dylanebert
commited on
Commit
·
6b83d25
1
Parent(s):
a283418
minify
Browse files- README.md +18 -0
- convert_mvdream_to_diffusers.py +0 -597
- requirements.lock.txt +0 -7
- requirements.txt +0 -9
README.md
CHANGED
|
@@ -3,10 +3,28 @@ license: openrail
|
|
| 3 |
pipeline_tag: image-to-3d
|
| 4 |
---
|
| 5 |
|
|
|
|
|
|
|
| 6 |
This is a duplicate of [ashawkey/imagedream-ipmv-diffusers](https://huggingface.co/ashawkey/imagedream-ipmv-diffusers).
|
| 7 |
|
| 8 |
It is hosted here for the purpose of persistence and reproducibility for the ML for 3D course.
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
Original model card below.
|
| 11 |
|
| 12 |
---
|
|
|
|
| 3 |
pipeline_tag: image-to-3d
|
| 4 |
---
|
| 5 |
|
| 6 |
+
# Overview
|
| 7 |
+
|
| 8 |
This is a duplicate of [ashawkey/imagedream-ipmv-diffusers](https://huggingface.co/ashawkey/imagedream-ipmv-diffusers).
|
| 9 |
|
| 10 |
It is hosted here for the purpose of persistence and reproducibility for the ML for 3D course.
|
| 11 |
|
| 12 |
+
### Usage
|
| 13 |
+
|
| 14 |
+
This project can be used from other projects as follows.
|
| 15 |
+
|
| 16 |
+
```
|
| 17 |
+
import torch
|
| 18 |
+
from diffusers import DiffusionPipeline
|
| 19 |
+
|
| 20 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
| 21 |
+
"ashawkey/mvdream-sd2.1-diffusers",
|
| 22 |
+
custom_pipeline="dylanebert/multi_view_diffusion",
|
| 23 |
+
torch_dtype=torch.float16,
|
| 24 |
+
trust_remote_code=True,
|
| 25 |
+
)
|
| 26 |
+
```
|
| 27 |
+
|
| 28 |
Original model card below.
|
| 29 |
|
| 30 |
---
|
convert_mvdream_to_diffusers.py
DELETED
|
@@ -1,597 +0,0 @@
|
|
| 1 |
-
# Modified from https://github.com/huggingface/diffusers/blob/bc691231360a4cbc7d19a58742ebb8ed0f05e027/scripts/convert_original_stable_diffusion_to_diffusers.py
|
| 2 |
-
|
| 3 |
-
import argparse
|
| 4 |
-
import torch
|
| 5 |
-
import sys
|
| 6 |
-
|
| 7 |
-
sys.path.insert(0, ".")
|
| 8 |
-
|
| 9 |
-
from diffusers.models import (
|
| 10 |
-
AutoencoderKL,
|
| 11 |
-
)
|
| 12 |
-
from omegaconf import OmegaConf
|
| 13 |
-
from diffusers.schedulers import DDIMScheduler
|
| 14 |
-
from diffusers.utils import logging
|
| 15 |
-
from typing import Any
|
| 16 |
-
from accelerate import init_empty_weights
|
| 17 |
-
from accelerate.utils import set_module_tensor_to_device
|
| 18 |
-
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel, CLIPImageProcessor
|
| 19 |
-
|
| 20 |
-
from mv_unet import MultiViewUNetModel
|
| 21 |
-
from pipeline import MVDreamPipeline
|
| 22 |
-
import kiui
|
| 23 |
-
|
| 24 |
-
logger = logging.get_logger(__name__)
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def assign_to_checkpoint(
|
| 28 |
-
paths,
|
| 29 |
-
checkpoint,
|
| 30 |
-
old_checkpoint,
|
| 31 |
-
attention_paths_to_split=None,
|
| 32 |
-
additional_replacements=None,
|
| 33 |
-
config=None,
|
| 34 |
-
):
|
| 35 |
-
"""
|
| 36 |
-
This does the final conversion step: take locally converted weights and apply a global renaming to them. It splits
|
| 37 |
-
attention layers, and takes into account additional replacements that may arise.
|
| 38 |
-
Assigns the weights to the new checkpoint.
|
| 39 |
-
"""
|
| 40 |
-
assert isinstance(
|
| 41 |
-
paths, list
|
| 42 |
-
), "Paths should be a list of dicts containing 'old' and 'new' keys."
|
| 43 |
-
|
| 44 |
-
# Splits the attention layers into three variables.
|
| 45 |
-
if attention_paths_to_split is not None:
|
| 46 |
-
for path, path_map in attention_paths_to_split.items():
|
| 47 |
-
old_tensor = old_checkpoint[path]
|
| 48 |
-
channels = old_tensor.shape[0] // 3
|
| 49 |
-
|
| 50 |
-
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1)
|
| 51 |
-
|
| 52 |
-
assert config is not None
|
| 53 |
-
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3
|
| 54 |
-
|
| 55 |
-
old_tensor = old_tensor.reshape(
|
| 56 |
-
(num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]
|
| 57 |
-
)
|
| 58 |
-
query, key, value = old_tensor.split(channels // num_heads, dim=1)
|
| 59 |
-
|
| 60 |
-
checkpoint[path_map["query"]] = query.reshape(target_shape)
|
| 61 |
-
checkpoint[path_map["key"]] = key.reshape(target_shape)
|
| 62 |
-
checkpoint[path_map["value"]] = value.reshape(target_shape)
|
| 63 |
-
|
| 64 |
-
for path in paths:
|
| 65 |
-
new_path = path["new"]
|
| 66 |
-
|
| 67 |
-
# These have already been assigned
|
| 68 |
-
if (
|
| 69 |
-
attention_paths_to_split is not None
|
| 70 |
-
and new_path in attention_paths_to_split
|
| 71 |
-
):
|
| 72 |
-
continue
|
| 73 |
-
|
| 74 |
-
# Global renaming happens here
|
| 75 |
-
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0")
|
| 76 |
-
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0")
|
| 77 |
-
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1")
|
| 78 |
-
|
| 79 |
-
if additional_replacements is not None:
|
| 80 |
-
for replacement in additional_replacements:
|
| 81 |
-
new_path = new_path.replace(replacement["old"], replacement["new"])
|
| 82 |
-
|
| 83 |
-
# proj_attn.weight has to be converted from conv 1D to linear
|
| 84 |
-
is_attn_weight = "proj_attn.weight" in new_path or (
|
| 85 |
-
"attentions" in new_path and "to_" in new_path
|
| 86 |
-
)
|
| 87 |
-
shape = old_checkpoint[path["old"]].shape
|
| 88 |
-
if is_attn_weight and len(shape) == 3:
|
| 89 |
-
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0]
|
| 90 |
-
elif is_attn_weight and len(shape) == 4:
|
| 91 |
-
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0, 0]
|
| 92 |
-
else:
|
| 93 |
-
checkpoint[new_path] = old_checkpoint[path["old"]]
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
def shave_segments(path, n_shave_prefix_segments=1):
|
| 97 |
-
"""
|
| 98 |
-
Removes segments. Positive values shave the first segments, negative shave the last segments.
|
| 99 |
-
"""
|
| 100 |
-
if n_shave_prefix_segments >= 0:
|
| 101 |
-
return ".".join(path.split(".")[n_shave_prefix_segments:])
|
| 102 |
-
else:
|
| 103 |
-
return ".".join(path.split(".")[:n_shave_prefix_segments])
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
def create_vae_diffusers_config(original_config, image_size):
|
| 107 |
-
"""
|
| 108 |
-
Creates a config for the diffusers based on the config of the LDM model.
|
| 109 |
-
"""
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
if 'imagedream' in original_config.model.target:
|
| 113 |
-
vae_params = original_config.model.params.vae_config.params.ddconfig
|
| 114 |
-
_ = original_config.model.params.vae_config.params.embed_dim
|
| 115 |
-
vae_key = "vae_model."
|
| 116 |
-
else:
|
| 117 |
-
vae_params = original_config.model.params.first_stage_config.params.ddconfig
|
| 118 |
-
_ = original_config.model.params.first_stage_config.params.embed_dim
|
| 119 |
-
vae_key = "first_stage_model."
|
| 120 |
-
|
| 121 |
-
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
|
| 122 |
-
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
|
| 123 |
-
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
|
| 124 |
-
|
| 125 |
-
config = {
|
| 126 |
-
"sample_size": image_size,
|
| 127 |
-
"in_channels": vae_params.in_channels,
|
| 128 |
-
"out_channels": vae_params.out_ch,
|
| 129 |
-
"down_block_types": tuple(down_block_types),
|
| 130 |
-
"up_block_types": tuple(up_block_types),
|
| 131 |
-
"block_out_channels": tuple(block_out_channels),
|
| 132 |
-
"latent_channels": vae_params.z_channels,
|
| 133 |
-
"layers_per_block": vae_params.num_res_blocks,
|
| 134 |
-
}
|
| 135 |
-
return config, vae_key
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
def convert_ldm_vae_checkpoint(checkpoint, config, vae_key):
|
| 139 |
-
# extract state dict for VAE
|
| 140 |
-
vae_state_dict = {}
|
| 141 |
-
keys = list(checkpoint.keys())
|
| 142 |
-
for key in keys:
|
| 143 |
-
if key.startswith(vae_key):
|
| 144 |
-
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key)
|
| 145 |
-
|
| 146 |
-
new_checkpoint = {}
|
| 147 |
-
|
| 148 |
-
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"]
|
| 149 |
-
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"]
|
| 150 |
-
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict[
|
| 151 |
-
"encoder.conv_out.weight"
|
| 152 |
-
]
|
| 153 |
-
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"]
|
| 154 |
-
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict[
|
| 155 |
-
"encoder.norm_out.weight"
|
| 156 |
-
]
|
| 157 |
-
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict[
|
| 158 |
-
"encoder.norm_out.bias"
|
| 159 |
-
]
|
| 160 |
-
|
| 161 |
-
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"]
|
| 162 |
-
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"]
|
| 163 |
-
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict[
|
| 164 |
-
"decoder.conv_out.weight"
|
| 165 |
-
]
|
| 166 |
-
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"]
|
| 167 |
-
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict[
|
| 168 |
-
"decoder.norm_out.weight"
|
| 169 |
-
]
|
| 170 |
-
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict[
|
| 171 |
-
"decoder.norm_out.bias"
|
| 172 |
-
]
|
| 173 |
-
|
| 174 |
-
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"]
|
| 175 |
-
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"]
|
| 176 |
-
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"]
|
| 177 |
-
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"]
|
| 178 |
-
|
| 179 |
-
# Retrieves the keys for the encoder down blocks only
|
| 180 |
-
num_down_blocks = len(
|
| 181 |
-
{
|
| 182 |
-
".".join(layer.split(".")[:3])
|
| 183 |
-
for layer in vae_state_dict
|
| 184 |
-
if "encoder.down" in layer
|
| 185 |
-
}
|
| 186 |
-
)
|
| 187 |
-
down_blocks = {
|
| 188 |
-
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key]
|
| 189 |
-
for layer_id in range(num_down_blocks)
|
| 190 |
-
}
|
| 191 |
-
|
| 192 |
-
# Retrieves the keys for the decoder up blocks only
|
| 193 |
-
num_up_blocks = len(
|
| 194 |
-
{
|
| 195 |
-
".".join(layer.split(".")[:3])
|
| 196 |
-
for layer in vae_state_dict
|
| 197 |
-
if "decoder.up" in layer
|
| 198 |
-
}
|
| 199 |
-
)
|
| 200 |
-
up_blocks = {
|
| 201 |
-
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key]
|
| 202 |
-
for layer_id in range(num_up_blocks)
|
| 203 |
-
}
|
| 204 |
-
|
| 205 |
-
for i in range(num_down_blocks):
|
| 206 |
-
resnets = [
|
| 207 |
-
key
|
| 208 |
-
for key in down_blocks[i]
|
| 209 |
-
if f"down.{i}" in key and f"down.{i}.downsample" not in key
|
| 210 |
-
]
|
| 211 |
-
|
| 212 |
-
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict:
|
| 213 |
-
new_checkpoint[
|
| 214 |
-
f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"
|
| 215 |
-
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.weight")
|
| 216 |
-
new_checkpoint[
|
| 217 |
-
f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"
|
| 218 |
-
] = vae_state_dict.pop(f"encoder.down.{i}.downsample.conv.bias")
|
| 219 |
-
|
| 220 |
-
paths = renew_vae_resnet_paths(resnets)
|
| 221 |
-
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"}
|
| 222 |
-
assign_to_checkpoint(
|
| 223 |
-
paths,
|
| 224 |
-
new_checkpoint,
|
| 225 |
-
vae_state_dict,
|
| 226 |
-
additional_replacements=[meta_path],
|
| 227 |
-
config=config,
|
| 228 |
-
)
|
| 229 |
-
|
| 230 |
-
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key]
|
| 231 |
-
num_mid_res_blocks = 2
|
| 232 |
-
for i in range(1, num_mid_res_blocks + 1):
|
| 233 |
-
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key]
|
| 234 |
-
|
| 235 |
-
paths = renew_vae_resnet_paths(resnets)
|
| 236 |
-
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
| 237 |
-
assign_to_checkpoint(
|
| 238 |
-
paths,
|
| 239 |
-
new_checkpoint,
|
| 240 |
-
vae_state_dict,
|
| 241 |
-
additional_replacements=[meta_path],
|
| 242 |
-
config=config,
|
| 243 |
-
)
|
| 244 |
-
|
| 245 |
-
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key]
|
| 246 |
-
paths = renew_vae_attention_paths(mid_attentions)
|
| 247 |
-
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
| 248 |
-
assign_to_checkpoint(
|
| 249 |
-
paths,
|
| 250 |
-
new_checkpoint,
|
| 251 |
-
vae_state_dict,
|
| 252 |
-
additional_replacements=[meta_path],
|
| 253 |
-
config=config,
|
| 254 |
-
)
|
| 255 |
-
conv_attn_to_linear(new_checkpoint)
|
| 256 |
-
|
| 257 |
-
for i in range(num_up_blocks):
|
| 258 |
-
block_id = num_up_blocks - 1 - i
|
| 259 |
-
resnets = [
|
| 260 |
-
key
|
| 261 |
-
for key in up_blocks[block_id]
|
| 262 |
-
if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key
|
| 263 |
-
]
|
| 264 |
-
|
| 265 |
-
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict:
|
| 266 |
-
new_checkpoint[
|
| 267 |
-
f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"
|
| 268 |
-
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.weight"]
|
| 269 |
-
new_checkpoint[
|
| 270 |
-
f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"
|
| 271 |
-
] = vae_state_dict[f"decoder.up.{block_id}.upsample.conv.bias"]
|
| 272 |
-
|
| 273 |
-
paths = renew_vae_resnet_paths(resnets)
|
| 274 |
-
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"}
|
| 275 |
-
assign_to_checkpoint(
|
| 276 |
-
paths,
|
| 277 |
-
new_checkpoint,
|
| 278 |
-
vae_state_dict,
|
| 279 |
-
additional_replacements=[meta_path],
|
| 280 |
-
config=config,
|
| 281 |
-
)
|
| 282 |
-
|
| 283 |
-
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key]
|
| 284 |
-
num_mid_res_blocks = 2
|
| 285 |
-
for i in range(1, num_mid_res_blocks + 1):
|
| 286 |
-
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key]
|
| 287 |
-
|
| 288 |
-
paths = renew_vae_resnet_paths(resnets)
|
| 289 |
-
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"}
|
| 290 |
-
assign_to_checkpoint(
|
| 291 |
-
paths,
|
| 292 |
-
new_checkpoint,
|
| 293 |
-
vae_state_dict,
|
| 294 |
-
additional_replacements=[meta_path],
|
| 295 |
-
config=config,
|
| 296 |
-
)
|
| 297 |
-
|
| 298 |
-
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key]
|
| 299 |
-
paths = renew_vae_attention_paths(mid_attentions)
|
| 300 |
-
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"}
|
| 301 |
-
assign_to_checkpoint(
|
| 302 |
-
paths,
|
| 303 |
-
new_checkpoint,
|
| 304 |
-
vae_state_dict,
|
| 305 |
-
additional_replacements=[meta_path],
|
| 306 |
-
config=config,
|
| 307 |
-
)
|
| 308 |
-
conv_attn_to_linear(new_checkpoint)
|
| 309 |
-
return new_checkpoint
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0):
|
| 313 |
-
"""
|
| 314 |
-
Updates paths inside resnets to the new naming scheme (local renaming)
|
| 315 |
-
"""
|
| 316 |
-
mapping = []
|
| 317 |
-
for old_item in old_list:
|
| 318 |
-
new_item = old_item
|
| 319 |
-
|
| 320 |
-
new_item = new_item.replace("nin_shortcut", "conv_shortcut")
|
| 321 |
-
new_item = shave_segments(
|
| 322 |
-
new_item, n_shave_prefix_segments=n_shave_prefix_segments
|
| 323 |
-
)
|
| 324 |
-
|
| 325 |
-
mapping.append({"old": old_item, "new": new_item})
|
| 326 |
-
|
| 327 |
-
return mapping
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0):
|
| 331 |
-
"""
|
| 332 |
-
Updates paths inside attentions to the new naming scheme (local renaming)
|
| 333 |
-
"""
|
| 334 |
-
mapping = []
|
| 335 |
-
for old_item in old_list:
|
| 336 |
-
new_item = old_item
|
| 337 |
-
|
| 338 |
-
new_item = new_item.replace("norm.weight", "group_norm.weight")
|
| 339 |
-
new_item = new_item.replace("norm.bias", "group_norm.bias")
|
| 340 |
-
|
| 341 |
-
new_item = new_item.replace("q.weight", "to_q.weight")
|
| 342 |
-
new_item = new_item.replace("q.bias", "to_q.bias")
|
| 343 |
-
|
| 344 |
-
new_item = new_item.replace("k.weight", "to_k.weight")
|
| 345 |
-
new_item = new_item.replace("k.bias", "to_k.bias")
|
| 346 |
-
|
| 347 |
-
new_item = new_item.replace("v.weight", "to_v.weight")
|
| 348 |
-
new_item = new_item.replace("v.bias", "to_v.bias")
|
| 349 |
-
|
| 350 |
-
new_item = new_item.replace("proj_out.weight", "to_out.0.weight")
|
| 351 |
-
new_item = new_item.replace("proj_out.bias", "to_out.0.bias")
|
| 352 |
-
|
| 353 |
-
new_item = shave_segments(
|
| 354 |
-
new_item, n_shave_prefix_segments=n_shave_prefix_segments
|
| 355 |
-
)
|
| 356 |
-
|
| 357 |
-
mapping.append({"old": old_item, "new": new_item})
|
| 358 |
-
|
| 359 |
-
return mapping
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
def conv_attn_to_linear(checkpoint):
|
| 363 |
-
keys = list(checkpoint.keys())
|
| 364 |
-
attn_keys = ["query.weight", "key.weight", "value.weight"]
|
| 365 |
-
for key in keys:
|
| 366 |
-
if ".".join(key.split(".")[-2:]) in attn_keys:
|
| 367 |
-
if checkpoint[key].ndim > 2:
|
| 368 |
-
checkpoint[key] = checkpoint[key][:, :, 0, 0]
|
| 369 |
-
elif "proj_attn.weight" in key:
|
| 370 |
-
if checkpoint[key].ndim > 2:
|
| 371 |
-
checkpoint[key] = checkpoint[key][:, :, 0]
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
def create_unet_config(original_config) -> Any:
|
| 375 |
-
return OmegaConf.to_container(
|
| 376 |
-
original_config.model.params.unet_config.params, resolve=True
|
| 377 |
-
)
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
def convert_from_original_mvdream_ckpt(checkpoint_path, original_config_file, device):
|
| 381 |
-
checkpoint = torch.load(checkpoint_path, map_location=device)
|
| 382 |
-
# print(f"Checkpoint: {checkpoint.keys()}")
|
| 383 |
-
torch.cuda.empty_cache()
|
| 384 |
-
|
| 385 |
-
original_config = OmegaConf.load(original_config_file)
|
| 386 |
-
# print(f"Original Config: {original_config}")
|
| 387 |
-
prediction_type = "epsilon"
|
| 388 |
-
image_size = 256
|
| 389 |
-
num_train_timesteps = (
|
| 390 |
-
getattr(original_config.model.params, "timesteps", None) or 1000
|
| 391 |
-
)
|
| 392 |
-
beta_start = getattr(original_config.model.params, "linear_start", None) or 0.02
|
| 393 |
-
beta_end = getattr(original_config.model.params, "linear_end", None) or 0.085
|
| 394 |
-
scheduler = DDIMScheduler(
|
| 395 |
-
beta_end=beta_end,
|
| 396 |
-
beta_schedule="scaled_linear",
|
| 397 |
-
beta_start=beta_start,
|
| 398 |
-
num_train_timesteps=num_train_timesteps,
|
| 399 |
-
steps_offset=1,
|
| 400 |
-
clip_sample=False,
|
| 401 |
-
set_alpha_to_one=False,
|
| 402 |
-
prediction_type=prediction_type,
|
| 403 |
-
)
|
| 404 |
-
scheduler.register_to_config(clip_sample=False)
|
| 405 |
-
|
| 406 |
-
unet_config = create_unet_config(original_config)
|
| 407 |
-
|
| 408 |
-
# remove unused configs
|
| 409 |
-
unet_config.pop('legacy', None)
|
| 410 |
-
unet_config.pop('use_linear_in_transformer', None)
|
| 411 |
-
unet_config.pop('use_spatial_transformer', None)
|
| 412 |
-
|
| 413 |
-
unet_config.pop('ip_mode', None)
|
| 414 |
-
unet_config.pop('with_ip', None)
|
| 415 |
-
|
| 416 |
-
unet = MultiViewUNetModel(**unet_config)
|
| 417 |
-
unet.register_to_config(**unet_config)
|
| 418 |
-
# print(f"Unet State Dict: {unet.state_dict().keys()}")
|
| 419 |
-
unet.load_state_dict(
|
| 420 |
-
{
|
| 421 |
-
key.replace("model.diffusion_model.", ""): value
|
| 422 |
-
for key, value in checkpoint.items()
|
| 423 |
-
if key.replace("model.diffusion_model.", "") in unet.state_dict()
|
| 424 |
-
}
|
| 425 |
-
)
|
| 426 |
-
for param_name, param in unet.state_dict().items():
|
| 427 |
-
set_module_tensor_to_device(unet, param_name, device=device, value=param)
|
| 428 |
-
|
| 429 |
-
# Convert the VAE model.
|
| 430 |
-
vae_config, vae_key = create_vae_diffusers_config(original_config, image_size=image_size)
|
| 431 |
-
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config, vae_key)
|
| 432 |
-
|
| 433 |
-
if (
|
| 434 |
-
"model" in original_config
|
| 435 |
-
and "params" in original_config.model
|
| 436 |
-
and "scale_factor" in original_config.model.params
|
| 437 |
-
):
|
| 438 |
-
vae_scaling_factor = original_config.model.params.scale_factor
|
| 439 |
-
else:
|
| 440 |
-
vae_scaling_factor = 0.18215 # default SD scaling factor
|
| 441 |
-
|
| 442 |
-
vae_config["scaling_factor"] = vae_scaling_factor
|
| 443 |
-
|
| 444 |
-
with init_empty_weights():
|
| 445 |
-
vae = AutoencoderKL(**vae_config)
|
| 446 |
-
|
| 447 |
-
for param_name, param in converted_vae_checkpoint.items():
|
| 448 |
-
set_module_tensor_to_device(vae, param_name, device=device, value=param)
|
| 449 |
-
|
| 450 |
-
# we only supports SD 2.1 based model
|
| 451 |
-
tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="tokenizer")
|
| 452 |
-
text_encoder: CLIPTextModel = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2-1", subfolder="text_encoder").to(device=device) # type: ignore
|
| 453 |
-
|
| 454 |
-
# imagedream variant
|
| 455 |
-
if unet.ip_dim > 0:
|
| 456 |
-
feature_extractor: CLIPImageProcessor = CLIPImageProcessor.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
|
| 457 |
-
image_encoder: CLIPVisionModel = CLIPVisionModel.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
|
| 458 |
-
else:
|
| 459 |
-
feature_extractor = None
|
| 460 |
-
image_encoder = None
|
| 461 |
-
|
| 462 |
-
pipe = MVDreamPipeline(
|
| 463 |
-
vae=vae,
|
| 464 |
-
unet=unet,
|
| 465 |
-
tokenizer=tokenizer,
|
| 466 |
-
text_encoder=text_encoder,
|
| 467 |
-
scheduler=scheduler,
|
| 468 |
-
feature_extractor=feature_extractor,
|
| 469 |
-
image_encoder=image_encoder,
|
| 470 |
-
)
|
| 471 |
-
|
| 472 |
-
return pipe
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
if __name__ == "__main__":
|
| 476 |
-
parser = argparse.ArgumentParser()
|
| 477 |
-
|
| 478 |
-
parser.add_argument(
|
| 479 |
-
"--checkpoint_path",
|
| 480 |
-
default=None,
|
| 481 |
-
type=str,
|
| 482 |
-
required=True,
|
| 483 |
-
help="Path to the checkpoint to convert.",
|
| 484 |
-
)
|
| 485 |
-
parser.add_argument(
|
| 486 |
-
"--original_config_file",
|
| 487 |
-
default=None,
|
| 488 |
-
type=str,
|
| 489 |
-
help="The YAML config file corresponding to the original architecture.",
|
| 490 |
-
)
|
| 491 |
-
parser.add_argument(
|
| 492 |
-
"--to_safetensors",
|
| 493 |
-
action="store_true",
|
| 494 |
-
help="Whether to store pipeline in safetensors format or not.",
|
| 495 |
-
)
|
| 496 |
-
parser.add_argument(
|
| 497 |
-
"--half", action="store_true", help="Save weights in half precision."
|
| 498 |
-
)
|
| 499 |
-
parser.add_argument(
|
| 500 |
-
"--test",
|
| 501 |
-
action="store_true",
|
| 502 |
-
help="Whether to test inference after convertion.",
|
| 503 |
-
)
|
| 504 |
-
parser.add_argument(
|
| 505 |
-
"--dump_path",
|
| 506 |
-
default=None,
|
| 507 |
-
type=str,
|
| 508 |
-
required=True,
|
| 509 |
-
help="Path to the output model.",
|
| 510 |
-
)
|
| 511 |
-
parser.add_argument(
|
| 512 |
-
"--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)"
|
| 513 |
-
)
|
| 514 |
-
args = parser.parse_args()
|
| 515 |
-
|
| 516 |
-
args.device = torch.device(
|
| 517 |
-
args.device
|
| 518 |
-
if args.device is not None
|
| 519 |
-
else "cuda"
|
| 520 |
-
if torch.cuda.is_available()
|
| 521 |
-
else "cpu"
|
| 522 |
-
)
|
| 523 |
-
|
| 524 |
-
pipe = convert_from_original_mvdream_ckpt(
|
| 525 |
-
checkpoint_path=args.checkpoint_path,
|
| 526 |
-
original_config_file=args.original_config_file,
|
| 527 |
-
device=args.device,
|
| 528 |
-
)
|
| 529 |
-
|
| 530 |
-
if args.half:
|
| 531 |
-
pipe.to(torch_dtype=torch.float16)
|
| 532 |
-
|
| 533 |
-
print(f"Saving pipeline to {args.dump_path}...")
|
| 534 |
-
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
|
| 535 |
-
|
| 536 |
-
if args.test:
|
| 537 |
-
try:
|
| 538 |
-
# mvdream
|
| 539 |
-
if pipe.unet.ip_dim == 0:
|
| 540 |
-
print(f"Testing each subcomponent of the pipeline...")
|
| 541 |
-
images = pipe(
|
| 542 |
-
prompt="Head of Hatsune Miku",
|
| 543 |
-
negative_prompt="painting, bad quality, flat",
|
| 544 |
-
output_type="pil",
|
| 545 |
-
guidance_scale=7.5,
|
| 546 |
-
num_inference_steps=50,
|
| 547 |
-
device=args.device,
|
| 548 |
-
)
|
| 549 |
-
for i, image in enumerate(images):
|
| 550 |
-
image.save(f"test_image_{i}.png") # type: ignore
|
| 551 |
-
|
| 552 |
-
print(f"Testing entire pipeline...")
|
| 553 |
-
loaded_pipe = MVDreamPipeline.from_pretrained(args.dump_path) # type: ignore
|
| 554 |
-
images = loaded_pipe(
|
| 555 |
-
prompt="Head of Hatsune Miku",
|
| 556 |
-
negative_prompt="painting, bad quality, flat",
|
| 557 |
-
output_type="pil",
|
| 558 |
-
guidance_scale=7.5,
|
| 559 |
-
num_inference_steps=50,
|
| 560 |
-
device=args.device,
|
| 561 |
-
)
|
| 562 |
-
for i, image in enumerate(images):
|
| 563 |
-
image.save(f"test_image_{i}.png") # type: ignore
|
| 564 |
-
# imagedream
|
| 565 |
-
else:
|
| 566 |
-
input_image = kiui.read_image('data/anya_rgba.png', mode='float')
|
| 567 |
-
print(f"Testing each subcomponent of the pipeline...")
|
| 568 |
-
images = pipe(
|
| 569 |
-
image=input_image,
|
| 570 |
-
prompt="",
|
| 571 |
-
negative_prompt="",
|
| 572 |
-
output_type="pil",
|
| 573 |
-
guidance_scale=5.0,
|
| 574 |
-
num_inference_steps=50,
|
| 575 |
-
device=args.device,
|
| 576 |
-
)
|
| 577 |
-
for i, image in enumerate(images):
|
| 578 |
-
image.save(f"test_image_{i}.png") # type: ignore
|
| 579 |
-
|
| 580 |
-
print(f"Testing entire pipeline...")
|
| 581 |
-
loaded_pipe = MVDreamPipeline.from_pretrained(args.dump_path) # type: ignore
|
| 582 |
-
images = loaded_pipe(
|
| 583 |
-
image=input_image,
|
| 584 |
-
prompt="",
|
| 585 |
-
negative_prompt="",
|
| 586 |
-
output_type="pil",
|
| 587 |
-
guidance_scale=5.0,
|
| 588 |
-
num_inference_steps=50,
|
| 589 |
-
device=args.device,
|
| 590 |
-
)
|
| 591 |
-
for i, image in enumerate(images):
|
| 592 |
-
image.save(f"test_image_{i}.png") # type: ignore
|
| 593 |
-
|
| 594 |
-
|
| 595 |
-
print("Inference test passed!")
|
| 596 |
-
except Exception as e:
|
| 597 |
-
print(f"Failed to test inference: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.lock.txt
DELETED
|
@@ -1,7 +0,0 @@
|
|
| 1 |
-
omegaconf == 2.3.0
|
| 2 |
-
diffusers == 0.23.1
|
| 3 |
-
safetensors == 0.4.1
|
| 4 |
-
huggingface_hub == 0.19.4
|
| 5 |
-
transformers == 4.35.2
|
| 6 |
-
accelerate == 0.25.0.dev0
|
| 7 |
-
kiui == 0.2.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
DELETED
|
@@ -1,9 +0,0 @@
|
|
| 1 |
-
omegaconf
|
| 2 |
-
diffusers
|
| 3 |
-
safetensors
|
| 4 |
-
huggingface_hub
|
| 5 |
-
transformers
|
| 6 |
-
accelerate
|
| 7 |
-
kiui
|
| 8 |
-
einops
|
| 9 |
-
rich
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|