Update README.md
Browse files
README.md
CHANGED
|
@@ -9,6 +9,33 @@ This is an embedding model for clinical papers
|
|
| 9 |
|
| 10 |
## How to Use
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
```python
|
| 13 |
from transformers import AutoTokenizer, AutoModel
|
| 14 |
import torch
|
|
@@ -36,5 +63,5 @@ model.to(DEVICE)
|
|
| 36 |
with torch.no_grad():
|
| 37 |
output = model(**dummy_input)
|
| 38 |
|
| 39 |
-
embeddings = output.last_hidden_state[:, 0]
|
| 40 |
```
|
|
|
|
| 9 |
|
| 10 |
## How to Use
|
| 11 |
|
| 12 |
+
### Simple finetuned model
|
| 13 |
+
|
| 14 |
+
```python
|
| 15 |
+
from transformers import AutoTokenizer, AutoModel
|
| 16 |
+
import torch
|
| 17 |
+
|
| 18 |
+
DEVICE = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 19 |
+
|
| 20 |
+
PATH = "josh-oo/aspect-based-embeddings-v3"
|
| 21 |
+
|
| 22 |
+
tokenizer = AutoTokenizer.from_pretrained(PATH)
|
| 23 |
+
model = AutoModel.from_pretrained(PATH)
|
| 24 |
+
|
| 25 |
+
dummy_text = "This is a title of a medical paper"
|
| 26 |
+
dummy_input = tokenizer([dummy_text], return_tensors="pt")
|
| 27 |
+
|
| 28 |
+
dummy_input.to(DEVICE)
|
| 29 |
+
model.to(DEVICE)
|
| 30 |
+
|
| 31 |
+
with torch.no_grad():
|
| 32 |
+
output = model(**dummy_input)
|
| 33 |
+
|
| 34 |
+
embeddings = output.last_hidden_state[:, 0] #cls pooling
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
### Aspect guided model
|
| 38 |
+
|
| 39 |
```python
|
| 40 |
from transformers import AutoTokenizer, AutoModel
|
| 41 |
import torch
|
|
|
|
| 63 |
with torch.no_grad():
|
| 64 |
output = model(**dummy_input)
|
| 65 |
|
| 66 |
+
embeddings = output.last_hidden_state[:, 0] #cls pooling
|
| 67 |
```
|