Upload folder using huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,15 +1,133 @@
|
|
| 1 |
---
|
| 2 |
language: en
|
| 3 |
-
license: cc0-1.0
|
| 4 |
library_name: transformers
|
| 5 |
tags:
|
| 6 |
-
- vision
|
| 7 |
-
- image-segmentation
|
| 8 |
-
- nvidia/mit-b5
|
| 9 |
-
- transformers.js
|
| 10 |
-
- onnx
|
| 11 |
datasets:
|
| 12 |
-
- celebamaskhq
|
| 13 |
---
|
| 14 |
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
language: en
|
|
|
|
| 3 |
library_name: transformers
|
| 4 |
tags:
|
| 5 |
+
- vision
|
| 6 |
+
- image-segmentation
|
| 7 |
+
- nvidia/mit-b5
|
| 8 |
+
- transformers.js
|
| 9 |
+
- onnx
|
| 10 |
datasets:
|
| 11 |
+
- celebamaskhq
|
| 12 |
---
|
| 13 |
|
| 14 |
+
# Face Parsing
|
| 15 |
+
|
| 16 |
+
[Semantic segmentation](https://huggingface.co/docs/transformers/tasks/semantic_segmentation) model fine-tuned from [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) with [CelebAMask-HQ](https://github.com/switchablenorms/CelebAMask-HQ) for face parsing. For additional options, see the Transformers [Segformer docs](https://huggingface.co/docs/transformers/model_doc/segformer).
|
| 17 |
+
|
| 18 |
+
> ONNX model for web inference contributed by [Xenova](https://huggingface.co/Xenova).
|
| 19 |
+
|
| 20 |
+
## Usage in Python
|
| 21 |
+
|
| 22 |
+
```python
|
| 23 |
+
import torch
|
| 24 |
+
from transformers import SegformerImageProcessor, SegformerForSemanticSegmentation
|
| 25 |
+
from PIL import Image
|
| 26 |
+
import requests
|
| 27 |
+
|
| 28 |
+
# convenience expression for automatically determining device
|
| 29 |
+
device = (
|
| 30 |
+
"cuda"
|
| 31 |
+
# Device for NVIDIA or AMD GPUs
|
| 32 |
+
if torch.cuda.is_available()
|
| 33 |
+
else "mps"
|
| 34 |
+
# Device for Apple Silicon (Metal Performance Shaders)
|
| 35 |
+
if torch.backends.mps.is_available()
|
| 36 |
+
else "cpu"
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# load models
|
| 40 |
+
image_processor = SegformerImageProcessor.from_pretrained("jonathandinu/face-parsing")
|
| 41 |
+
model = SegformerForSemanticSegmentation.from_pretrained("jonathandinu/face-parsing")
|
| 42 |
+
model.to(device)
|
| 43 |
+
|
| 44 |
+
# expects a PIL.Image or torch.Tensor
|
| 45 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
| 46 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
| 47 |
+
pixel_values = F.resize(image, (512, 512)).unsqueeze(0)
|
| 48 |
+
|
| 49 |
+
# run inference on image
|
| 50 |
+
inputs = image_processor(images=image, return_tensors="pt")
|
| 51 |
+
outputs = model(**inputs)
|
| 52 |
+
logits = outputs.logits # shape (batch_size, num_labels, height/4, width/4)
|
| 53 |
+
|
| 54 |
+
# resize output to match input image dimensions
|
| 55 |
+
upsampled_logits = nn.functional.interpolate(logits,
|
| 56 |
+
size=image.shape[1:], # H x W
|
| 57 |
+
mode='bilinear',
|
| 58 |
+
align_corners=False)
|
| 59 |
+
|
| 60 |
+
# get label masks
|
| 61 |
+
masks = upsampled_logits.argmax(dim=1)[0]
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
## Usage in the browser (Transformers.js)
|
| 65 |
+
|
| 66 |
+
```js
|
| 67 |
+
import {
|
| 68 |
+
pipeline,
|
| 69 |
+
env,
|
| 70 |
+
} from "https://cdn.jsdelivr.net/npm/@xenova/[email protected]";
|
| 71 |
+
|
| 72 |
+
// important to prevent errors since the model files are likely remote on HF hub
|
| 73 |
+
env.allowLocalModels = false;
|
| 74 |
+
|
| 75 |
+
// instantiate image segmentation pipeline with pretrained face parsing model
|
| 76 |
+
model = await pipeline("image-segmentation", "jonathandinu/face-parsing");
|
| 77 |
+
|
| 78 |
+
// async inference since it could take a few seconds
|
| 79 |
+
const output = await model(url);
|
| 80 |
+
|
| 81 |
+
// each label is a separate mask object
|
| 82 |
+
// [
|
| 83 |
+
// { score: null, label: 'background', mask: transformers.js RawImage { ... }}
|
| 84 |
+
// { score: null, label: 'hair', mask: transformers.js RawImage { ... }}
|
| 85 |
+
// ...
|
| 86 |
+
// ]
|
| 87 |
+
for (const m of output) {
|
| 88 |
+
print(`Found ${m.label}`);
|
| 89 |
+
m.mask.save(`${m.label}.png`);
|
| 90 |
+
}
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
### p5.js
|
| 94 |
+
|
| 95 |
+
Since [p5.js](https://p5js.org/) uses an animation loop abstraction, we need to take care loading the model and making predictions.
|
| 96 |
+
|
| 97 |
+
```js
|
| 98 |
+
// ...
|
| 99 |
+
|
| 100 |
+
// asynchronously load transformers.js and instantiate model
|
| 101 |
+
async function preload() {
|
| 102 |
+
// load transformers.js library with a dynamic import
|
| 103 |
+
const { pipeline, env } = await import(
|
| 104 |
+
"https://cdn.jsdelivr.net/npm/@xenova/[email protected]"
|
| 105 |
+
);
|
| 106 |
+
|
| 107 |
+
// important to prevent errors since the model files are remote on HF hub
|
| 108 |
+
env.allowLocalModels = false;
|
| 109 |
+
|
| 110 |
+
// instantiate image segmentation pipeline with pretrained face parsing model
|
| 111 |
+
model = await pipeline("image-segmentation", "jonathandinu/face-parsing");
|
| 112 |
+
|
| 113 |
+
print("face-parsing model loaded");
|
| 114 |
+
loading = false;
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
// ...
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
[full p5.js example](https://editor.p5js.org/jonathan.ai/sketches/wZn15Dvgh)
|
| 121 |
+
|
| 122 |
+
### Model Description
|
| 123 |
+
|
| 124 |
+
- **Developed by:** [Jonathan Dinu](https://twitter.com/jonathandinu)
|
| 125 |
+
- **Model type:** Transformer-based semantic segmentation image model
|
| 126 |
+
- **License:** non-commercial research and educational purposes
|
| 127 |
+
- **Resources for more information:** Transformers docs on [Segformer](https://huggingface.co/docs/transformers/model_doc/segformer) and/or the [original research paper](https://arxiv.org/abs/2105.15203).
|
| 128 |
+
|
| 129 |
+
## Limitations and Bias
|
| 130 |
+
|
| 131 |
+
### Bias
|
| 132 |
+
|
| 133 |
+
While the capabilities of computer vision models are impressive, they can also reinforce or exacerbate social biases. The [CelebAMask-HQ](https://github.com/switchablenorms/CelebAMask-HQ) dataset used for fine-tuning is large but not necessarily perfectly diverse.
|