File size: 5,685 Bytes
bc22368
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from typing import Any, Dict, List, Literal, Optional, Union

import torch
from PIL import Image
from torch import nn
from transformers import AutoConfig, AutoProcessor, AutoModel


class Transformer(nn.Module):

    save_in_root: bool = True
    
    def __init__(
        self,
        model_name_or_path: str = 'jinaai/jina-embeddings-v4',
        max_seq_length: Optional[int] = None,
        config_args: Optional[Dict[str, Any]] = None,
        model_args: Optional[Dict[str, Any]] = None,
        tokenizer_args: Optional[Dict[str, Any]] = None,
        cache_dir: Optional[str] = None,
        backend: Literal['torch', 'onnx', 'openvino'] = 'torch',
        **kwargs,
    ) -> None:
        super(Transformer, self).__init__()
        if backend != 'torch':
            raise ValueError(
                f'Backend \'{backend}\' is not supported, please use \'torch\' instead'
            )

        config_kwargs = config_args or {}
        model_kwargs = model_args or {}
        tokenizer_kwargs = tokenizer_args or {}

        self.config = AutoConfig.from_pretrained(
            model_name_or_path, cache_dir=cache_dir, **config_kwargs
        )
        self.default_task = model_args.pop('default_task', None)
        if self.default_task and self.default_task not in self.config.task_names:
            raise ValueError(f"Invalid task: {self.default_task}. Must be one of {self.config.task_names}.")

        self.model = AutoModel.from_pretrained(
            model_name_or_path, config=self.config, cache_dir=cache_dir, **model_kwargs
        )

        self.processor = AutoProcessor.from_pretrained(
            model_name_or_path,
            cache_dir=cache_dir,
            **tokenizer_kwargs,
        )
        self.max_seq_length = max_seq_length or 8192

    def tokenize(
        self, texts: List[Union[str, Image.Image]], padding: Union[str, bool] = True
    ) -> Dict[str, torch.Tensor]:
        encoding = {}
        text_indices = []
        image_indices = []
        
        for i, text in enumerate(texts):
            if isinstance(text, str):
                text_indices.append(i)
            elif isinstance(text, Image.Image):
                image_indices.append(i)
            else:
                raise ValueError(f'Invalid input type: {type(text)}')
        
        if text_indices:
            _texts = [texts[i] for i in text_indices]
            text_features = self.processor.process_texts(_texts, max_length=self.max_seq_length)
            for key, value in text_features.items():
                encoding[f'text_{key}'] = value
            encoding['text_indices'] = text_indices
        
        if image_indices:
            _images = [texts[i] for i in image_indices]
            img_features = self.processor.process_images(_images)
            for key, value in img_features.items():
                encoding[f'image_{key}'] = value
            encoding['image_indices'] = image_indices
            
        return encoding
    

    def forward(self, features: Dict[str, torch.Tensor], task: Optional[str] = None) -> Dict[str, torch.Tensor]:
        self.model.eval()

        if task is None:
            if self.default_task is None:
                raise ValueError(
                    "Task must be specified before encoding data. You can set it either during "
                    "loading the model (e.g., model_kwargs={'default_task': 'retrieval'}) or "
                    "pass it as an argument to the encode method (e.g., model.encode(texts, task='retrieval'))."
                )
            task = self.default_task
        else:
            if task not in self.config.task_names:
                raise ValueError(f"Invalid task: {task}. Must be one of {self.config.task_names}.")

        device = self.model.device.type
        all_embeddings = []
        
        with torch.no_grad():
            if any(k.startswith('text_') for k in features.keys()):
                text_batch = {k[len('text_'):]: v.to(device) for k, v in features.items() if k.startswith('text_') and k != 'text_indices'}
                text_indices = features.get('text_indices', [])
                
                with torch.autocast(device_type=device):
                    text_embeddings = self.model(**text_batch, task_label=task).single_vec_emb
                    if self.config.truncate_dim:
                        text_embeddings = text_embeddings[:, :self.config.truncate_dim]
                
                for i, embedding in enumerate(text_embeddings):
                    all_embeddings.append((text_indices[i], embedding))
            
            if any(k.startswith('image_') for k in features.keys()):
                image_batch = {k[len('image_'):]: v.to(device) for k, v in features.items() if k.startswith('image_') and k != 'image_indices'}
                image_indices = features.get('image_indices', [])
                
                with torch.autocast(device_type=device):
                    img_embeddings = self.model(**image_batch, task_label=task).single_vec_emb
                    if self.config.truncate_dim:
                        img_embeddings = img_embeddings[:, :self.config.truncate_dim]
                
                for i, embedding in enumerate(img_embeddings):
                    all_embeddings.append((image_indices[i], embedding))

        if not all_embeddings:
            raise RuntimeError('No embeddings were generated')

        all_embeddings.sort(key=lambda x: x[0])  # sort by original index
        combined_embeddings = torch.stack([emb for _, emb in all_embeddings])
        features['sentence_embedding'] = combined_embeddings
        
        return features