Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-4.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
- es
|
| 6 |
+
- fr
|
| 7 |
+
- de
|
| 8 |
+
- bg
|
| 9 |
+
- hr
|
| 10 |
+
- cs
|
| 11 |
+
- da
|
| 12 |
+
- nl
|
| 13 |
+
- et
|
| 14 |
+
- fi
|
| 15 |
+
- el
|
| 16 |
+
- hu
|
| 17 |
+
- it
|
| 18 |
+
- lv
|
| 19 |
+
- lt
|
| 20 |
+
- mt
|
| 21 |
+
- pl
|
| 22 |
+
- pt
|
| 23 |
+
- ro
|
| 24 |
+
- sk
|
| 25 |
+
- sl
|
| 26 |
+
- sv
|
| 27 |
+
- ru
|
| 28 |
+
- uk
|
| 29 |
+
base_model:
|
| 30 |
+
- nvidia/parakeet-tdt-0.6b-v3
|
| 31 |
+
pipeline_tag: automatic-speech-recognition
|
| 32 |
+
---
|
| 33 |
+
|
| 34 |
+
NVIDIA Parakeet TDT 0.6B V3 (Multilingual) [model](https://huggingface.co/nvidia/parakeet-tdt-0.6b-v3) converted to ONNX format for [onnx-asr](https://github.com/istupakov/onnx-asr).
|
| 35 |
+
|
| 36 |
+
Install onnx-asr
|
| 37 |
+
```shell
|
| 38 |
+
pip install onnx-asr[cpu,hub]
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
Load Parakeet TDT model and recognize wav file
|
| 42 |
+
```py
|
| 43 |
+
import onnx_asr
|
| 44 |
+
model = onnx_asr.load_model("nemo-parakeet-tdt-0.6b-v3")
|
| 45 |
+
print(model.recognize("test.wav"))
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
Code for models export
|
| 49 |
+
```py
|
| 50 |
+
import nemo.collections.asr as nemo_asr
|
| 51 |
+
from pathlib import Path
|
| 52 |
+
|
| 53 |
+
model = nemo_asr.models.ASRModel.from_pretrained("nvidia/parakeet-tdt-0.6b-v3")
|
| 54 |
+
|
| 55 |
+
onnx_dir = Path("nemo-onnx")
|
| 56 |
+
onnx_dir.mkdir(exist_ok=True)
|
| 57 |
+
model.export(str(Path(onnx_dir, "model.onnx")))
|
| 58 |
+
|
| 59 |
+
with Path(onnx_dir, "vocab.txt").open("wt") as f:
|
| 60 |
+
for i, token in enumerate([*model.tokenizer.vocab, "<blk>"]):
|
| 61 |
+
f.write(f"{token} {i}\n")
|
| 62 |
+
```
|