""
if pixel_values is not None:
pixel_values = pixel_values.to(self._get_input_dtype())
if attention_mask is None:
attention_mask = input_ids.new_ones(*input_ids.shape)
# Get Text Embeddings
text_embeds = self.embed_text_tokens(input_ids)
flattened_text_embeds = rearrange(text_embeds, "b l d -> (b l) d")
flattened_input_ids = rearrange(input_ids, "b l -> (b l)")
# Get Visual Embeddings
if pixel_values is not None:
flattened_visual_embeds = self.forward_and_project_vision(
pixel_values, image_metas
)
flattened_text_embeds[flattened_input_ids == -1] = flattened_visual_embeds
input_embeds = rearrange(
flattened_text_embeds, "(b l) d -> b l d", b=input_ids.shape[0]
)
return_inputs = {
"inputs_embeds": input_embeds,
"attention_mask": attention_mask,
}
return return_inputs
def forward(
self,
pixel_values: list[torch.FloatTensor],
image_metas: dict[list],
input_ids: torch.FloatTensor,
seq_length: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
return_dict: Optional[bool] = None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
inputs = self.prepare_mm_inputs(
input_ids=input_ids,
pixel_values=pixel_values,
image_metas=image_metas,
attention_mask=attention_mask,
)
outputs = self.language_model(
**inputs,
labels=labels,
position_ids=None,
return_dict=return_dict,
output_attentions=self.config.output_attentions,
)
return outputs
@torch.no_grad()
def generate(
self,
pixel_values: torch.FloatTensor = None,
image_metas: dict[list] = None,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.LongTensor] = None,
seq_length: Optional[torch.LongTensor] = None,
**generate_kwargs,
) -> torch.LongTensor:
"""
Overrides `generate` function to be able to use the model as a conditional generator.
Args:
pixel_values (`torch.FloatTensor` of shape (batch_size, num_channels, height, width)):
Input images to be processed.
input_ids (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
The sequence used as a prompt for the generation.
attention_mask (`torch.LongTensor` of shape (batch_size, sequence_length), *optional*):
Mask to avoid performing attention on padding token indices
Returns:
captions (list): A list of strings of length batch_size * num_captions.
"""
if input_ids is None:
return self.language_model.generate(attention_mask=attention_mask, **generate_kwargs)
if pixel_values is None:
return self.language_model.generate(input_ids=input_ids, attention_mask=attention_mask, **generate_kwargs)
if (
image_metas is not None
and image_metas.get("vision_grid_thw") is not None
and isinstance(image_metas.get("vision_grid_thw"), torch.Tensor)
):
image_metas["vision_grid_thw"] = image_metas["vision_grid_thw"].to(input_ids.device)
inputs = self.prepare_mm_inputs(
input_ids=input_ids,
pixel_values=pixel_values,
image_metas=image_metas,
attention_mask=attention_mask,
)
outputs = self.language_model.generate(
**inputs,
**generate_kwargs,
)
return outputs
def _get_input_dtype(self):
dtype = next(self.vision_model.parameters()).dtype
return dtype