justinj92 commited on
Commit
efff5bd
·
verified ·
1 Parent(s): 9a5433b

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +190 -186
README.md CHANGED
@@ -1,199 +1,203 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ base_model: openai/gpt-oss-20b
4
+ tags:
5
+ - multilingual
6
+ - reasoning
7
+ - thinking
8
+ - fine-tuned
9
+ - lora
10
+ - conversational
11
+ language:
12
+ - multilingual
13
+ - en
14
+ - es
15
+ - ar
16
+ - fr
17
+ - de
18
+ - zh
19
+ - ja
20
+ - ko
21
+ - hi
22
+ - ru
23
+ datasets:
24
+ - HuggingFaceH4/Multilingual-Thinking
25
  library_name: transformers
26
+ pipeline_tag: text-generation
27
  ---
28
 
29
+ # GPT-OSS-NEMO-20B: Multilingual Thinking Model
30
 
31
+ ## Model Description
32
 
33
+ **GPT-OSS-NEMO-20B** is a fine-tuned version of OpenAI's GPT-OSS-20B model, specifically enhanced for multilingual reasoning and thinking capabilities. This model has been trained using Supervised Fine-Tuning (SFT) on the HuggingFaceH4/Multilingual-Thinking dataset to improve its ability to reason in multiple languages while maintaining strong performance across diverse linguistic contexts.
34
 
35
+ ## Key Features
36
 
37
+ - 🌍 **Multilingual Reasoning**: Enhanced ability to think and reason in multiple languages
38
+ - 🧠 **Chain-of-Thought**: Improved reasoning capabilities with explicit thinking processes
39
+ - 💬 **Conversational**: Optimized for interactive dialogue and question-answering
40
+ - 🎯 **Cross-lingual**: Can reason in one language and respond in another
41
+ - **High Performance**: Built on the robust 20B parameter GPT-OSS foundation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  ## Training Details
44
 
45
+ ### Base Model
46
+ - **Model**: [openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b)
47
+ - **Parameters**: 20 billion parameters
48
+ - **Architecture**: GPT-OSS (Mixture of Experts)
49
+
50
+ ### Fine-tuning Configuration
51
+ - **Method**: LoRA (Low-Rank Adaptation)
52
+ - **Rank (r)**: 8
53
+ - **Alpha**: 16
54
+ - **Target Modules**: All linear layers with specific focus on MoE expert layers
55
+ - **Target Parameters**:
56
+ - Layer 7, 15, 23 MLP experts (gate_up_proj, down_proj)
57
+
58
+ ### Training Infrastructure
59
+ - **Hardware**: 4x NVIDIA H100 GPUs
60
+ - **Cloud Platform**: Microsoft Azure NC-series instances
61
+ - **Training Framework**: TRL (Transformers Reinforcement Learning)
62
+ - **Optimization**: AdamW with cosine learning rate scheduling
63
+
64
+ ### Training Hyperparameters
65
+ - **Learning Rate**: 2e-4
66
+ - **Batch Size**: 4 per device (16 total with 4 GPUs)
67
+ - **Gradient Accumulation**: 4 steps
68
+ - **Epochs**: 4
69
+ - **Max Sequence Length**: 2048 tokens
70
+ - **Warmup Ratio**: 3%
71
+ - **LR Scheduler**: Cosine with minimum LR (10% of peak)
72
+ - **Gradient Checkpointing**: Enabled
73
+
74
+ ### Dataset
75
+ - **Name**: [HuggingFaceH4/Multilingual-Thinking](https://huggingface.co/datasets/HuggingFaceH4/Multilingual-Thinking)
76
+ - **Purpose**: Multilingual reasoning and thinking enhancement
77
+ - **Languages**: Multiple languages including English, Spanish, Arabic, French, German, Chinese, Japanese, Korean, Hindi, Russian
78
+ - **Training Split**: Full training set
79
+
80
+ ## Usage
81
+
82
+ ### Quick Start
83
+
84
+ ```python
85
+ from transformers import AutoModelForCausalLM, AutoTokenizer
86
+
87
+ # Load model and tokenizer
88
+ model = AutoModelForCausalLM.from_pretrained(
89
+ "justinj92/gpt-oss-nemo-20b",
90
+ torch_dtype="auto",
91
+ device_map="auto"
92
+ )
93
+ tokenizer = AutoTokenizer.from_pretrained("justinj92/gpt-oss-nemo-20b")
94
+
95
+ # Example: Multilingual reasoning
96
+ messages = [
97
+ {"role": "system", "content": "reasoning language: Arabic"},
98
+ {"role": "user", "content": "¿Cuál es la capital de Australia?"}
99
+ ]
100
+
101
+ inputs = tokenizer.apply_chat_template(
102
+ messages,
103
+ add_generation_prompt=True,
104
+ return_tensors="pt"
105
+ )
106
+
107
+ outputs = model.generate(
108
+ inputs,
109
+ max_new_tokens=512,
110
+ temperature=0.6,
111
+ do_sample=True
112
+ )
113
+
114
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
115
+ print(response)
116
+ ```
117
+
118
+ ### Advanced Usage with Custom Reasoning Language
119
+
120
+ ```python
121
+ # Specify reasoning language in system prompt
122
+ reasoning_language = "French" # Can be any supported language
123
+ system_prompt = f"reasoning language: {reasoning_language}"
124
+
125
+ messages = [
126
+ {"role": "system", "content": system_prompt},
127
+ {"role": "user", "content": "Explain quantum computing in simple terms."}
128
+ ]
129
+ ```
130
+
131
+ ## Model Capabilities
132
+
133
+ ### Multilingual Reasoning
134
+ The model can:
135
+ - Think and reason in a specified language (via system prompt)
136
+ - Process questions in one language and reason in another
137
+ - Maintain coherent logic across language boundaries
138
+ - Provide explanations with explicit reasoning steps
139
+
140
+ ### Language Support
141
+ Primary languages include:
142
+ - **English** (en)
143
+ - **Spanish** (es)
144
+ - **Arabic** (ar)
145
+ - **French** (fr)
146
+ - **German** (de)
147
+ - **Chinese** (zh)
148
+ - **Japanese** (ja)
149
+ - **Korean** (ko)
150
+ - **Hindi** (hi)
151
+ - **Russian** (ru)
152
+
153
+ ## Performance
154
+
155
+ The model demonstrates improved performance in:
156
+ - Cross-lingual reasoning tasks
157
+ - Multi-step problem solving
158
+ - Contextual understanding across languages
159
+ - Maintaining coherence in multilingual conversations
160
+
161
+ ## Limitations
162
+
163
+ - Performance may vary across different languages
164
+ - Complex reasoning in low-resource languages may be limited
165
+ - Generated content should be verified for factual accuracy
166
+ - May exhibit biases present in the training data
167
+
168
+ ## Technical Specifications
169
+
170
+ - **Model Size**: ~20B parameters
171
+ - **Precision**: BF16 (Brain Floating Point 16-bit)
172
+ - **Memory Requirements**: ~40GB VRAM for inference
173
+ - **Recommended Hardware**: NVIDIA A100/H100 or similar high-memory GPUs
174
+ - **Framework Compatibility**: transformers, torch, accelerate
175
+
176
+ ## Citation
177
+
178
+ If you use this model in your research, please cite:
179
+
180
+ ```bibtex
181
+ @misc{gpt-oss-nemo-20b,
182
+ title={GPT-OSS-NEMO-20B: A Multilingual Thinking Model},
183
+ author={justinj92},
184
+ year={2025},
185
+ howpublished={\url{https://huggingface.co/justinj92/gpt-oss-nemo-20b}},
186
+ note={Fine-tuned from openai/gpt-oss-20b using HuggingFaceH4/Multilingual-Thinking}
187
+ }
188
+ ```
189
+
190
+ ## Acknowledgments
191
+
192
+ - **Base Model**: OpenAI GPT-OSS-20B team
193
+ - **Dataset**: HuggingFace H4 team for the Multilingual-Thinking dataset
194
+ - **Infrastructure**: Microsoft Azure for cloud computing resources
195
+ - **Framework**: Hugging Face transformers and TRL libraries
196
+
197
+ ## License
198
+
199
+ This model is released under the Apache 2.0 license, following the base model's licensing terms.
200
 
201
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202
 
203
+ *Model trained on August 2025 using state-of-the-art multilingual reasoning techniques.*