File size: 3,551 Bytes
0ac0efa 036c14a 0ac0efa 036c14a 0ac0efa 036c14a 0ac0efa 036c14a 0ac0efa 036c14a 0ac0efa 036c14a 0ac0efa 036c14a 0ac0efa 036c14a 0ac0efa 036c14a 0ac0efa 036c14a 0ac0efa 036c14a 0ac0efa 036c14a 0ac0efa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
license: apache-2.0
base_model:
- Qwen/Qwen2.5-7B
pipeline_tag: text-generation
tags:
- not-for-all-audiences
language:
- en
library_name: transformers
---
## Model Description
Model created by analyzing and selecting the optimal layers from other Qwen2.5-7B models based on their dimensional utilization efficiency, measured by the Normalized Effective Rank (NER). Computed like:
- Input: Weight matrix for each model layer
- Compute singular values σᵢ where σᵢ ≥ 0 # σᵢ represents the importance of each dimension
- Filter values above numerical threshold (>1e-12)
- Sum all singular values: S = Σσᵢ # S acts as normalization factor
- Create probability distribution: pᵢ = σᵢ/S # converts singular values to probabilities summing to 1
- Compute Shannon entropy: H = -Σ(pᵢ * log₂(pᵢ)) # measures information content
- Calculate maximum possible entropy: H_max = log₂(n)
- Final NER score = H/H_max # normalizes score to [0,1] range
- Results in value between 0 and 1
# 0 = single dimension dominance, 1 = uniform dimensional utilization
## Creating Composite Model
Code here: https://huggingface.co/jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0/blob/main/ner_merge.py
Layer Analysis:
- Download base and fine-tuned models from Hugging Face Hub
- Calculate Normalized Effective Rank (NER) for each layer within each model
Layer Selection:
- Identify common layer structures across models
- Define model and layer name pairs that have highest NER for each layer based on their NER scores
Model Composition:
- Incrementally build a composite model using layer with highest NER from model pool.
Output Generation:
- Save merge reports documenting layer sources
- Copy config and tokenizer files from base model
- Save the composite model with complete weights # model ready to use
Configfile:
base_model: "Qwen/Qwen2.5-7B"
fine_tuned_models: # uncomment the models you want to merge
#- "Qwen/Qwen2.5-7B"
#- "Qwen/Qwen2.5-7B-Instruct"
#- "EVA-UNIT-01/EVA-Qwen2.5-7B-v0.1"
#- "FourOhFour/Vapor_v2_7B"
#- "Goekdeniz-Guelmez/Josiefied-Qwen2.5-7B-Instruct-abliterated-v2"
#- "happzy2633/qwen2.5-7b-ins-v3"
#- "huihui-ai/Qwen2.5-7B-Instruct-abliterated-v2"
#- "HumanLLMs/Humanish-Qwen2.5-7B-Instruct"
#- "Orion-zhen/Qwen2.5-7B-Instruct-Uncensored"
#- "Orion-zhen/Meissa-Qwen2.5-7B-Instruct"
#- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v0.9"
#- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.0"
#- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.1"
#- "jeffmeloy/Qwen2.5-7B-nerd-uncensored-v1.2"
#- "AmberYifan/Qwen2.5-7B-dpo-2k"
#- "sethuiyer/Qwen2.5-7B-Anvita"
#- "rombodawg/Rombos-LLM-V2.5-Qwen-7b"
#- "Cran-May/T.E-8.1"
#- "beomi/Qwen2.5-7B-Instruct-kowiki-qa"
#- "Orion-zhen/Qwen2.5-7B-Gutenberg-KTO"
#- "fblgit/cybertron-v4-qw7B-MGS"
#- "nguyentd/FinancialAdvice-Qwen2.5-7B"
#- "WhiteRabbitNeo/WhiteRabbitNeo-2.5-Qwen-2.5-Coder-7B"
#- "edgerunner-ai/EdgeRunner-Command-Nested"
#- "katanemo/Arch-Function-7B"
#- "DeepGlint-AI/llava-mlcd-qwen2.5-7b"
#- "mergekit-community/mergekit-slerp-aflqaqy"
#- "mergekit-community/mergekit-ties-inxwsfo"
#- "Qwen/Qwen2.5-Coder-7B-Instruct"
#- "Qwen/Qwen2.5-Math-7B-Instruct"
#- "Qwen/Qwen2.5-Coder-7B"
#- "Qwen/Qwen2.5-Math-7B"
#- "thomas-yanxin/XinYuan-Qwen2.5-7B-0917"
#- "jbjeong91/Qwen2.5_7B_IST_StoryGen_vanilla"
#- "AmberYifan/Qwen2.5-7B-dpo-2k-hhrlhf"
#- "jbjeong91/Qwen2.5_7B_IST_StoryGen_test2"
models_dir: "./input_models/"
output_dir: "./merged_model/"
metric_dir: "./metrics/" |