Update hf_model.py (#3)
Browse files- Update hf_model.py (ce5e3c04a04e544fd6832d83ad371d4d1c7d89a5)
Co-authored-by: Andreas Koukounas <[email protected]>
- hf_model.py +0 -128
hf_model.py
CHANGED
|
@@ -295,131 +295,3 @@ class HFTextEncoder(nn.Module):
|
|
| 295 |
def init_parameters(self):
|
| 296 |
pass
|
| 297 |
|
| 298 |
-
|
| 299 |
-
"""
|
| 300 |
-
HF vision model
|
| 301 |
-
"""
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
class HFVisionEncoder(nn.Module):
|
| 305 |
-
output_tokens: torch.jit.Final[bool]
|
| 306 |
-
|
| 307 |
-
def __init__(
|
| 308 |
-
self,
|
| 309 |
-
model_name_or_path: str,
|
| 310 |
-
image_size: int,
|
| 311 |
-
output_dim: int,
|
| 312 |
-
config: PretrainedConfig = None,
|
| 313 |
-
pool_type: str = 'tok',
|
| 314 |
-
proj_type: Optional[str] = None,
|
| 315 |
-
proj_bias: bool = False,
|
| 316 |
-
attn_drop: float = 0.0,
|
| 317 |
-
hidden_drop: float = 0.0,
|
| 318 |
-
drop_path: Optional[float] = None,
|
| 319 |
-
pretrained: bool = True,
|
| 320 |
-
output_tokens: bool = False,
|
| 321 |
-
trust_remote_code: bool = False,
|
| 322 |
-
):
|
| 323 |
-
super().__init__()
|
| 324 |
-
self.output_tokens = output_tokens
|
| 325 |
-
self.output_dim = output_dim
|
| 326 |
-
self.image_size = (image_size, image_size)
|
| 327 |
-
|
| 328 |
-
if config is None:
|
| 329 |
-
self.config = AutoConfig.from_pretrained(
|
| 330 |
-
model_name_or_path,
|
| 331 |
-
trust_remote_code=trust_remote_code,
|
| 332 |
-
hidden_dropout_prob=hidden_drop,
|
| 333 |
-
attention_probs_dropout_prob=attn_drop,
|
| 334 |
-
drop_path_rate=drop_path,
|
| 335 |
-
)
|
| 336 |
-
create_func, model_args = (
|
| 337 |
-
(AutoModel.from_pretrained, model_name_or_path)
|
| 338 |
-
if pretrained
|
| 339 |
-
else (AutoModel.from_config, self.config)
|
| 340 |
-
)
|
| 341 |
-
self.transformer = create_func(
|
| 342 |
-
model_args,
|
| 343 |
-
trust_remote_code=trust_remote_code,
|
| 344 |
-
hidden_dropout_prob=hidden_drop,
|
| 345 |
-
attention_probs_dropout_prob=attn_drop,
|
| 346 |
-
)
|
| 347 |
-
else:
|
| 348 |
-
self.config = config
|
| 349 |
-
self.transformer = AutoModel.from_config(config)
|
| 350 |
-
|
| 351 |
-
if 'dinov2' in model_name_or_path:
|
| 352 |
-
self.transformer.embeddings.mask_token.requires_grad = False
|
| 353 |
-
|
| 354 |
-
assert pool_type in ('tok', 'avg', 'none')
|
| 355 |
-
self.pool_type = pool_type
|
| 356 |
-
|
| 357 |
-
d_model = self.config.hidden_size
|
| 358 |
-
if (d_model == output_dim) and (proj_type is None): # do we always need a proj?
|
| 359 |
-
self.proj = nn.Identity()
|
| 360 |
-
elif proj_type == 'linear':
|
| 361 |
-
self.proj = nn.Linear(d_model, output_dim, bias=proj_bias)
|
| 362 |
-
elif proj_type == 'mlp':
|
| 363 |
-
hidden_size = (d_model + output_dim) // 2
|
| 364 |
-
self.proj = nn.Sequential(
|
| 365 |
-
nn.Linear(d_model, hidden_size, bias=proj_bias),
|
| 366 |
-
nn.GELU(),
|
| 367 |
-
nn.Linear(hidden_size, output_dim, bias=proj_bias),
|
| 368 |
-
)
|
| 369 |
-
|
| 370 |
-
def _global_pool(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 371 |
-
if self.pool_type == 'avg':
|
| 372 |
-
pooled, tokens = x[:, 1:].mean(dim=1), x[:, 1:]
|
| 373 |
-
elif self.pool_type == 'tok':
|
| 374 |
-
pooled, tokens = x[:, 0], x[:, 1:]
|
| 375 |
-
else:
|
| 376 |
-
pooled = tokens = x
|
| 377 |
-
|
| 378 |
-
return pooled, tokens
|
| 379 |
-
|
| 380 |
-
def forward(self, x: torch.Tensor):
|
| 381 |
-
# returns a tuple of (final hidden states, token pooled outputs)
|
| 382 |
-
x = self.transformer(x)[0]
|
| 383 |
-
pooled, tokens = self._global_pool(x)
|
| 384 |
-
projected = self.proj(pooled)
|
| 385 |
-
|
| 386 |
-
return projected
|
| 387 |
-
|
| 388 |
-
def lock(self, unlocked_layers: int = 0, freeze_bn_stats: bool = True):
|
| 389 |
-
if not unlocked_layers: # full freezing
|
| 390 |
-
for n, p in self.transformer.named_parameters():
|
| 391 |
-
p.requires_grad = (
|
| 392 |
-
(not freeze_bn_stats) if 'LayerNorm' in n.split('.') else False
|
| 393 |
-
)
|
| 394 |
-
return
|
| 395 |
-
|
| 396 |
-
# TODO: make it work if unlocked_layers !=0
|
| 397 |
-
encoder = (
|
| 398 |
-
self.transformer.encoder
|
| 399 |
-
if hasattr(self.transformer, 'encoder')
|
| 400 |
-
else self.transformer
|
| 401 |
-
)
|
| 402 |
-
layer_list = getattr(
|
| 403 |
-
encoder, _HF_ARCH_DICT[self.config.model_type]['config_names']['layer_attr']
|
| 404 |
-
)
|
| 405 |
-
print(f'Unlocking {unlocked_layers}/{len(layer_list) + 1} layers of hf model')
|
| 406 |
-
embeddings = getattr(
|
| 407 |
-
self.transformer,
|
| 408 |
-
_HF_ARCH_DICT[self.config.model_type]['config_names'][
|
| 409 |
-
'token_embeddings_attr'
|
| 410 |
-
],
|
| 411 |
-
)
|
| 412 |
-
modules = [embeddings, *layer_list][:-unlocked_layers]
|
| 413 |
-
# freeze layers
|
| 414 |
-
for module in modules:
|
| 415 |
-
for n, p in module.named_parameters():
|
| 416 |
-
p.requires_grad = (
|
| 417 |
-
(not freeze_bn_stats) if 'LayerNorm' in n.split('.') else False
|
| 418 |
-
)
|
| 419 |
-
|
| 420 |
-
@torch.jit.ignore
|
| 421 |
-
def set_grad_checkpointing(self, *_, **__):
|
| 422 |
-
self.transformer.gradient_checkpointing_enable()
|
| 423 |
-
|
| 424 |
-
def init_parameters(self):
|
| 425 |
-
pass
|
|
|
|
| 295 |
def init_parameters(self):
|
| 296 |
pass
|
| 297 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|