nielsr HF Staff commited on
Commit
ff51219
·
verified ·
1 Parent(s): df5aa97

Remove code snippet, add base model

Browse files

This PR:

- removes the code snippet (seems to be LLM hallucinated, I've fixed this) - would be great to update the other model cards too
- links your model to the base model (https://huggingface.co/OpenGVLab/InternVL2_5-2B) - feel free to change in case it's not the correct one.

Files changed (1) hide show
  1. README.md +5 -105
README.md CHANGED
@@ -2,6 +2,8 @@
2
  license: mit
3
  pipeline_tag: image-segmentation
4
  library_name: transformers
 
 
5
  ---
6
 
7
  # MLLMSeg: Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder
@@ -33,111 +35,9 @@ pip install -r requirements.txt # Assuming requirements.txt from the cloned repo
33
  pip install flash-attn==2.3.6 --no-build-isolation # Note: requires GPU to install
34
  ```
35
 
36
- ### Inference Code Example
37
-
38
- ```python
39
- import numpy as np
40
- import torch
41
- import torchvision.transforms as T
42
- from PIL import Image
43
- from torchvision.transforms.functional import InterpolationMode
44
- from transformers import AutoModel, AutoTokenizer
45
-
46
- IMAGENET_MEAN = (0.485, 0.456, 0.406)
47
- IMAGENET_STD = (0.229, 0.224, 0.225)
48
-
49
- def build_transform(input_size):
50
- MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
51
- transform = T.Compose([
52
- T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img),
53
- T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
54
- T.ToTensor(),
55
- T.Normalize(mean=MEAN, std=STD)
56
- ])
57
- return transform
58
-
59
- def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
60
- best_ratio_diff = float('inf')
61
- best_ratio = (1, 1)
62
- area = width * height
63
- for ratio in target_ratios:
64
- target_aspect_ratio = ratio[0] / ratio[1]
65
- ratio_diff = abs(aspect_ratio - target_aspect_ratio)
66
- if ratio_diff < best_ratio_diff:
67
- best_ratio_diff = ratio_diff
68
- best_ratio = ratio
69
- elif ratio_diff == best_ratio_diff:
70
- if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
71
- best_ratio = ratio
72
- return best_ratio
73
-
74
- def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False):
75
- orig_width, orig_height = image.size
76
- aspect_ratio = orig_width / orig_height
77
-
78
- # calculate the existing image aspect ratio
79
- target_ratios = set(
80
- (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if
81
- i * j <= max_num and i * j >= min_num)
82
- target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
83
-
84
- # find the closest aspect ratio to the target
85
- target_aspect_ratio = find_closest_aspect_ratio(
86
- aspect_ratio, target_ratios, orig_width, orig_height, image_size)
87
-
88
- # calculate the target width and height
89
- target_width = image_size * target_aspect_ratio[0]
90
- target_height = image_size * target_aspect_ratio[1]
91
- blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
92
-
93
- # resize the image
94
- resized_img = image.resize((target_width, target_height))
95
- processed_images = []
96
- for i in range(blocks):
97
- box = (
98
- (i % (target_width // image_size)) * image_size,
99
- (i // (target_width // image_size)) * image_size,
100
- ((i % (target_width // image_size)) + 1) * image_size,
101
- ((i // (target_width // image_size)) + 1) * image_size
102
- )
103
- # split the image
104
- split_img = resized_img.crop(box)
105
- processed_images.append(split_img)
106
- assert len(processed_images) == blocks
107
- if use_thumbnail and len(processed_images) != 1:
108
- thumbnail_img = image.resize((image_size, image_size))
109
- processed_images.append(thumbnail_img)
110
- return processed_images
111
-
112
- def load_image(image_file, input_size=448, max_num=12):
113
- image = Image.open(image_file).convert('RGB')
114
- transform = build_transform(input_size=input_size)
115
- images = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
116
- pixel_values = [transform(image) for image in images]
117
- pixel_values = torch.stack(pixel_values)
118
- return pixel_values
119
-
120
- # Load the model and tokenizer
121
- # Note: trust_remote_code=True is required for this model architecture
122
- model_path = 'jcwang0602/MLLMSeg_InternVL2_5_1B_RES'
123
- model = AutoModel.from_pretrained(
124
- model_path,
125
- torch_dtype=torch.bfloat16,
126
- low_cpu_mem_usage=True,
127
- trust_remote_code=True).eval().cuda()
128
- tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True, use_fast=False)
129
-
130
- # Example image (replace with your image path)
131
- # You can find example images in the GitHub repository of MLLMSeg, e.g., in the 'examples/images' directory.
132
- image_path = './path/to/your/image.png'
133
- pixel_values = load_image(image_path, max_num=6).to(torch.bfloat16).cuda()
134
- generation_config = dict(max_new_tokens=1024, do_sample=True)
135
-
136
- # Example query for referring expression segmentation
137
- question = "Please segment the person in the image." # Replace with your specific referring expression
138
- response, history = model.chat(tokenizer, pixel_values, question, generation_config, history=None, return_history=True)
139
- print(f'User: {question}
140
- Assistant: {response}')
141
 
142
  # The 'response' will contain the segmentation mask coordinates in a specific format (normalized 0-1000).
143
  # You will need to parse these coordinates and visualize the mask as per the paper's methodology or example scripts.
 
2
  license: mit
3
  pipeline_tag: image-segmentation
4
  library_name: transformers
5
+ base_model:
6
+ - OpenGVLab/InternVL2_5-2B
7
  ---
8
 
9
  # MLLMSeg: Unlocking the Potential of MLLMs in Referring Expression Segmentation via a Light-weight Mask Decoder
 
35
  pip install flash-attn==2.3.6 --no-build-isolation # Note: requires GPU to install
36
  ```
37
 
38
+ ## Usage
39
+
40
+ Refer to the Github README:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
  # The 'response' will contain the segmentation mask coordinates in a specific format (normalized 0-1000).
43
  # You will need to parse these coordinates and visualize the mask as per the paper's methodology or example scripts.