Finalize Sentence Transformers integration (#3)
Browse files- Finalize Sentence Transformers integration (501f1f440cb512754532cfa281332455bca94268)
- Remove unneeded spaces before texts in image-text setups (211fa5c2e04bd58fd52324c6f57111a69e3037b0)
- 1_Pooling/config.json +10 -0
- README.md +49 -7
- custom_st.py +22 -31
- modules.json +20 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 4096,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": false,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": true,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
CHANGED
|
@@ -2,6 +2,7 @@
|
|
| 2 |
tags:
|
| 3 |
- mmeb
|
| 4 |
- transformers
|
|
|
|
| 5 |
language:
|
| 6 |
- en
|
| 7 |
- ar
|
|
@@ -34,15 +35,10 @@ Our model achieves SOTA performance on MMEB benchmark.
|
|
| 34 |
|
| 35 |
## Usage
|
| 36 |
|
| 37 |
-
|
| 38 |
|
| 39 |
-
|
| 40 |
-
```bash
|
| 41 |
-
git clone https://github.com/haon-chen/mmE5.git
|
| 42 |
-
pip install -r requirements.txt
|
| 43 |
-
```
|
| 44 |
|
| 45 |
-
Then you can enter the directory to run the following command.
|
| 46 |
```python
|
| 47 |
import torch
|
| 48 |
import requests
|
|
@@ -107,6 +103,52 @@ print(string, '=', compute_similarity(qry_output, tgt_output))
|
|
| 107 |
## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.3887]], device='cuda:0', dtype=torch.bfloat16)
|
| 108 |
```
|
| 109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 110 |
## Citation
|
| 111 |
```
|
| 112 |
@article{chen2025mmE5,
|
|
|
|
| 2 |
tags:
|
| 3 |
- mmeb
|
| 4 |
- transformers
|
| 5 |
+
- sentence-transformers
|
| 6 |
language:
|
| 7 |
- en
|
| 8 |
- ar
|
|
|
|
| 35 |
|
| 36 |
## Usage
|
| 37 |
|
| 38 |
+
### Transformers
|
| 39 |
|
| 40 |
+
Below is an example we adapted from [VLM2Vec](https://huggingface.co/TIGER-Lab/VLM2Vec-Full).
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
| 42 |
```python
|
| 43 |
import torch
|
| 44 |
import requests
|
|
|
|
| 103 |
## <|image|><|begin_of_text|> Represent the given image. = tensor([[0.3887]], device='cuda:0', dtype=torch.bfloat16)
|
| 104 |
```
|
| 105 |
|
| 106 |
+
### Sentence Transformers
|
| 107 |
+
|
| 108 |
+
You can also use Sentence Transformers, where the majority of the pre- and post-processing has been abstracted.
|
| 109 |
+
|
| 110 |
+
```python
|
| 111 |
+
from sentence_transformers import SentenceTransformer
|
| 112 |
+
import requests
|
| 113 |
+
|
| 114 |
+
# Load the model
|
| 115 |
+
model = SentenceTransformer("intfloat/mmE5-mllama-11b-instruct", trust_remote_code=True)
|
| 116 |
+
|
| 117 |
+
# Download an example image of a cat and a dog
|
| 118 |
+
dog_cat_image_bytes = requests.get('https://github.com/haon-chen/mmE5/blob/main/figures/example.jpg?raw=true', stream=True).raw.read()
|
| 119 |
+
with open("cat_dog_example.jpg", "wb") as f:
|
| 120 |
+
f.write(dog_cat_image_bytes)
|
| 121 |
+
|
| 122 |
+
# Image + Text -> Text
|
| 123 |
+
image_embeddings = model.encode([{
|
| 124 |
+
"image": "cat_dog_example.jpg",
|
| 125 |
+
"text": "Represent the given image with the following question: What is in the image",
|
| 126 |
+
}])
|
| 127 |
+
text_embeddings = model.encode([
|
| 128 |
+
{"text": "A cat and a dog"},
|
| 129 |
+
{"text": "A cat and a tiger"},
|
| 130 |
+
])
|
| 131 |
+
|
| 132 |
+
similarity = model.similarity(image_embeddings, text_embeddings)
|
| 133 |
+
print(similarity)
|
| 134 |
+
# tensor([[0.3967, 0.3090]])
|
| 135 |
+
# ✅ The first text is most similar to the image
|
| 136 |
+
|
| 137 |
+
# Text -> Image
|
| 138 |
+
image_embeddings = model.encode([
|
| 139 |
+
{"image": dog_cat_image_bytes, "text": "Represent the given image."},
|
| 140 |
+
])
|
| 141 |
+
text_embeddings = model.encode([
|
| 142 |
+
{"text": "Find me an everyday image that matches the given caption: A cat and a dog."},
|
| 143 |
+
{"text": "Find me an everyday image that matches the given caption: A cat and a tiger."},
|
| 144 |
+
])
|
| 145 |
+
|
| 146 |
+
similarity = model.similarity(image_embeddings, text_embeddings)
|
| 147 |
+
print(similarity)
|
| 148 |
+
# tensor([[0.4250, 0.3896]])
|
| 149 |
+
# ✅ The first text is most similar to the image
|
| 150 |
+
```
|
| 151 |
+
|
| 152 |
## Citation
|
| 153 |
```
|
| 154 |
@article{chen2025mmE5,
|
custom_st.py
CHANGED
|
@@ -17,6 +17,7 @@ class MultiModalTransformer(BaseTransformer):
|
|
| 17 |
super().__init__(model_name_or_path, **kwargs)
|
| 18 |
if tokenizer_args is None:
|
| 19 |
tokenizer_args = {}
|
|
|
|
| 20 |
|
| 21 |
# Initialize processor
|
| 22 |
self.processor = AutoProcessor.from_pretrained(
|
|
@@ -32,6 +33,7 @@ class MultiModalTransformer(BaseTransformer):
|
|
| 32 |
is_peft_model: bool,
|
| 33 |
**model_args,
|
| 34 |
) -> None:
|
|
|
|
| 35 |
self.auto_model = MllamaForConditionalGeneration.from_pretrained(
|
| 36 |
model_name_or_path, torch_dtype=torch.bfloat16, cache_dir=cache_dir, **model_args
|
| 37 |
)
|
|
@@ -47,49 +49,38 @@ class MultiModalTransformer(BaseTransformer):
|
|
| 47 |
**kwargs
|
| 48 |
)
|
| 49 |
|
| 50 |
-
|
| 51 |
-
last_hidden_state = outputs.hidden_states[-1]
|
| 52 |
-
attention_mask = features["attention_mask"]
|
| 53 |
-
sentence_embedding = self._last_pooling(last_hidden_state, attention_mask)
|
| 54 |
-
|
| 55 |
-
features.update({"sentence_embedding": sentence_embedding})
|
| 56 |
return features
|
| 57 |
|
| 58 |
-
def _last_pooling(self, last_hidden_state: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor:
|
| 59 |
-
"""Apply last token pooling and L2 normalization"""
|
| 60 |
-
sequence_lengths = attention_mask.sum(dim=1) - 1
|
| 61 |
-
batch_size = last_hidden_state.shape[0]
|
| 62 |
-
reps = last_hidden_state[torch.arange(batch_size, device=last_hidden_state.device), sequence_lengths]
|
| 63 |
-
return torch.nn.functional.normalize(reps, p=2, dim=-1)
|
| 64 |
-
|
| 65 |
def tokenize(self, texts: List[List[Dict]] | List[str]) -> Dict[str, torch.Tensor]:
|
| 66 |
def process_text_item(item):
|
| 67 |
if isinstance(item, str):
|
| 68 |
-
return item,
|
| 69 |
|
| 70 |
-
text,
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
|
|
|
|
|
|
| 84 |
|
| 85 |
all_texts, all_images = [], []
|
| 86 |
for item in texts:
|
| 87 |
text, images = process_text_item(item)
|
| 88 |
all_texts.append(text)
|
| 89 |
-
all_images.
|
| 90 |
|
| 91 |
-
|
| 92 |
-
if all_images:
|
| 93 |
inputs = self.processor(
|
| 94 |
text=all_texts,
|
| 95 |
images=all_images,
|
|
|
|
| 17 |
super().__init__(model_name_or_path, **kwargs)
|
| 18 |
if tokenizer_args is None:
|
| 19 |
tokenizer_args = {}
|
| 20 |
+
tokenizer_args.pop("trust_remote_code", None)
|
| 21 |
|
| 22 |
# Initialize processor
|
| 23 |
self.processor = AutoProcessor.from_pretrained(
|
|
|
|
| 33 |
is_peft_model: bool,
|
| 34 |
**model_args,
|
| 35 |
) -> None:
|
| 36 |
+
model_args.pop("trust_remote_code", None)
|
| 37 |
self.auto_model = MllamaForConditionalGeneration.from_pretrained(
|
| 38 |
model_name_or_path, torch_dtype=torch.bfloat16, cache_dir=cache_dir, **model_args
|
| 39 |
)
|
|
|
|
| 49 |
**kwargs
|
| 50 |
)
|
| 51 |
|
| 52 |
+
features.update({"token_embeddings": outputs.hidden_states[-1]})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
return features
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
def tokenize(self, texts: List[List[Dict]] | List[str]) -> Dict[str, torch.Tensor]:
|
| 56 |
def process_text_item(item):
|
| 57 |
if isinstance(item, str):
|
| 58 |
+
return item, None
|
| 59 |
|
| 60 |
+
text, img = "", None
|
| 61 |
+
if "image" in item:
|
| 62 |
+
text += "<|image|>"
|
| 63 |
+
img = item["image"]
|
| 64 |
+
if isinstance(img, bytes):
|
| 65 |
+
img = Image.open(BytesIO(img)).convert("RGB")
|
| 66 |
+
elif isinstance(img, str):
|
| 67 |
+
img = Image.open(img).convert("RGB")
|
| 68 |
+
elif not isinstance(img, Image):
|
| 69 |
+
raise ValueError(f"Unknown image type {type(img)}")
|
| 70 |
+
if "text" in item:
|
| 71 |
+
if text:
|
| 72 |
+
text += "<|begin_of_text|> "
|
| 73 |
+
text += item["text"].lstrip()
|
| 74 |
+
|
| 75 |
+
return text, img
|
| 76 |
|
| 77 |
all_texts, all_images = [], []
|
| 78 |
for item in texts:
|
| 79 |
text, images = process_text_item(item)
|
| 80 |
all_texts.append(text)
|
| 81 |
+
all_images.append(images)
|
| 82 |
|
| 83 |
+
if all_images != [None] * len(all_images):
|
|
|
|
| 84 |
inputs = self.processor(
|
| 85 |
text=all_texts,
|
| 86 |
images=all_images,
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "custom_st.MultiModalTransformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|