File size: 5,124 Bytes
a8639ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os


# from architecture import DecoderTransformer
from builtin_architecture import make_model, make_model_custom
from dataset import fromDataset, get_dataloader, TextCorpusDataset
import torch
from tqdm import tqdm, trange
from logger import init_logger, flush
import torchvision
from trainingmanager import TrainingManager
import torch.nn as nn


def train_model(
    experiment_directory,
    trainset,
    testset,
    epochs,
    additional_epochs,
    model_params=None,
    schedule=False,
    **kwargs,
):
    os.system(f"caffeinate -is -w {os.getpid()} &")

    if model_params is None:
        model_params = {}

    device = "mps" if torch.backends.mps.is_available() else "cpu"

    dataloader = get_dataloader(trainset)

    testloader = get_dataloader(testset)
    if model_params == {}:
        net = make_model()
    else:
        net = make_model_custom(**model_params)
    net.to(device)

    trainer = TrainingManager(
        net=net,
        dir=experiment_directory,
        dataloader=dataloader,
        device=device,
        trainstep_checkin_interval=100,
        epochs=epochs,
        val_dataloader=testloader,
    )

    # trainer.profile_trainstep()

    for batch, attn_mask in dataloader:
        init_logger(
            net,
            dir=os.path.join(experiment_directory, "tensorboard"),
        )
        break
    if schedule:
        trainer.train_curriculum(**kwargs)
    else:
        trainer.train()

    if additional_epochs > 0:
        print(f"Running additional {additional_epochs} epochs")
        additional_trainer = TrainingManager(
            net=net,
            dir=experiment_directory,
            dataloader=dataloader,
            device=device,
            trainstep_checkin_interval=100,
            epochs=epochs + additional_epochs,
            val_dataloader=testloader,
        )
        additional_trainer.train()
        
    flush()

    os.system("bash safe_cleanup.sh")


def run_experiment(experiment_directory, epochs, additional_epochs, trainset, testset, del_runs, **kwargs):
    train_model(experiment_directory, trainset, testset, epochs, additional_epochs, schedule=True, **kwargs)
    if del_runs:
        os.system(f"rm -r {experiment_directory}/ckpt/*.pt")


if __name__ == "__main__":
    del_runs = False
    if del_runs:
        del_runs = (
            del_runs and input("Confirm that this will delete checkpoints: ") == "y"
        )
        if not del_runs:
            print("Exiting")
            exit()

    parent_directory = "runs/code-decoder-v31-mega-licensed-1"

    Curriculum = TrainingManager.get_curriculum_enum()

    experiments = [
         (
            "curriculum-noloss",
            {"curriculum_type": Curriculum.CURRICULUM, "loss_based": False},
        ),
        (
            "curriculum-loss",
            {"curriculum_type": Curriculum.CURRICULUM, "loss_based": True},
        ),
        ("noop", {"curriculum_type": Curriculum.NOOP, "loss_based": False}),
       
        (
            "anticurriculum",
            {"curriculum_type": Curriculum.ANTICURRICULUM, "loss_based": False},
        ),
        (
            "anticurriculum-loss",
            {"curriculum_type": Curriculum.ANTICURRICULUM, "loss_based": True},
        ),
        
        ("hybrid", {"curriculum_type": Curriculum.HYBRID, "loss_based": False}),
        ("hybrid-loss", {"curriculum_type": Curriculum.HYBRID, "loss_based": True}),

        ("sequential", {"curriculum_type": Curriculum.SEQUENTIAL, "loss_based": False}),
        (
            "sequential-loss",
            {"curriculum_type": Curriculum.SEQUENTIAL, "loss_based": True},
        ),
    ]

    EPOCHS = 10
    ADDITIONAL_EPOCHS = 20
    trainset, testset = fromDataset(
            TextCorpusDataset(
                root_dir=os.path.expanduser(
                    "~/torch_datasets/github-python/mega_licensed_corpus"
                ),
                vocab_size=33819,
                IS_CODE=True,
                IS_CUSTOM=True,
                max_length=256,
                sliding_window=False,
                stride=10,
                get_rarity_score=True,
                get_entropy_score=False # change to True and change the above to false for entropy score instead
            )
        )
    

    for experiment_name, params in experiments:
        experiment_directory = os.path.join(parent_directory, experiment_name)
        
        print(f"Running experiment: {experiment_name}")
        print(f"Params: {params}")
        # print(len(trainset), len(testset))
        # print(trainset[3])

        run_experiment(
            experiment_directory,
            EPOCHS,
            ADDITIONAL_EPOCHS,
            trainset,
            testset,
            del_runs,
            **params,
        )

        
        import gc
        gc.collect()
        for obj in gc.get_objects():
            try:
                if torch.is_tensor(obj):
                    del obj
            except:
                pass
        if torch.backends.mps.is_available():
            torch._C._mps_emptyCache()
            torch.mps.empty_cache()