File size: 3,157 Bytes
e3b34be 653e8f1 5783e79 865cf2c 5783e79 b39b49d 5783e79 cce46e7 5783e79 cce46e7 5783e79 d3f4d90 5783e79 9935c46 6fca283 5783e79 d541459 c29df97 407b531 5783e79 307e403 def611f 307e403 ae9f33c 5783e79 ad934f8 51bb290 5783e79 d6d117a ae9f33c 5783e79 33375eb 5783e79 ae9f33c 33375eb 5783e79 ae9f33c 5783e79 33375eb ae9f33c 33375eb 5783e79 ae9f33c 5783e79 9ede5a2 ae9f33c 5783e79 ae9f33c 5783e79 6caa71f 5783e79 9968e1d dd4e3c6 5783e79 e3b34be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
license: apache-2.0
language:
- en
base_model:
- Qwen/Qwen3-4B-Thinking-2507
pipeline_tag: text-generation
library_name: transformers
---
# Jan-v1: Advanced Agentic Language Model
[](https://github.com/menloresearch/deep-research)
[](https://opensource.org/licenses/Apache-2.0)
[](https://jan.ai/)
<!-- Optional: If you have a GIF for Jan-v1, include it here like Lucy's. -->
<!--  -->
## Overview
**Jan-v1** is the first release in the **Jan Family**, designed for agentic reasoning and problem-solving within the [Jan App](https://jan.ai/). Based on our [**Lucy**](https://huggingface.co/Menlo/Lucy) model, Jan-v1 achieves improved performance through model scaling.
Jan-v1 uses the [Qwen3-4B-thinking](https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507) model to provide enhanced reasoning capabilities and tool utilization. This architecture delivers better performance on complex agentic tasks.
## Performance
### Question Answering (SimpleQA)
For question-answering, Jan-v1 shows a significant performance gain from model scaling, achieving 91.1% accuracy.

*The 91.1% SimpleQA accuracy represents a significant milestone in factual question answering for models of this scale, demonstrating the effectiveness of our scaling and fine-tuning approach.*
### Chat Benchmarks
These benchmarks evaluate the model's conversational and instructional capabilities.

## Quick Start
### Integration with Jan App
Jan-v1 is optimized for direct integration with the [Jan App](https://jan.ai/). Simply select the model from the Jan App interface for immediate access to its full capabilities.

### Local Deployment
**Using vLLM:**
```bash
vllm serve janhq/Jan-v1-4B \
--host 0.0.0.0 \
--port 1234 \
--enable-auto-tool-choice \
--tool-call-parser hermes
```
**Using llama.cpp:**
```bash
llama-server --model Jan-v1-4B-Q4_K_M.gguf \
--host 0.0.0.0 \
--port 1234 \
--jinja \
--no-context-shift
```
### Recommended Parameters
```yaml
temperature: 0.6
top_p: 0.95
top_k: 20
min_p: 0.0
max_tokens: 2048
```
## 🤝 Community & Support
- **Discussions**: [HuggingFace Community](https://huggingface.co/janhq/Jan-v1-4B/discussions)
- **Jan App**: Learn more about the Jan App at [jan.ai](https://jan.ai/)
## (*) Note
By default we have system prompt in chat template, this is to make sure the model having the same performance with the benchmark result. You can also use the vanilla chat template without system prompt in the file [chat_template_raw.jinja](https://huggingface.co/janhq/Jan-v1-4B/blob/main/chat_template_raw.jinja).
## 📄 Citation
```bibtex
Updated Soon
```
--- |