Add 'Sentence Transformers' Tag to generate sentence embedding
Browse filesHugging Face uses tags to formulate interface API, with 'Sentence Transformers' tag now the Interface API will generate a single embedding for the entire sentence.
README.md
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
---
|
| 2 |
tags:
|
| 3 |
- mteb
|
|
|
|
| 4 |
model-index:
|
| 5 |
- name: multilingual-e5-large
|
| 6 |
results:
|
|
@@ -577,7 +578,7 @@ model-index:
|
|
| 577 |
- type: precision_at_1000
|
| 578 |
value: 1.978
|
| 579 |
- type: precision_at_3
|
| 580 |
-
value: 50
|
| 581 |
- type: precision_at_5
|
| 582 |
value: 41.349999999999994
|
| 583 |
- type: recall_at_1
|
|
@@ -3597,7 +3598,7 @@ model-index:
|
|
| 3597 |
- type: manhattan_precision
|
| 3598 |
value: 87.66564729867483
|
| 3599 |
- type: manhattan_recall
|
| 3600 |
-
value: 86
|
| 3601 |
- type: max_accuracy
|
| 3602 |
value: 99.74356435643564
|
| 3603 |
- type: max_ap
|
|
@@ -3678,7 +3679,7 @@ model-index:
|
|
| 3678 |
- type: map_at_5
|
| 3679 |
value: 0.885
|
| 3680 |
- type: mrr_at_1
|
| 3681 |
-
value: 78
|
| 3682 |
- type: mrr_at_10
|
| 3683 |
value: 86.56700000000001
|
| 3684 |
- type: mrr_at_100
|
|
@@ -3690,7 +3691,7 @@ model-index:
|
|
| 3690 |
- type: mrr_at_5
|
| 3691 |
value: 86.56700000000001
|
| 3692 |
- type: ndcg_at_1
|
| 3693 |
-
value: 76
|
| 3694 |
- type: ndcg_at_10
|
| 3695 |
value: 71.326
|
| 3696 |
- type: ndcg_at_100
|
|
@@ -3702,7 +3703,7 @@ model-index:
|
|
| 3702 |
- type: ndcg_at_5
|
| 3703 |
value: 73.833
|
| 3704 |
- type: precision_at_1
|
| 3705 |
-
value: 78
|
| 3706 |
- type: precision_at_10
|
| 3707 |
value: 74.8
|
| 3708 |
- type: precision_at_100
|
|
@@ -3710,9 +3711,9 @@ model-index:
|
|
| 3710 |
- type: precision_at_1000
|
| 3711 |
value: 21.836
|
| 3712 |
- type: precision_at_3
|
| 3713 |
-
value: 78
|
| 3714 |
- type: precision_at_5
|
| 3715 |
-
value: 78
|
| 3716 |
- type: recall_at_1
|
| 3717 |
value: 0.20400000000000001
|
| 3718 |
- type: recall_at_10
|
|
@@ -3837,13 +3838,13 @@ model-index:
|
|
| 3837 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
| 3838 |
metrics:
|
| 3839 |
- type: accuracy
|
| 3840 |
-
value: 96
|
| 3841 |
- type: f1
|
| 3842 |
value: 94.86666666666666
|
| 3843 |
- type: precision
|
| 3844 |
value: 94.31666666666668
|
| 3845 |
- type: recall
|
| 3846 |
-
value: 96
|
| 3847 |
- task:
|
| 3848 |
type: BitextMining
|
| 3849 |
dataset:
|
|
@@ -4330,13 +4331,13 @@ model-index:
|
|
| 4330 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
| 4331 |
metrics:
|
| 4332 |
- type: accuracy
|
| 4333 |
-
value: 97
|
| 4334 |
- type: f1
|
| 4335 |
value: 96.15
|
| 4336 |
- type: precision
|
| 4337 |
value: 95.76666666666668
|
| 4338 |
- type: recall
|
| 4339 |
-
value: 97
|
| 4340 |
- task:
|
| 4341 |
type: BitextMining
|
| 4342 |
dataset:
|
|
@@ -4449,13 +4450,13 @@ model-index:
|
|
| 4449 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
| 4450 |
metrics:
|
| 4451 |
- type: accuracy
|
| 4452 |
-
value: 95
|
| 4453 |
- type: f1
|
| 4454 |
value: 93.60666666666667
|
| 4455 |
- type: precision
|
| 4456 |
value: 92.975
|
| 4457 |
- type: recall
|
| 4458 |
-
value: 95
|
| 4459 |
- task:
|
| 4460 |
type: BitextMining
|
| 4461 |
dataset:
|
|
@@ -4487,7 +4488,7 @@ model-index:
|
|
| 4487 |
- type: f1
|
| 4488 |
value: 94.52999999999999
|
| 4489 |
- type: precision
|
| 4490 |
-
value: 94
|
| 4491 |
- type: recall
|
| 4492 |
value: 95.7
|
| 4493 |
- task:
|
|
@@ -4791,7 +4792,7 @@ model-index:
|
|
| 4791 |
- type: accuracy
|
| 4792 |
value: 97.7
|
| 4793 |
- type: f1
|
| 4794 |
-
value: 97
|
| 4795 |
- type: precision
|
| 4796 |
value: 96.65
|
| 4797 |
- type: recall
|
|
@@ -5112,13 +5113,13 @@ model-index:
|
|
| 5112 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
| 5113 |
metrics:
|
| 5114 |
- type: accuracy
|
| 5115 |
-
value: 81
|
| 5116 |
- type: f1
|
| 5117 |
value: 77.8232380952381
|
| 5118 |
- type: precision
|
| 5119 |
value: 76.60194444444444
|
| 5120 |
- type: recall
|
| 5121 |
-
value: 81
|
| 5122 |
- task:
|
| 5123 |
type: BitextMining
|
| 5124 |
dataset:
|
|
@@ -5129,13 +5130,13 @@ model-index:
|
|
| 5129 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
| 5130 |
metrics:
|
| 5131 |
- type: accuracy
|
| 5132 |
-
value: 91
|
| 5133 |
- type: f1
|
| 5134 |
value: 88.70857142857142
|
| 5135 |
- type: precision
|
| 5136 |
value: 87.7
|
| 5137 |
- type: recall
|
| 5138 |
-
value: 91
|
| 5139 |
- task:
|
| 5140 |
type: BitextMining
|
| 5141 |
dataset:
|
|
@@ -5486,13 +5487,13 @@ model-index:
|
|
| 5486 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
| 5487 |
metrics:
|
| 5488 |
- type: accuracy
|
| 5489 |
-
value: 96
|
| 5490 |
- type: f1
|
| 5491 |
value: 94.89
|
| 5492 |
- type: precision
|
| 5493 |
value: 94.39166666666667
|
| 5494 |
- type: recall
|
| 5495 |
-
value: 96
|
| 5496 |
- task:
|
| 5497 |
type: BitextMining
|
| 5498 |
dataset:
|
|
@@ -5537,13 +5538,13 @@ model-index:
|
|
| 5537 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
| 5538 |
metrics:
|
| 5539 |
- type: accuracy
|
| 5540 |
-
value: 88
|
| 5541 |
- type: f1
|
| 5542 |
value: 85.47
|
| 5543 |
- type: precision
|
| 5544 |
value: 84.43266233766234
|
| 5545 |
- type: recall
|
| 5546 |
-
value: 88
|
| 5547 |
- task:
|
| 5548 |
type: BitextMining
|
| 5549 |
dataset:
|
|
@@ -5622,13 +5623,13 @@ model-index:
|
|
| 5622 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
| 5623 |
metrics:
|
| 5624 |
- type: accuracy
|
| 5625 |
-
value: 89
|
| 5626 |
- type: f1
|
| 5627 |
value: 86.23190476190476
|
| 5628 |
- type: precision
|
| 5629 |
value: 85.035
|
| 5630 |
- type: recall
|
| 5631 |
-
value: 89
|
| 5632 |
- task:
|
| 5633 |
type: Retrieval
|
| 5634 |
dataset:
|
|
@@ -6107,5 +6108,4 @@ If you find our paper or models helpful, please consider cite as follows:
|
|
| 6107 |
|
| 6108 |
## Limitations
|
| 6109 |
|
| 6110 |
-
Long texts will be truncated to at most 512 tokens.
|
| 6111 |
-
|
|
|
|
| 1 |
---
|
| 2 |
tags:
|
| 3 |
- mteb
|
| 4 |
+
- Sentence Transformers
|
| 5 |
model-index:
|
| 6 |
- name: multilingual-e5-large
|
| 7 |
results:
|
|
|
|
| 578 |
- type: precision_at_1000
|
| 579 |
value: 1.978
|
| 580 |
- type: precision_at_3
|
| 581 |
+
value: 50
|
| 582 |
- type: precision_at_5
|
| 583 |
value: 41.349999999999994
|
| 584 |
- type: recall_at_1
|
|
|
|
| 3598 |
- type: manhattan_precision
|
| 3599 |
value: 87.66564729867483
|
| 3600 |
- type: manhattan_recall
|
| 3601 |
+
value: 86
|
| 3602 |
- type: max_accuracy
|
| 3603 |
value: 99.74356435643564
|
| 3604 |
- type: max_ap
|
|
|
|
| 3679 |
- type: map_at_5
|
| 3680 |
value: 0.885
|
| 3681 |
- type: mrr_at_1
|
| 3682 |
+
value: 78
|
| 3683 |
- type: mrr_at_10
|
| 3684 |
value: 86.56700000000001
|
| 3685 |
- type: mrr_at_100
|
|
|
|
| 3691 |
- type: mrr_at_5
|
| 3692 |
value: 86.56700000000001
|
| 3693 |
- type: ndcg_at_1
|
| 3694 |
+
value: 76
|
| 3695 |
- type: ndcg_at_10
|
| 3696 |
value: 71.326
|
| 3697 |
- type: ndcg_at_100
|
|
|
|
| 3703 |
- type: ndcg_at_5
|
| 3704 |
value: 73.833
|
| 3705 |
- type: precision_at_1
|
| 3706 |
+
value: 78
|
| 3707 |
- type: precision_at_10
|
| 3708 |
value: 74.8
|
| 3709 |
- type: precision_at_100
|
|
|
|
| 3711 |
- type: precision_at_1000
|
| 3712 |
value: 21.836
|
| 3713 |
- type: precision_at_3
|
| 3714 |
+
value: 78
|
| 3715 |
- type: precision_at_5
|
| 3716 |
+
value: 78
|
| 3717 |
- type: recall_at_1
|
| 3718 |
value: 0.20400000000000001
|
| 3719 |
- type: recall_at_10
|
|
|
|
| 3838 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
| 3839 |
metrics:
|
| 3840 |
- type: accuracy
|
| 3841 |
+
value: 96
|
| 3842 |
- type: f1
|
| 3843 |
value: 94.86666666666666
|
| 3844 |
- type: precision
|
| 3845 |
value: 94.31666666666668
|
| 3846 |
- type: recall
|
| 3847 |
+
value: 96
|
| 3848 |
- task:
|
| 3849 |
type: BitextMining
|
| 3850 |
dataset:
|
|
|
|
| 4331 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
| 4332 |
metrics:
|
| 4333 |
- type: accuracy
|
| 4334 |
+
value: 97
|
| 4335 |
- type: f1
|
| 4336 |
value: 96.15
|
| 4337 |
- type: precision
|
| 4338 |
value: 95.76666666666668
|
| 4339 |
- type: recall
|
| 4340 |
+
value: 97
|
| 4341 |
- task:
|
| 4342 |
type: BitextMining
|
| 4343 |
dataset:
|
|
|
|
| 4450 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
| 4451 |
metrics:
|
| 4452 |
- type: accuracy
|
| 4453 |
+
value: 95
|
| 4454 |
- type: f1
|
| 4455 |
value: 93.60666666666667
|
| 4456 |
- type: precision
|
| 4457 |
value: 92.975
|
| 4458 |
- type: recall
|
| 4459 |
+
value: 95
|
| 4460 |
- task:
|
| 4461 |
type: BitextMining
|
| 4462 |
dataset:
|
|
|
|
| 4488 |
- type: f1
|
| 4489 |
value: 94.52999999999999
|
| 4490 |
- type: precision
|
| 4491 |
+
value: 94
|
| 4492 |
- type: recall
|
| 4493 |
value: 95.7
|
| 4494 |
- task:
|
|
|
|
| 4792 |
- type: accuracy
|
| 4793 |
value: 97.7
|
| 4794 |
- type: f1
|
| 4795 |
+
value: 97
|
| 4796 |
- type: precision
|
| 4797 |
value: 96.65
|
| 4798 |
- type: recall
|
|
|
|
| 5113 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
| 5114 |
metrics:
|
| 5115 |
- type: accuracy
|
| 5116 |
+
value: 81
|
| 5117 |
- type: f1
|
| 5118 |
value: 77.8232380952381
|
| 5119 |
- type: precision
|
| 5120 |
value: 76.60194444444444
|
| 5121 |
- type: recall
|
| 5122 |
+
value: 81
|
| 5123 |
- task:
|
| 5124 |
type: BitextMining
|
| 5125 |
dataset:
|
|
|
|
| 5130 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
| 5131 |
metrics:
|
| 5132 |
- type: accuracy
|
| 5133 |
+
value: 91
|
| 5134 |
- type: f1
|
| 5135 |
value: 88.70857142857142
|
| 5136 |
- type: precision
|
| 5137 |
value: 87.7
|
| 5138 |
- type: recall
|
| 5139 |
+
value: 91
|
| 5140 |
- task:
|
| 5141 |
type: BitextMining
|
| 5142 |
dataset:
|
|
|
|
| 5487 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
| 5488 |
metrics:
|
| 5489 |
- type: accuracy
|
| 5490 |
+
value: 96
|
| 5491 |
- type: f1
|
| 5492 |
value: 94.89
|
| 5493 |
- type: precision
|
| 5494 |
value: 94.39166666666667
|
| 5495 |
- type: recall
|
| 5496 |
+
value: 96
|
| 5497 |
- task:
|
| 5498 |
type: BitextMining
|
| 5499 |
dataset:
|
|
|
|
| 5538 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
| 5539 |
metrics:
|
| 5540 |
- type: accuracy
|
| 5541 |
+
value: 88
|
| 5542 |
- type: f1
|
| 5543 |
value: 85.47
|
| 5544 |
- type: precision
|
| 5545 |
value: 84.43266233766234
|
| 5546 |
- type: recall
|
| 5547 |
+
value: 88
|
| 5548 |
- task:
|
| 5549 |
type: BitextMining
|
| 5550 |
dataset:
|
|
|
|
| 5623 |
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
|
| 5624 |
metrics:
|
| 5625 |
- type: accuracy
|
| 5626 |
+
value: 89
|
| 5627 |
- type: f1
|
| 5628 |
value: 86.23190476190476
|
| 5629 |
- type: precision
|
| 5630 |
value: 85.035
|
| 5631 |
- type: recall
|
| 5632 |
+
value: 89
|
| 5633 |
- task:
|
| 5634 |
type: Retrieval
|
| 5635 |
dataset:
|
|
|
|
| 6108 |
|
| 6109 |
## Limitations
|
| 6110 |
|
| 6111 |
+
Long texts will be truncated to at most 512 tokens.
|
|
|