x54-729
commited on
Commit
·
fa732f7
1
Parent(s):
530fc70
update for new version
Browse files- config.json +2 -1
- configuration_internlm2.py +33 -11
- modeling_internlm2.py +759 -352
config.json
CHANGED
|
@@ -27,5 +27,6 @@
|
|
| 27 |
"torch_dtype": "bfloat16",
|
| 28 |
"transformers_version": "4.33.0",
|
| 29 |
"use_cache": true,
|
| 30 |
-
"vocab_size": 92544
|
|
|
|
| 31 |
}
|
|
|
|
| 27 |
"torch_dtype": "bfloat16",
|
| 28 |
"transformers_version": "4.33.0",
|
| 29 |
"use_cache": true,
|
| 30 |
+
"vocab_size": 92544,
|
| 31 |
+
"pretraining_tp": 1
|
| 32 |
}
|
configuration_internlm2.py
CHANGED
|
@@ -44,9 +44,9 @@ class InternLM2Config(PretrainedConfig):
|
|
| 44 |
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 45 |
Dimension of the MLP representations.
|
| 46 |
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 47 |
-
Number of hidden layers in the Transformer
|
| 48 |
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 49 |
-
Number of attention heads for each attention layer in the Transformer
|
| 50 |
num_key_value_heads (`int`, *optional*):
|
| 51 |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 52 |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
@@ -58,22 +58,42 @@ class InternLM2Config(PretrainedConfig):
|
|
| 58 |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 59 |
The non-linear activation function (function or string) in the decoder.
|
| 60 |
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 61 |
-
The maximum sequence length that this model might ever be used with.
|
| 62 |
-
just in case (e.g., 512 or 1024 or 2048).
|
| 63 |
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 64 |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 65 |
-
rms_norm_eps (`float`, *optional*, defaults to 1e-
|
| 66 |
The epsilon used by the rms normalization layers.
|
| 67 |
use_cache (`bool`, *optional*, defaults to `True`):
|
| 68 |
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 69 |
relevant if `config.is_decoder=True`.
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
Whether to tie weight embeddings
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
"""
|
| 75 |
-
model_type = "internlm2"
|
| 76 |
_auto_class = "AutoConfig"
|
|
|
|
|
|
|
| 77 |
|
| 78 |
def __init__( # pylint: disable=W0102
|
| 79 |
self,
|
|
@@ -91,11 +111,12 @@ class InternLM2Config(PretrainedConfig):
|
|
| 91 |
pad_token_id=0,
|
| 92 |
bos_token_id=1,
|
| 93 |
eos_token_id=2,
|
|
|
|
| 94 |
tie_word_embeddings=False,
|
| 95 |
bias=True,
|
| 96 |
rope_theta=10000,
|
| 97 |
rope_scaling=None,
|
| 98 |
-
attn_implementation=
|
| 99 |
**kwargs,
|
| 100 |
):
|
| 101 |
self.vocab_size = vocab_size
|
|
@@ -113,14 +134,15 @@ class InternLM2Config(PretrainedConfig):
|
|
| 113 |
self.hidden_act = hidden_act
|
| 114 |
self.initializer_range = initializer_range
|
| 115 |
self.rms_norm_eps = rms_norm_eps
|
|
|
|
| 116 |
self.use_cache = use_cache
|
| 117 |
self.rope_theta = rope_theta
|
| 118 |
self.rope_scaling = rope_scaling
|
| 119 |
self._rope_scaling_validation()
|
| 120 |
-
|
| 121 |
self.attn_implementation = attn_implementation
|
| 122 |
if self.attn_implementation is None:
|
| 123 |
self.attn_implementation = "eager"
|
|
|
|
| 124 |
super().__init__(
|
| 125 |
pad_token_id=pad_token_id,
|
| 126 |
bos_token_id=bos_token_id,
|
|
|
|
| 44 |
intermediate_size (`int`, *optional*, defaults to 11008):
|
| 45 |
Dimension of the MLP representations.
|
| 46 |
num_hidden_layers (`int`, *optional*, defaults to 32):
|
| 47 |
+
Number of hidden layers in the Transformer decoder.
|
| 48 |
num_attention_heads (`int`, *optional*, defaults to 32):
|
| 49 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
| 50 |
num_key_value_heads (`int`, *optional*):
|
| 51 |
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
| 52 |
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
|
|
| 58 |
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
| 59 |
The non-linear activation function (function or string) in the decoder.
|
| 60 |
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
| 61 |
+
The maximum sequence length that this model might ever be used with. InternLM2 supports up to 32768 tokens.
|
|
|
|
| 62 |
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 63 |
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 64 |
+
rms_norm_eps (`float`, *optional*, defaults to 1e-06):
|
| 65 |
The epsilon used by the rms normalization layers.
|
| 66 |
use_cache (`bool`, *optional*, defaults to `True`):
|
| 67 |
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
| 68 |
relevant if `config.is_decoder=True`.
|
| 69 |
+
pad_token_id (`int`, *optional*):
|
| 70 |
+
Padding token id.
|
| 71 |
+
bos_token_id (`int`, *optional*, defaults to 1):
|
| 72 |
+
Beginning of stream token id.
|
| 73 |
+
eos_token_id (`int`, *optional*, defaults to 2):
|
| 74 |
+
End of stream token id.
|
| 75 |
+
pretraining_tp (`int`, *optional*, defaults to 1):
|
| 76 |
+
Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
|
| 77 |
+
document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism)
|
| 78 |
+
to understand more about it. This value is necessary to ensure exact reproducibility
|
| 79 |
+
of the pretraining results. Please refer to [this
|
| 80 |
+
issue](https://github.com/pytorch/pytorch/issues/76232).
|
| 81 |
+
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
| 82 |
Whether to tie weight embeddings
|
| 83 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 84 |
+
The base period of the RoPE embeddings.
|
| 85 |
+
rope_scaling (`Dict`, *optional*):
|
| 86 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
| 87 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
| 88 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
| 89 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
| 90 |
+
these scaling strategies behave:
|
| 91 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
| 92 |
+
experimental feature, subject to breaking API changes in future versions.
|
| 93 |
"""
|
|
|
|
| 94 |
_auto_class = "AutoConfig"
|
| 95 |
+
model_type = "internlm2"
|
| 96 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 97 |
|
| 98 |
def __init__( # pylint: disable=W0102
|
| 99 |
self,
|
|
|
|
| 111 |
pad_token_id=0,
|
| 112 |
bos_token_id=1,
|
| 113 |
eos_token_id=2,
|
| 114 |
+
pretraining_tp=1,
|
| 115 |
tie_word_embeddings=False,
|
| 116 |
bias=True,
|
| 117 |
rope_theta=10000,
|
| 118 |
rope_scaling=None,
|
| 119 |
+
attn_implementation=None,
|
| 120 |
**kwargs,
|
| 121 |
):
|
| 122 |
self.vocab_size = vocab_size
|
|
|
|
| 134 |
self.hidden_act = hidden_act
|
| 135 |
self.initializer_range = initializer_range
|
| 136 |
self.rms_norm_eps = rms_norm_eps
|
| 137 |
+
self.pretraining_tp = pretraining_tp
|
| 138 |
self.use_cache = use_cache
|
| 139 |
self.rope_theta = rope_theta
|
| 140 |
self.rope_scaling = rope_scaling
|
| 141 |
self._rope_scaling_validation()
|
|
|
|
| 142 |
self.attn_implementation = attn_implementation
|
| 143 |
if self.attn_implementation is None:
|
| 144 |
self.attn_implementation = "eager"
|
| 145 |
+
|
| 146 |
super().__init__(
|
| 147 |
pad_token_id=pad_token_id,
|
| 148 |
bos_token_id=bos_token_id,
|
modeling_internlm2.py
CHANGED
|
@@ -13,11 +13,10 @@
|
|
| 13 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
# See the License for the specific language governing permissions and
|
| 15 |
# limitations under the License.
|
| 16 |
-
"""
|
| 17 |
import math
|
| 18 |
import queue
|
| 19 |
import threading
|
| 20 |
-
import warnings
|
| 21 |
from typing import List, Optional, Tuple, Union
|
| 22 |
|
| 23 |
import torch
|
|
@@ -27,49 +26,48 @@ from einops import rearrange
|
|
| 27 |
from torch import nn
|
| 28 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 29 |
from transformers.activations import ACT2FN
|
|
|
|
|
|
|
| 30 |
from transformers.modeling_outputs import (
|
| 31 |
BaseModelOutputWithPast,
|
| 32 |
CausalLMOutputWithPast,
|
|
|
|
| 33 |
SequenceClassifierOutputWithPast,
|
|
|
|
| 34 |
)
|
| 35 |
from transformers.modeling_utils import PreTrainedModel
|
|
|
|
| 36 |
from transformers.utils import (
|
| 37 |
add_start_docstrings,
|
| 38 |
add_start_docstrings_to_model_forward,
|
|
|
|
|
|
|
| 39 |
logging,
|
| 40 |
replace_return_docstrings,
|
| 41 |
)
|
| 42 |
|
| 43 |
try:
|
| 44 |
from transformers.generation.streamers import BaseStreamer
|
| 45 |
-
except
|
| 46 |
BaseStreamer = None
|
| 47 |
|
| 48 |
from .configuration_internlm2 import InternLM2Config
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
logger = logging.get_logger(__name__)
|
| 51 |
|
| 52 |
_CONFIG_FOR_DOC = "InternLM2Config"
|
| 53 |
|
| 54 |
-
|
| 55 |
-
pad_input, index_first_axis, unpad_input = None, None, None
|
| 56 |
-
def _import_flash_attn():
|
| 57 |
-
global flash_attn_func, flash_attn_varlen_func
|
| 58 |
-
global pad_input, index_first_axis, unpad_input
|
| 59 |
-
try:
|
| 60 |
-
from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
|
| 61 |
-
from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
|
| 62 |
-
flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
|
| 63 |
-
pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
|
| 64 |
-
except ImportError:
|
| 65 |
-
raise ImportError("flash_attn is not installed.")
|
| 66 |
-
|
| 67 |
-
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 68 |
def _get_unpad_data(attention_mask):
|
| 69 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 70 |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 71 |
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 72 |
-
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.
|
| 73 |
return (
|
| 74 |
indices,
|
| 75 |
cu_seqlens,
|
|
@@ -77,45 +75,10 @@ def _get_unpad_data(attention_mask):
|
|
| 77 |
)
|
| 78 |
|
| 79 |
|
| 80 |
-
# Copied from transformers.models.bart.modeling_bart._make_causal_mask
|
| 81 |
-
def _make_causal_mask(
|
| 82 |
-
input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
|
| 83 |
-
):
|
| 84 |
-
"""
|
| 85 |
-
Make causal mask used for bi-directional self-attention.
|
| 86 |
-
"""
|
| 87 |
-
bsz, tgt_len = input_ids_shape
|
| 88 |
-
mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
|
| 89 |
-
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 90 |
-
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 91 |
-
mask = mask.to(dtype)
|
| 92 |
-
|
| 93 |
-
if past_key_values_length > 0:
|
| 94 |
-
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
| 95 |
-
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
# Copied from transformers.models.bart.modeling_bart._expand_mask
|
| 99 |
-
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 100 |
-
"""
|
| 101 |
-
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 102 |
-
"""
|
| 103 |
-
bsz, src_len = mask.size()
|
| 104 |
-
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 105 |
-
|
| 106 |
-
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 107 |
-
|
| 108 |
-
inverted_mask = 1.0 - expanded_mask
|
| 109 |
-
|
| 110 |
-
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
|
| 114 |
class InternLM2RMSNorm(nn.Module):
|
|
|
|
|
|
|
| 115 |
def __init__(self, hidden_size, eps=1e-6):
|
| 116 |
-
"""
|
| 117 |
-
InternLM2RMSNorm is equivalent to T5LayerNorm
|
| 118 |
-
"""
|
| 119 |
super().__init__()
|
| 120 |
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 121 |
self.variance_epsilon = eps
|
|
@@ -128,93 +91,68 @@ class InternLM2RMSNorm(nn.Module):
|
|
| 128 |
return self.weight * hidden_states.to(input_dtype)
|
| 129 |
|
| 130 |
|
| 131 |
-
|
|
|
|
|
|
|
| 132 |
class InternLM2RotaryEmbedding(nn.Module):
|
| 133 |
-
|
| 134 |
-
super().__init__()
|
| 135 |
|
|
|
|
|
|
|
|
|
|
| 136 |
self.dim = dim
|
| 137 |
self.max_position_embeddings = max_position_embeddings
|
| 138 |
self.base = base
|
| 139 |
-
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 140 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
|
|
|
|
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
| 145 |
-
)
|
| 146 |
-
|
| 147 |
-
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 148 |
-
self.max_seq_len_cached = seq_len
|
| 149 |
-
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 150 |
-
|
| 151 |
-
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 152 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 153 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
| 154 |
-
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
| 155 |
-
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
| 156 |
-
|
| 157 |
-
def forward(self, x, seq_len=None):
|
| 158 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
|
| 168 |
-
# Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
|
| 169 |
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
| 170 |
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
| 171 |
|
| 172 |
-
def
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
self.max_seq_len_cached = seq_len
|
| 178 |
-
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 179 |
-
t = t / self.scaling_factor
|
| 180 |
|
| 181 |
-
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 182 |
-
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 183 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
| 184 |
-
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
| 185 |
-
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
| 186 |
|
| 187 |
-
|
| 188 |
-
# Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
|
| 189 |
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
| 190 |
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
| 191 |
-
Credits to the Reddit users /u/bloc97 and /u/emozilla
|
| 192 |
-
"""
|
| 193 |
-
|
| 194 |
-
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 195 |
-
self.scaling_factor = scaling_factor
|
| 196 |
-
super().__init__(dim, max_position_embeddings, base, device)
|
| 197 |
-
|
| 198 |
-
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 199 |
-
self.max_seq_len_cached = seq_len
|
| 200 |
|
|
|
|
|
|
|
|
|
|
| 201 |
if seq_len > self.max_position_embeddings:
|
| 202 |
base = self.base * (
|
| 203 |
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
| 204 |
) ** (self.dim / (self.dim - 2))
|
| 205 |
-
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 206 |
-
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 207 |
-
|
| 208 |
-
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 209 |
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
emb = torch.cat((freqs, freqs), dim=-1)
|
| 213 |
-
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
| 214 |
-
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
| 215 |
|
| 216 |
|
| 217 |
-
# Copied from transformers.model.llama.modeling_llama.rotate_half
|
| 218 |
def rotate_half(x):
|
| 219 |
"""Rotates half the hidden dims of the input."""
|
| 220 |
x1 = x[..., : x.shape[-1] // 2]
|
|
@@ -222,17 +160,36 @@ def rotate_half(x):
|
|
| 222 |
return torch.cat((-x2, x1), dim=-1)
|
| 223 |
|
| 224 |
|
| 225 |
-
#
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 230 |
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 231 |
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 232 |
return q_embed, k_embed
|
| 233 |
|
| 234 |
|
| 235 |
class InternLM2MLP(nn.Module):
|
|
|
|
|
|
|
| 236 |
def __init__(self, config):
|
| 237 |
super().__init__()
|
| 238 |
self.config = config
|
|
@@ -249,7 +206,6 @@ class InternLM2MLP(nn.Module):
|
|
| 249 |
return down_proj
|
| 250 |
|
| 251 |
|
| 252 |
-
# Copied from transformers.model.llama.modeling_llama.repeat_kv
|
| 253 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 254 |
"""
|
| 255 |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
@@ -262,19 +218,27 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
| 262 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 263 |
|
| 264 |
|
| 265 |
-
# Modified from transformers.model.llama.modeling_llama.LlamaAttention
|
| 266 |
class InternLM2Attention(nn.Module):
|
| 267 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 268 |
|
| 269 |
-
def __init__(self, config: InternLM2Config):
|
| 270 |
super().__init__()
|
| 271 |
self.config = config
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
self.hidden_size = config.hidden_size
|
| 273 |
self.num_heads = config.num_attention_heads
|
| 274 |
self.head_dim = self.hidden_size // self.num_heads
|
| 275 |
self.num_key_value_heads = config.num_key_value_heads
|
| 276 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 277 |
self.max_position_embeddings = config.max_position_embeddings
|
|
|
|
| 278 |
self.is_causal = True
|
| 279 |
|
| 280 |
if (self.head_dim * self.num_heads) != self.hidden_size:
|
|
@@ -288,8 +252,8 @@ class InternLM2Attention(nn.Module):
|
|
| 288 |
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
| 289 |
bias=config.bias,
|
| 290 |
)
|
| 291 |
-
|
| 292 |
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
|
|
|
| 293 |
self._init_rope()
|
| 294 |
|
| 295 |
def _init_rope(self):
|
|
@@ -297,51 +261,49 @@ class InternLM2Attention(nn.Module):
|
|
| 297 |
self.rotary_emb = InternLM2RotaryEmbedding(
|
| 298 |
self.head_dim,
|
| 299 |
max_position_embeddings=self.max_position_embeddings,
|
| 300 |
-
base=self.
|
| 301 |
)
|
| 302 |
else:
|
| 303 |
scaling_type = self.config.rope_scaling["type"]
|
| 304 |
scaling_factor = self.config.rope_scaling["factor"]
|
| 305 |
-
if scaling_type == "
|
| 306 |
-
self.rotary_emb =
|
| 307 |
self.head_dim,
|
| 308 |
max_position_embeddings=self.max_position_embeddings,
|
| 309 |
-
base=self.config.rope_theta,
|
| 310 |
scaling_factor=scaling_factor,
|
|
|
|
| 311 |
)
|
| 312 |
-
elif scaling_type == "
|
| 313 |
-
self.rotary_emb =
|
| 314 |
self.head_dim,
|
| 315 |
max_position_embeddings=self.max_position_embeddings,
|
| 316 |
-
base=self.config.rope_theta,
|
| 317 |
scaling_factor=scaling_factor,
|
|
|
|
| 318 |
)
|
| 319 |
else:
|
| 320 |
-
raise ValueError("
|
| 321 |
-
return self.rotary_emb
|
| 322 |
-
|
| 323 |
-
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
| 324 |
-
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
| 325 |
|
| 326 |
def forward(
|
| 327 |
self,
|
| 328 |
hidden_states: torch.Tensor,
|
| 329 |
attention_mask: Optional[torch.Tensor] = None,
|
| 330 |
position_ids: Optional[torch.LongTensor] = None,
|
| 331 |
-
past_key_value: Optional[
|
| 332 |
output_attentions: bool = False,
|
| 333 |
-
use_cache: bool = False,
|
| 334 |
-
|
| 335 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 336 |
-
if "padding_mask" in kwargs:
|
| 337 |
-
warnings.warn(
|
| 338 |
-
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
| 339 |
-
"Please make sure use `attention_mask` instead.`"
|
| 340 |
-
)
|
| 341 |
-
|
| 342 |
bsz, q_len, _ = hidden_states.size()
|
| 343 |
|
| 344 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 345 |
|
| 346 |
qkv_states = rearrange(
|
| 347 |
qkv_states,
|
|
@@ -351,44 +313,26 @@ class InternLM2Attention(nn.Module):
|
|
| 351 |
)
|
| 352 |
|
| 353 |
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
| 354 |
-
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
|
| 355 |
-
key_states = qkv_states[..., -2, :]
|
| 356 |
-
value_states = qkv_states[..., -1, :]
|
| 357 |
|
| 358 |
-
|
| 359 |
-
key_states = key_states.transpose(1, 2)
|
| 360 |
-
value_states = value_states.transpose(1, 2)
|
| 361 |
-
|
| 362 |
-
kv_seq_len = key_states.shape[-2]
|
| 363 |
-
if past_key_value is not None:
|
| 364 |
-
kv_seq_len += past_key_value[0].shape[-2]
|
| 365 |
-
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 366 |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 367 |
|
| 368 |
if past_key_value is not None:
|
| 369 |
-
#
|
| 370 |
-
|
| 371 |
-
value_states =
|
| 372 |
-
|
| 373 |
-
past_key_value = (key_states, value_states) if use_cache else None
|
| 374 |
|
| 375 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 376 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 377 |
|
| 378 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 379 |
|
| 380 |
-
if
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
f" {attn_weights.size()}"
|
| 384 |
-
)
|
| 385 |
-
|
| 386 |
-
if attention_mask is not None:
|
| 387 |
-
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
| 388 |
-
raise ValueError(
|
| 389 |
-
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
|
| 390 |
-
)
|
| 391 |
-
attn_weights = attn_weights + attention_mask
|
| 392 |
|
| 393 |
# upcast attention to fp32
|
| 394 |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
@@ -401,9 +345,20 @@ class InternLM2Attention(nn.Module):
|
|
| 401 |
)
|
| 402 |
|
| 403 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
|
|
| 404 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 405 |
|
| 406 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 407 |
|
| 408 |
if not output_attentions:
|
| 409 |
attn_weights = None
|
|
@@ -411,7 +366,6 @@ class InternLM2Attention(nn.Module):
|
|
| 411 |
return attn_output, attn_weights, past_key_value
|
| 412 |
|
| 413 |
|
| 414 |
-
# Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
|
| 415 |
class InternLM2FlashAttention2(InternLM2Attention):
|
| 416 |
"""
|
| 417 |
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
|
|
@@ -419,26 +373,34 @@ class InternLM2FlashAttention2(InternLM2Attention):
|
|
| 419 |
flash attention and deal with padding tokens in case the input contains any of them.
|
| 420 |
"""
|
| 421 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 422 |
def forward(
|
| 423 |
self,
|
| 424 |
hidden_states: torch.Tensor,
|
| 425 |
attention_mask: Optional[torch.LongTensor] = None,
|
| 426 |
position_ids: Optional[torch.LongTensor] = None,
|
| 427 |
-
past_key_value: Optional[
|
| 428 |
output_attentions: bool = False,
|
| 429 |
use_cache: bool = False,
|
| 430 |
-
|
| 431 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 432 |
-
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
"
|
| 436 |
-
"
|
| 437 |
)
|
| 438 |
|
| 439 |
-
# overwrite attention_mask with padding_mask
|
| 440 |
-
attention_mask = kwargs.pop("padding_mask")
|
| 441 |
-
|
| 442 |
output_attentions = False
|
| 443 |
|
| 444 |
bsz, q_len, _ = hidden_states.size()
|
|
@@ -461,35 +423,61 @@ class InternLM2FlashAttention2(InternLM2Attention):
|
|
| 461 |
key_states = key_states.transpose(1, 2)
|
| 462 |
value_states = value_states.transpose(1, 2)
|
| 463 |
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
kv_seq_len += past_key_value[0].shape[-2]
|
| 467 |
-
|
| 468 |
-
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
| 469 |
-
|
| 470 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 471 |
|
| 472 |
if past_key_value is not None:
|
| 473 |
-
#
|
| 474 |
-
|
| 475 |
-
value_states =
|
| 476 |
-
|
| 477 |
-
past_key_value = (key_states, value_states) if use_cache else None
|
| 478 |
|
|
|
|
|
|
|
|
|
|
| 479 |
query_states = query_states.transpose(1, 2)
|
| 480 |
key_states = key_states.transpose(1, 2)
|
| 481 |
value_states = value_states.transpose(1, 2)
|
| 482 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 483 |
attn_output = self._flash_attention_forward(
|
| 484 |
-
query_states, key_states, value_states, attention_mask, q_len
|
| 485 |
)
|
|
|
|
| 486 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 487 |
attn_output = self.wo(attn_output)
|
| 488 |
|
| 489 |
if not output_attentions:
|
| 490 |
attn_weights = None
|
| 491 |
|
| 492 |
-
return attn_output, attn_weights, past_key_value
|
| 493 |
|
| 494 |
def _flash_attention_forward(
|
| 495 |
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
|
@@ -508,23 +496,29 @@ class InternLM2FlashAttention2(InternLM2Attention):
|
|
| 508 |
attention_mask (`torch.Tensor`):
|
| 509 |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 510 |
position of padding tokens and 1 for the position of non-padding tokens.
|
| 511 |
-
dropout (`
|
| 512 |
Attention dropout
|
| 513 |
softmax_scale (`float`, *optional*):
|
| 514 |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 515 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 516 |
# Contains at least one padding token in the sequence
|
| 517 |
-
causal = self.is_causal and query_length != 1
|
| 518 |
if attention_mask is not None:
|
| 519 |
batch_size = query_states.shape[0]
|
| 520 |
-
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self.
|
| 521 |
query_states, key_states, value_states, attention_mask, query_length
|
| 522 |
)
|
| 523 |
|
| 524 |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 525 |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 526 |
|
| 527 |
-
attn_output_unpad = flash_attn_varlen_func(
|
| 528 |
query_states,
|
| 529 |
key_states,
|
| 530 |
value_states,
|
|
@@ -537,27 +531,26 @@ class InternLM2FlashAttention2(InternLM2Attention):
|
|
| 537 |
causal=causal,
|
| 538 |
)
|
| 539 |
|
| 540 |
-
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
| 541 |
else:
|
| 542 |
-
attn_output = flash_attn_func(
|
| 543 |
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
| 544 |
)
|
| 545 |
|
| 546 |
return attn_output
|
| 547 |
|
| 548 |
-
def
|
| 549 |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 550 |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 551 |
|
| 552 |
-
key_layer = index_first_axis(
|
| 553 |
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 554 |
)
|
| 555 |
-
value_layer = index_first_axis(
|
| 556 |
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 557 |
)
|
| 558 |
-
|
| 559 |
if query_length == kv_seq_len:
|
| 560 |
-
query_layer = index_first_axis(
|
| 561 |
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
| 562 |
)
|
| 563 |
cu_seqlens_q = cu_seqlens_k
|
|
@@ -573,29 +566,139 @@ class InternLM2FlashAttention2(InternLM2Attention):
|
|
| 573 |
else:
|
| 574 |
# The -q_len: slice assumes left padding.
|
| 575 |
attention_mask = attention_mask[:, -query_length:]
|
| 576 |
-
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
|
|
|
|
|
|
|
| 577 |
|
| 578 |
return (
|
| 579 |
query_layer,
|
| 580 |
key_layer,
|
| 581 |
value_layer,
|
| 582 |
-
indices_q
|
| 583 |
(cu_seqlens_q, cu_seqlens_k),
|
| 584 |
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 585 |
)
|
| 586 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 587 |
INTERNLM2_ATTENTION_CLASSES = {
|
| 588 |
"eager": InternLM2Attention,
|
| 589 |
"flash_attention_2": InternLM2FlashAttention2,
|
|
|
|
| 590 |
}
|
| 591 |
|
| 592 |
-
|
|
|
|
| 593 |
class InternLM2DecoderLayer(nn.Module):
|
| 594 |
-
|
|
|
|
|
|
|
| 595 |
super().__init__()
|
| 596 |
self.hidden_size = config.hidden_size
|
|
|
|
| 597 |
|
| 598 |
-
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
|
| 599 |
|
| 600 |
self.feed_forward = InternLM2MLP(config)
|
| 601 |
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
@@ -606,10 +709,10 @@ class InternLM2DecoderLayer(nn.Module):
|
|
| 606 |
hidden_states: torch.Tensor,
|
| 607 |
attention_mask: Optional[torch.Tensor] = None,
|
| 608 |
position_ids: Optional[torch.LongTensor] = None,
|
| 609 |
-
past_key_value: Optional[
|
| 610 |
output_attentions: Optional[bool] = False,
|
| 611 |
use_cache: Optional[bool] = False,
|
| 612 |
-
|
| 613 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 614 |
"""
|
| 615 |
Args:
|
|
@@ -625,12 +728,6 @@ class InternLM2DecoderLayer(nn.Module):
|
|
| 625 |
(see `past_key_values`).
|
| 626 |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 627 |
"""
|
| 628 |
-
if "padding_mask" in kwargs:
|
| 629 |
-
warnings.warn(
|
| 630 |
-
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
| 631 |
-
"Please make sure use `attention_mask` instead.`"
|
| 632 |
-
)
|
| 633 |
-
|
| 634 |
residual = hidden_states
|
| 635 |
|
| 636 |
hidden_states = self.attention_norm(hidden_states)
|
|
@@ -643,7 +740,7 @@ class InternLM2DecoderLayer(nn.Module):
|
|
| 643 |
past_key_value=past_key_value,
|
| 644 |
output_attentions=output_attentions,
|
| 645 |
use_cache=use_cache,
|
| 646 |
-
|
| 647 |
)
|
| 648 |
hidden_states = residual + hidden_states
|
| 649 |
|
|
@@ -687,11 +784,20 @@ InternLM2_START_DOCSTRING = r"""
|
|
| 687 |
InternLM2_START_DOCSTRING,
|
| 688 |
)
|
| 689 |
class InternLM2PreTrainedModel(PreTrainedModel):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 690 |
config_class = InternLM2Config
|
| 691 |
base_model_prefix = "model"
|
| 692 |
supports_gradient_checkpointing = True
|
| 693 |
_no_split_modules = ["InternLM2DecoderLayer"]
|
| 694 |
-
_skip_keys_device_placement = "past_key_values"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 695 |
|
| 696 |
def _init_weights(self, module):
|
| 697 |
std = self.config.initializer_range
|
|
@@ -740,14 +846,19 @@ InternLM2_INPUTS_DOCSTRING = r"""
|
|
| 740 |
config.n_positions - 1]`.
|
| 741 |
|
| 742 |
[What are position IDs?](../glossary#position-ids)
|
| 743 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional
|
| 744 |
-
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 748 |
|
| 749 |
-
|
| 750 |
-
|
| 751 |
|
| 752 |
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 753 |
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
|
@@ -767,10 +878,14 @@ InternLM2_INPUTS_DOCSTRING = r"""
|
|
| 767 |
more detail.
|
| 768 |
return_dict (`bool`, *optional*):
|
| 769 |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 770 |
"""
|
| 771 |
|
| 772 |
|
| 773 |
-
# Modified from transformers.
|
| 774 |
@add_start_docstrings(
|
| 775 |
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
| 776 |
InternLM2_START_DOCSTRING,
|
|
@@ -793,7 +908,9 @@ class InternLM2Model(InternLM2PreTrainedModel):
|
|
| 793 |
|
| 794 |
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 795 |
|
| 796 |
-
self.layers = nn.ModuleList(
|
|
|
|
|
|
|
| 797 |
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 798 |
|
| 799 |
self.gradient_checkpointing = False
|
|
@@ -806,142 +923,96 @@ class InternLM2Model(InternLM2PreTrainedModel):
|
|
| 806 |
def set_input_embeddings(self, value):
|
| 807 |
self.tok_embeddings = value
|
| 808 |
|
| 809 |
-
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
| 810 |
-
# create causal mask
|
| 811 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 812 |
-
combined_attention_mask = None
|
| 813 |
-
if input_shape[-1] > 1:
|
| 814 |
-
combined_attention_mask = _make_causal_mask(
|
| 815 |
-
input_shape,
|
| 816 |
-
inputs_embeds.dtype,
|
| 817 |
-
device=inputs_embeds.device,
|
| 818 |
-
past_key_values_length=past_key_values_length,
|
| 819 |
-
)
|
| 820 |
-
|
| 821 |
-
if attention_mask is not None:
|
| 822 |
-
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 823 |
-
expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
|
| 824 |
-
inputs_embeds.device
|
| 825 |
-
)
|
| 826 |
-
combined_attention_mask = (
|
| 827 |
-
expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
| 828 |
-
)
|
| 829 |
-
|
| 830 |
-
return combined_attention_mask
|
| 831 |
-
|
| 832 |
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
| 833 |
def forward(
|
| 834 |
self,
|
| 835 |
input_ids: torch.LongTensor = None,
|
| 836 |
attention_mask: Optional[torch.Tensor] = None,
|
| 837 |
position_ids: Optional[torch.LongTensor] = None,
|
| 838 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 839 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 840 |
use_cache: Optional[bool] = None,
|
| 841 |
output_attentions: Optional[bool] = None,
|
| 842 |
output_hidden_states: Optional[bool] = None,
|
| 843 |
return_dict: Optional[bool] = None,
|
|
|
|
| 844 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 845 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 846 |
output_hidden_states = (
|
| 847 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 848 |
)
|
| 849 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
| 850 |
-
|
| 851 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 852 |
|
| 853 |
-
if
|
| 854 |
-
|
| 855 |
-
|
| 856 |
-
|
| 857 |
-
if input_ids is not None and inputs_embeds is not None:
|
| 858 |
-
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 859 |
-
elif input_ids is not None:
|
| 860 |
-
batch_size, seq_length = input_ids.shape[:2]
|
| 861 |
-
elif inputs_embeds is not None:
|
| 862 |
-
batch_size, seq_length = inputs_embeds.shape[:2]
|
| 863 |
-
else:
|
| 864 |
-
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 865 |
-
|
| 866 |
-
seq_length_with_past = seq_length
|
| 867 |
-
past_key_values_length = 0
|
| 868 |
-
if past_key_values is not None:
|
| 869 |
-
past_key_values_length = past_key_values[0][0].shape[2]
|
| 870 |
-
seq_length_with_past = seq_length_with_past + past_key_values_length
|
| 871 |
|
| 872 |
-
if
|
| 873 |
-
|
| 874 |
-
|
| 875 |
-
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
| 876 |
)
|
| 877 |
-
|
| 878 |
|
| 879 |
if inputs_embeds is None:
|
| 880 |
inputs_embeds = self.tok_embeddings(input_ids)
|
| 881 |
|
| 882 |
-
|
| 883 |
-
|
| 884 |
-
|
| 885 |
-
|
| 886 |
-
|
| 887 |
-
|
| 888 |
-
|
| 889 |
-
|
| 890 |
-
|
| 891 |
-
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
| 892 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 893 |
|
| 894 |
# embed positions
|
| 895 |
hidden_states = inputs_embeds
|
| 896 |
|
| 897 |
-
if self.gradient_checkpointing and self.training:
|
| 898 |
-
if use_cache:
|
| 899 |
-
logger.warning_once(
|
| 900 |
-
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
| 901 |
-
)
|
| 902 |
-
use_cache = False
|
| 903 |
-
|
| 904 |
# decoder layers
|
| 905 |
all_hidden_states = () if output_hidden_states else None
|
| 906 |
all_self_attns = () if output_attentions else None
|
| 907 |
-
next_decoder_cache =
|
| 908 |
|
| 909 |
-
for
|
| 910 |
if output_hidden_states:
|
| 911 |
all_hidden_states += (hidden_states,)
|
| 912 |
|
| 913 |
-
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
| 914 |
-
|
| 915 |
if self.gradient_checkpointing and self.training:
|
| 916 |
-
|
| 917 |
-
|
| 918 |
-
def custom_forward(*inputs):
|
| 919 |
-
# None for past_key_value
|
| 920 |
-
return module(*inputs, output_attentions, None)
|
| 921 |
-
|
| 922 |
-
return custom_forward
|
| 923 |
-
|
| 924 |
-
layer_outputs = torch.utils.checkpoint.checkpoint(
|
| 925 |
-
create_custom_forward(decoder_layer),
|
| 926 |
hidden_states,
|
| 927 |
-
|
| 928 |
position_ids,
|
| 929 |
-
|
|
|
|
|
|
|
|
|
|
| 930 |
)
|
| 931 |
else:
|
| 932 |
layer_outputs = decoder_layer(
|
| 933 |
hidden_states,
|
| 934 |
-
attention_mask=
|
| 935 |
position_ids=position_ids,
|
| 936 |
-
past_key_value=
|
| 937 |
output_attentions=output_attentions,
|
| 938 |
use_cache=use_cache,
|
|
|
|
| 939 |
)
|
| 940 |
|
| 941 |
hidden_states = layer_outputs[0]
|
| 942 |
|
| 943 |
if use_cache:
|
| 944 |
-
next_decoder_cache
|
| 945 |
|
| 946 |
if output_attentions:
|
| 947 |
all_self_attns += (layer_outputs[1],)
|
|
@@ -953,6 +1024,9 @@ class InternLM2Model(InternLM2PreTrainedModel):
|
|
| 953 |
all_hidden_states += (hidden_states,)
|
| 954 |
|
| 955 |
next_cache = next_decoder_cache if use_cache else None
|
|
|
|
|
|
|
|
|
|
| 956 |
if not return_dict:
|
| 957 |
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 958 |
return BaseModelOutputWithPast(
|
|
@@ -962,11 +1036,91 @@ class InternLM2Model(InternLM2PreTrainedModel):
|
|
| 962 |
attentions=all_self_attns,
|
| 963 |
)
|
| 964 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 965 |
|
| 966 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 967 |
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
| 968 |
-
|
| 969 |
|
|
|
|
| 970 |
_tied_weights_keys = ["output.weight"]
|
| 971 |
|
| 972 |
def __init__(self, config):
|
|
@@ -1003,13 +1157,14 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
| 1003 |
input_ids: torch.LongTensor = None,
|
| 1004 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1005 |
position_ids: Optional[torch.LongTensor] = None,
|
| 1006 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1007 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1008 |
labels: Optional[torch.LongTensor] = None,
|
| 1009 |
use_cache: Optional[bool] = None,
|
| 1010 |
output_attentions: Optional[bool] = None,
|
| 1011 |
output_hidden_states: Optional[bool] = None,
|
| 1012 |
return_dict: Optional[bool] = None,
|
|
|
|
| 1013 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1014 |
r"""
|
| 1015 |
Args:
|
|
@@ -1025,8 +1180,8 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
| 1025 |
```python
|
| 1026 |
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM
|
| 1027 |
|
| 1028 |
-
>>> model = InternLM2ForCausalLM.from_pretrained(
|
| 1029 |
-
>>> tokenizer = AutoTokenizer.from_pretrained(
|
| 1030 |
|
| 1031 |
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1032 |
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
@@ -1054,10 +1209,19 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
| 1054 |
output_attentions=output_attentions,
|
| 1055 |
output_hidden_states=output_hidden_states,
|
| 1056 |
return_dict=return_dict,
|
|
|
|
| 1057 |
)
|
| 1058 |
|
| 1059 |
hidden_states = outputs[0]
|
| 1060 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1061 |
logits = logits.float()
|
| 1062 |
|
| 1063 |
loss = None
|
|
@@ -1086,19 +1250,48 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
| 1086 |
)
|
| 1087 |
|
| 1088 |
def prepare_inputs_for_generation(
|
| 1089 |
-
self,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1090 |
):
|
|
|
|
| 1091 |
if past_key_values is not None:
|
| 1092 |
-
|
| 1093 |
-
|
| 1094 |
-
|
| 1095 |
-
|
| 1096 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1097 |
else:
|
| 1098 |
-
|
| 1099 |
-
|
| 1100 |
-
|
| 1101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1102 |
|
| 1103 |
position_ids = kwargs.get("position_ids", None)
|
| 1104 |
if attention_mask is not None and position_ids is None:
|
|
@@ -1112,13 +1305,24 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
| 1112 |
if inputs_embeds is not None and past_key_values is None:
|
| 1113 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1114 |
else:
|
| 1115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1116 |
|
| 1117 |
model_inputs.update(
|
| 1118 |
{
|
| 1119 |
"position_ids": position_ids,
|
|
|
|
| 1120 |
"past_key_values": past_key_values,
|
| 1121 |
-
"use_cache":
|
| 1122 |
"attention_mask": attention_mask,
|
| 1123 |
}
|
| 1124 |
)
|
|
@@ -1133,7 +1337,9 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
| 1133 |
)
|
| 1134 |
return reordered_past
|
| 1135 |
|
| 1136 |
-
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] =
|
|
|
|
|
|
|
| 1137 |
if tokenizer.add_bos_token:
|
| 1138 |
prompt = ""
|
| 1139 |
else:
|
|
@@ -1150,17 +1356,21 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
| 1150 |
self,
|
| 1151 |
tokenizer,
|
| 1152 |
query: str,
|
| 1153 |
-
history: List[Tuple[str, str]] =
|
| 1154 |
streamer: Optional[BaseStreamer] = None,
|
| 1155 |
max_new_tokens: int = 1024,
|
| 1156 |
do_sample: bool = True,
|
| 1157 |
temperature: float = 0.8,
|
| 1158 |
top_p: float = 0.8,
|
| 1159 |
meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n"
|
| 1160 |
-
"- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory
|
| 1161 |
-
"
|
|
|
|
|
|
|
| 1162 |
**kwargs,
|
| 1163 |
):
|
|
|
|
|
|
|
| 1164 |
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
| 1165 |
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
| 1166 |
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
|
@@ -1186,13 +1396,15 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
| 1186 |
self,
|
| 1187 |
tokenizer,
|
| 1188 |
query: str,
|
| 1189 |
-
history: List[Tuple[str, str]] =
|
| 1190 |
max_new_tokens: int = 1024,
|
| 1191 |
do_sample: bool = True,
|
| 1192 |
temperature: float = 0.8,
|
| 1193 |
top_p: float = 0.8,
|
| 1194 |
**kwargs,
|
| 1195 |
):
|
|
|
|
|
|
|
| 1196 |
"""
|
| 1197 |
Return a generator in format: (response, history)
|
| 1198 |
Eg.
|
|
@@ -1208,6 +1420,10 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
| 1208 |
response_queue = queue.Queue(maxsize=20)
|
| 1209 |
|
| 1210 |
class ChatStreamer(BaseStreamer):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1211 |
def __init__(self, tokenizer) -> None:
|
| 1212 |
super().__init__()
|
| 1213 |
self.tokenizer = tokenizer
|
|
@@ -1268,13 +1484,13 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
| 1268 |
return consumer()
|
| 1269 |
|
| 1270 |
|
| 1271 |
-
# Copied from transformers.
|
| 1272 |
@add_start_docstrings(
|
| 1273 |
"""
|
| 1274 |
The InternLM2 Model transformer with a sequence classification head on top (linear layer).
|
| 1275 |
|
| 1276 |
-
[`InternLM2ForSequenceClassification`] uses the last token in order to do the classification,
|
| 1277 |
-
|
| 1278 |
|
| 1279 |
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1280 |
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
|
@@ -1285,6 +1501,8 @@ class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
|
| 1285 |
InternLM2_START_DOCSTRING,
|
| 1286 |
)
|
| 1287 |
class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
|
|
|
|
|
|
|
| 1288 |
def __init__(self, config):
|
| 1289 |
super().__init__(config)
|
| 1290 |
self.num_labels = config.num_labels
|
|
@@ -1306,7 +1524,7 @@ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
|
|
| 1306 |
input_ids: torch.LongTensor = None,
|
| 1307 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1308 |
position_ids: Optional[torch.LongTensor] = None,
|
| 1309 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1310 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1311 |
labels: Optional[torch.LongTensor] = None,
|
| 1312 |
use_cache: Optional[bool] = None,
|
|
@@ -1347,9 +1565,10 @@ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
|
|
| 1347 |
sequence_lengths = -1
|
| 1348 |
else:
|
| 1349 |
if input_ids is not None:
|
| 1350 |
-
|
| 1351 |
-
|
| 1352 |
-
|
|
|
|
| 1353 |
else:
|
| 1354 |
sequence_lengths = -1
|
| 1355 |
|
|
@@ -1361,7 +1580,7 @@ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
|
|
| 1361 |
if self.config.problem_type is None:
|
| 1362 |
if self.num_labels == 1:
|
| 1363 |
self.config.problem_type = "regression"
|
| 1364 |
-
elif self.num_labels > 1 and (labels.dtype
|
| 1365 |
self.config.problem_type = "single_label_classification"
|
| 1366 |
else:
|
| 1367 |
self.config.problem_type = "multi_label_classification"
|
|
@@ -1389,3 +1608,191 @@ class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
|
|
| 1389 |
hidden_states=transformer_outputs.hidden_states,
|
| 1390 |
attentions=transformer_outputs.attentions,
|
| 1391 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
# See the License for the specific language governing permissions and
|
| 15 |
# limitations under the License.
|
| 16 |
+
"""PyTorch InternLM2 model."""
|
| 17 |
import math
|
| 18 |
import queue
|
| 19 |
import threading
|
|
|
|
| 20 |
from typing import List, Optional, Tuple, Union
|
| 21 |
|
| 22 |
import torch
|
|
|
|
| 26 |
from torch import nn
|
| 27 |
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 28 |
from transformers.activations import ACT2FN
|
| 29 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
| 30 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
| 31 |
from transformers.modeling_outputs import (
|
| 32 |
BaseModelOutputWithPast,
|
| 33 |
CausalLMOutputWithPast,
|
| 34 |
+
QuestionAnsweringModelOutput,
|
| 35 |
SequenceClassifierOutputWithPast,
|
| 36 |
+
TokenClassifierOutput,
|
| 37 |
)
|
| 38 |
from transformers.modeling_utils import PreTrainedModel
|
| 39 |
+
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
| 40 |
from transformers.utils import (
|
| 41 |
add_start_docstrings,
|
| 42 |
add_start_docstrings_to_model_forward,
|
| 43 |
+
is_flash_attn_2_available,
|
| 44 |
+
is_flash_attn_greater_or_equal_2_10,
|
| 45 |
logging,
|
| 46 |
replace_return_docstrings,
|
| 47 |
)
|
| 48 |
|
| 49 |
try:
|
| 50 |
from transformers.generation.streamers import BaseStreamer
|
| 51 |
+
except Exception:
|
| 52 |
BaseStreamer = None
|
| 53 |
|
| 54 |
from .configuration_internlm2 import InternLM2Config
|
| 55 |
|
| 56 |
+
if is_flash_attn_2_available():
|
| 57 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
| 58 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input
|
| 59 |
+
|
| 60 |
+
|
| 61 |
logger = logging.get_logger(__name__)
|
| 62 |
|
| 63 |
_CONFIG_FOR_DOC = "InternLM2Config"
|
| 64 |
|
| 65 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
def _get_unpad_data(attention_mask):
|
| 67 |
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 68 |
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 69 |
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 70 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) # pylint: disable=E1102
|
| 71 |
return (
|
| 72 |
indices,
|
| 73 |
cu_seqlens,
|
|
|
|
| 75 |
)
|
| 76 |
|
| 77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
class InternLM2RMSNorm(nn.Module):
|
| 79 |
+
"""InternLM2RMSNorm is equivalent to T5LayerNorm."""
|
| 80 |
+
|
| 81 |
def __init__(self, hidden_size, eps=1e-6):
|
|
|
|
|
|
|
|
|
|
| 82 |
super().__init__()
|
| 83 |
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 84 |
self.variance_epsilon = eps
|
|
|
|
| 91 |
return self.weight * hidden_states.to(input_dtype)
|
| 92 |
|
| 93 |
|
| 94 |
+
ALL_LAYERNORM_LAYERS.append(InternLM2RMSNorm)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
class InternLM2RotaryEmbedding(nn.Module):
|
| 98 |
+
"""Rotary Position Embedding for the InternLM2 model. Credits to the Reddit user /u/lucidrains."""
|
|
|
|
| 99 |
|
| 100 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
|
| 101 |
+
super().__init__()
|
| 102 |
+
self.scaling_factor = scaling_factor
|
| 103 |
self.dim = dim
|
| 104 |
self.max_position_embeddings = max_position_embeddings
|
| 105 |
self.base = base
|
| 106 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
|
| 107 |
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 108 |
+
# For BC we register cos and sin cached
|
| 109 |
+
self.max_seq_len_cached = max_position_embeddings
|
| 110 |
|
| 111 |
+
@torch.no_grad()
|
| 112 |
+
def forward(self, x, position_ids):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 114 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
|
| 115 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 116 |
+
# Force float32 since bfloat16 loses precision on long contexts
|
| 117 |
+
# See https://github.com/huggingface/transformers/pull/29285
|
| 118 |
+
device_type = x.device.type
|
| 119 |
+
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
|
| 120 |
+
with torch.autocast(device_type=device_type, enabled=False):
|
| 121 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 122 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 123 |
+
cos = emb.cos()
|
| 124 |
+
sin = emb.sin()
|
| 125 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 126 |
|
| 127 |
|
|
|
|
| 128 |
class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
| 129 |
"""InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
|
| 130 |
|
| 131 |
+
def forward(self, x, position_ids):
|
| 132 |
+
# difference to the original RoPE: a scaling factor is aplied to the position ids
|
| 133 |
+
position_ids = position_ids.float() / self.scaling_factor
|
| 134 |
+
cos, sin = super().forward(x, position_ids)
|
| 135 |
+
return cos, sin
|
|
|
|
|
|
|
|
|
|
| 136 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
|
|
|
|
|
|
|
| 138 |
class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
|
| 139 |
"""InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
|
| 140 |
+
Credits to the Reddit users /u/bloc97 and /u/emozilla"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
+
def forward(self, x, position_ids):
|
| 143 |
+
# difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
|
| 144 |
+
seq_len = torch.max(position_ids) + 1
|
| 145 |
if seq_len > self.max_position_embeddings:
|
| 146 |
base = self.base * (
|
| 147 |
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
|
| 148 |
) ** (self.dim / (self.dim - 2))
|
| 149 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim))
|
| 150 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False) # TODO joao: this may break with compilation
|
|
|
|
|
|
|
| 151 |
|
| 152 |
+
cos, sin = super().forward(x, position_ids)
|
| 153 |
+
return cos, sin
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
|
|
|
|
| 156 |
def rotate_half(x):
|
| 157 |
"""Rotates half the hidden dims of the input."""
|
| 158 |
x1 = x[..., : x.shape[-1] // 2]
|
|
|
|
| 160 |
return torch.cat((-x2, x1), dim=-1)
|
| 161 |
|
| 162 |
|
| 163 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): # pylint: disable=unused-argument
|
| 164 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 165 |
+
|
| 166 |
+
Args:
|
| 167 |
+
q (`torch.Tensor`): The query tensor.
|
| 168 |
+
k (`torch.Tensor`): The key tensor.
|
| 169 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 170 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 171 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 172 |
+
Deprecated and unused.
|
| 173 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 174 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 175 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 176 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 177 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 178 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 179 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 180 |
+
Returns:
|
| 181 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 182 |
+
"""
|
| 183 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 184 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 185 |
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 186 |
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 187 |
return q_embed, k_embed
|
| 188 |
|
| 189 |
|
| 190 |
class InternLM2MLP(nn.Module):
|
| 191 |
+
"""MLP for InternLM2 model."""
|
| 192 |
+
|
| 193 |
def __init__(self, config):
|
| 194 |
super().__init__()
|
| 195 |
self.config = config
|
|
|
|
| 206 |
return down_proj
|
| 207 |
|
| 208 |
|
|
|
|
| 209 |
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 210 |
"""
|
| 211 |
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
|
|
| 218 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 219 |
|
| 220 |
|
|
|
|
| 221 |
class InternLM2Attention(nn.Module):
|
| 222 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 223 |
|
| 224 |
+
def __init__(self, config: InternLM2Config, layer_idx: Optional[int] = None):
|
| 225 |
super().__init__()
|
| 226 |
self.config = config
|
| 227 |
+
self.layer_idx = layer_idx
|
| 228 |
+
if layer_idx is None:
|
| 229 |
+
logger.warning_once(
|
| 230 |
+
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
| 231 |
+
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
| 232 |
+
"when creating this class."
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
self.hidden_size = config.hidden_size
|
| 236 |
self.num_heads = config.num_attention_heads
|
| 237 |
self.head_dim = self.hidden_size // self.num_heads
|
| 238 |
self.num_key_value_heads = config.num_key_value_heads
|
| 239 |
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 240 |
self.max_position_embeddings = config.max_position_embeddings
|
| 241 |
+
self.rope_theta = config.rope_theta
|
| 242 |
self.is_causal = True
|
| 243 |
|
| 244 |
if (self.head_dim * self.num_heads) != self.hidden_size:
|
|
|
|
| 252 |
(self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
|
| 253 |
bias=config.bias,
|
| 254 |
)
|
|
|
|
| 255 |
self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
|
| 256 |
+
|
| 257 |
self._init_rope()
|
| 258 |
|
| 259 |
def _init_rope(self):
|
|
|
|
| 261 |
self.rotary_emb = InternLM2RotaryEmbedding(
|
| 262 |
self.head_dim,
|
| 263 |
max_position_embeddings=self.max_position_embeddings,
|
| 264 |
+
base=self.rope_theta,
|
| 265 |
)
|
| 266 |
else:
|
| 267 |
scaling_type = self.config.rope_scaling["type"]
|
| 268 |
scaling_factor = self.config.rope_scaling["factor"]
|
| 269 |
+
if scaling_type == "linear":
|
| 270 |
+
self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
|
| 271 |
self.head_dim,
|
| 272 |
max_position_embeddings=self.max_position_embeddings,
|
|
|
|
| 273 |
scaling_factor=scaling_factor,
|
| 274 |
+
base=self.rope_theta,
|
| 275 |
)
|
| 276 |
+
elif scaling_type == "dynamic":
|
| 277 |
+
self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
|
| 278 |
self.head_dim,
|
| 279 |
max_position_embeddings=self.max_position_embeddings,
|
|
|
|
| 280 |
scaling_factor=scaling_factor,
|
| 281 |
+
base=self.rope_theta,
|
| 282 |
)
|
| 283 |
else:
|
| 284 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
| 286 |
def forward(
|
| 287 |
self,
|
| 288 |
hidden_states: torch.Tensor,
|
| 289 |
attention_mask: Optional[torch.Tensor] = None,
|
| 290 |
position_ids: Optional[torch.LongTensor] = None,
|
| 291 |
+
past_key_value: Optional[Cache] = None,
|
| 292 |
output_attentions: bool = False,
|
| 293 |
+
use_cache: bool = False, # pylint: disable=unused-argument
|
| 294 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 295 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 296 |
bsz, q_len, _ = hidden_states.size()
|
| 297 |
|
| 298 |
+
if self.config.pretraining_tp > 1:
|
| 299 |
+
# split qkv_states by tp size
|
| 300 |
+
key_value_slicing = (self.num_key_value_heads * self.head_dim) // self.config.pretraining_tp
|
| 301 |
+
qkv_slices = self.wqkv.weight.split(key_value_slicing, dim=0)
|
| 302 |
+
qkv_states = torch.cat(
|
| 303 |
+
[F.linear(hidden_states, qkv_slice) for qkv_slice in qkv_slices], dim=-1 # pylint: disable=E1102
|
| 304 |
+
)
|
| 305 |
+
else:
|
| 306 |
+
qkv_states = self.wqkv(hidden_states)
|
| 307 |
|
| 308 |
qkv_states = rearrange(
|
| 309 |
qkv_states,
|
|
|
|
| 313 |
)
|
| 314 |
|
| 315 |
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
| 316 |
+
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d").transpose(1, 2)
|
| 317 |
+
key_states = qkv_states[..., -2, :].transpose(1, 2)
|
| 318 |
+
value_states = qkv_states[..., -1, :].transpose(1, 2)
|
| 319 |
|
| 320 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 321 |
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
| 322 |
|
| 323 |
if past_key_value is not None:
|
| 324 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 325 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 326 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
|
|
|
| 327 |
|
| 328 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 329 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 330 |
|
| 331 |
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
| 332 |
|
| 333 |
+
if attention_mask is not None: # no matter the length, we just slice it
|
| 334 |
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
| 335 |
+
attn_weights = attn_weights + causal_mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 336 |
|
| 337 |
# upcast attention to fp32
|
| 338 |
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
|
|
|
|
| 345 |
)
|
| 346 |
|
| 347 |
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 348 |
+
|
| 349 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
| 350 |
|
| 351 |
+
if self.config.pretraining_tp > 1:
|
| 352 |
+
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
| 353 |
+
o_proj_slices = self.wo.weight.split(self.hidden_size // self.config.pretraining_tp, dim=1)
|
| 354 |
+
attn_output = sum(
|
| 355 |
+
[
|
| 356 |
+
F.linear(attn_output[i], o_proj_slices[i]) # pylint: disable=E1102
|
| 357 |
+
for i in range(self.config.pretraining_tp)
|
| 358 |
+
]
|
| 359 |
+
)
|
| 360 |
+
else:
|
| 361 |
+
attn_output = self.wo(attn_output)
|
| 362 |
|
| 363 |
if not output_attentions:
|
| 364 |
attn_weights = None
|
|
|
|
| 366 |
return attn_output, attn_weights, past_key_value
|
| 367 |
|
| 368 |
|
|
|
|
| 369 |
class InternLM2FlashAttention2(InternLM2Attention):
|
| 370 |
"""
|
| 371 |
InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
|
|
|
|
| 373 |
flash attention and deal with padding tokens in case the input contains any of them.
|
| 374 |
"""
|
| 375 |
|
| 376 |
+
def __init__(self, *args, **kwargs):
|
| 377 |
+
super().__init__(*args, **kwargs)
|
| 378 |
+
|
| 379 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
| 380 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement,
|
| 381 |
+
# that was made default for flash_attn>=2.1. This attribute is used to handle this difference.
|
| 382 |
+
# Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
| 383 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1)
|
| 384 |
+
# produces a wrong mask (top-left).
|
| 385 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
| 386 |
+
|
| 387 |
def forward(
|
| 388 |
self,
|
| 389 |
hidden_states: torch.Tensor,
|
| 390 |
attention_mask: Optional[torch.LongTensor] = None,
|
| 391 |
position_ids: Optional[torch.LongTensor] = None,
|
| 392 |
+
past_key_value: Optional[Cache] = None,
|
| 393 |
output_attentions: bool = False,
|
| 394 |
use_cache: bool = False,
|
| 395 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 396 |
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 397 |
+
if isinstance(past_key_value, StaticCache):
|
| 398 |
+
raise ValueError(
|
| 399 |
+
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
| 400 |
+
"make sure to use `sdpa` in the mean time, and open an issue at "
|
| 401 |
+
"https://github.com/huggingface/transformers"
|
| 402 |
)
|
| 403 |
|
|
|
|
|
|
|
|
|
|
| 404 |
output_attentions = False
|
| 405 |
|
| 406 |
bsz, q_len, _ = hidden_states.size()
|
|
|
|
| 423 |
key_states = key_states.transpose(1, 2)
|
| 424 |
value_states = value_states.transpose(1, 2)
|
| 425 |
|
| 426 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 427 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
|
| 429 |
if past_key_value is not None:
|
| 430 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 431 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 432 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
|
|
|
| 433 |
|
| 434 |
+
# TODO: These transpose are quite inefficient but Flash Attention requires the layout
|
| 435 |
+
# [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
| 436 |
+
# to be able to avoid many of these transpose/reshape/view.
|
| 437 |
query_states = query_states.transpose(1, 2)
|
| 438 |
key_states = key_states.transpose(1, 2)
|
| 439 |
value_states = value_states.transpose(1, 2)
|
| 440 |
|
| 441 |
+
# dropout_rate = self.attention_dropout if self.training else 0.0
|
| 442 |
+
dropout_rate = 0.0
|
| 443 |
+
|
| 444 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
| 445 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
| 446 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
| 447 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
| 448 |
+
# in fp32. (InternLM2RMSNorm handles it correctly)
|
| 449 |
+
|
| 450 |
+
input_dtype = query_states.dtype
|
| 451 |
+
if input_dtype == torch.float32:
|
| 452 |
+
if torch.is_autocast_enabled():
|
| 453 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
| 454 |
+
# Handle the case where the model is quantized
|
| 455 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
| 456 |
+
target_dtype = self.config._pre_quantization_dtype
|
| 457 |
+
else:
|
| 458 |
+
target_dtype = self.wqkv.weight.dtype
|
| 459 |
+
|
| 460 |
+
logger.warning_once(
|
| 461 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
| 462 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
| 463 |
+
f" {target_dtype}."
|
| 464 |
+
)
|
| 465 |
+
|
| 466 |
+
query_states = query_states.to(target_dtype)
|
| 467 |
+
key_states = key_states.to(target_dtype)
|
| 468 |
+
value_states = value_states.to(target_dtype)
|
| 469 |
+
|
| 470 |
attn_output = self._flash_attention_forward(
|
| 471 |
+
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
| 472 |
)
|
| 473 |
+
|
| 474 |
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
|
| 475 |
attn_output = self.wo(attn_output)
|
| 476 |
|
| 477 |
if not output_attentions:
|
| 478 |
attn_weights = None
|
| 479 |
|
| 480 |
+
return attn_output, attn_weights, past_key_value # pylint: disable=E0606
|
| 481 |
|
| 482 |
def _flash_attention_forward(
|
| 483 |
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
|
|
|
| 496 |
attention_mask (`torch.Tensor`):
|
| 497 |
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
| 498 |
position of padding tokens and 1 for the position of non-padding tokens.
|
| 499 |
+
dropout (`float`):
|
| 500 |
Attention dropout
|
| 501 |
softmax_scale (`float`, *optional*):
|
| 502 |
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
| 503 |
"""
|
| 504 |
+
if not self._flash_attn_uses_top_left_mask:
|
| 505 |
+
causal = self.is_causal
|
| 506 |
+
else:
|
| 507 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1.
|
| 508 |
+
# For details, please see the comment in InternLM2FlashAttention2 __init__.
|
| 509 |
+
causal = self.is_causal and query_length != 1
|
| 510 |
+
|
| 511 |
# Contains at least one padding token in the sequence
|
|
|
|
| 512 |
if attention_mask is not None:
|
| 513 |
batch_size = query_states.shape[0]
|
| 514 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
| 515 |
query_states, key_states, value_states, attention_mask, query_length
|
| 516 |
)
|
| 517 |
|
| 518 |
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
| 519 |
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
| 520 |
|
| 521 |
+
attn_output_unpad = flash_attn_varlen_func( # pylint: disable=E0606
|
| 522 |
query_states,
|
| 523 |
key_states,
|
| 524 |
value_states,
|
|
|
|
| 531 |
causal=causal,
|
| 532 |
)
|
| 533 |
|
| 534 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) # pylint: disable=E0606
|
| 535 |
else:
|
| 536 |
+
attn_output = flash_attn_func( # pylint: disable=E0606
|
| 537 |
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
| 538 |
)
|
| 539 |
|
| 540 |
return attn_output
|
| 541 |
|
| 542 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
| 543 |
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
| 544 |
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
| 545 |
|
| 546 |
+
key_layer = index_first_axis( # pylint: disable=E0606
|
| 547 |
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 548 |
)
|
| 549 |
+
value_layer = index_first_axis( # pylint: disable=E0606
|
| 550 |
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
| 551 |
)
|
|
|
|
| 552 |
if query_length == kv_seq_len:
|
| 553 |
+
query_layer = index_first_axis( # pylint: disable=E0606
|
| 554 |
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
| 555 |
)
|
| 556 |
cu_seqlens_q = cu_seqlens_k
|
|
|
|
| 566 |
else:
|
| 567 |
# The -q_len: slice assumes left padding.
|
| 568 |
attention_mask = attention_mask[:, -query_length:]
|
| 569 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( # pylint: disable=E0606
|
| 570 |
+
query_layer, attention_mask
|
| 571 |
+
)
|
| 572 |
|
| 573 |
return (
|
| 574 |
query_layer,
|
| 575 |
key_layer,
|
| 576 |
value_layer,
|
| 577 |
+
indices_q,
|
| 578 |
(cu_seqlens_q, cu_seqlens_k),
|
| 579 |
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
| 580 |
)
|
| 581 |
|
| 582 |
+
|
| 583 |
+
# Copied from transformers.models.llama.modeling_llama.LllamaSdpaAttention with Llama->InternLM2
|
| 584 |
+
class InternLM2SdpaAttention(InternLM2Attention):
|
| 585 |
+
"""
|
| 586 |
+
InternLM2 attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 587 |
+
`InternLM2Attention` as the weights of the module stays untouched. The only changes are on the forward pass
|
| 588 |
+
to adapt to SDPA API.
|
| 589 |
+
"""
|
| 590 |
+
|
| 591 |
+
# Adapted from InternLM2Attention.forward
|
| 592 |
+
def forward(
|
| 593 |
+
self,
|
| 594 |
+
hidden_states: torch.Tensor,
|
| 595 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 596 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 597 |
+
past_key_value: Optional[Cache] = None,
|
| 598 |
+
output_attentions: bool = False,
|
| 599 |
+
use_cache: bool = False,
|
| 600 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 601 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
| 602 |
+
if output_attentions:
|
| 603 |
+
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"`
|
| 604 |
+
# once this is implemented.
|
| 605 |
+
logger.warning_once(
|
| 606 |
+
"InternLM2Model uses InternLM2SdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` "
|
| 607 |
+
"does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
| 608 |
+
"but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. "
|
| 609 |
+
'This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
| 610 |
+
)
|
| 611 |
+
return super().forward(
|
| 612 |
+
hidden_states=hidden_states,
|
| 613 |
+
attention_mask=attention_mask,
|
| 614 |
+
position_ids=position_ids,
|
| 615 |
+
past_key_value=past_key_value,
|
| 616 |
+
output_attentions=output_attentions,
|
| 617 |
+
use_cache=use_cache,
|
| 618 |
+
cache_position=cache_position,
|
| 619 |
+
)
|
| 620 |
+
|
| 621 |
+
bsz, q_len, _ = hidden_states.size()
|
| 622 |
+
|
| 623 |
+
qkv_states = self.wqkv(hidden_states)
|
| 624 |
+
|
| 625 |
+
qkv_states = rearrange(
|
| 626 |
+
qkv_states,
|
| 627 |
+
"b q (h gs d) -> b q h gs d",
|
| 628 |
+
gs=2 + self.num_key_value_groups,
|
| 629 |
+
d=self.head_dim,
|
| 630 |
+
)
|
| 631 |
+
|
| 632 |
+
query_states = qkv_states[..., : self.num_key_value_groups, :]
|
| 633 |
+
query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
|
| 634 |
+
key_states = qkv_states[..., -2, :]
|
| 635 |
+
value_states = qkv_states[..., -1, :]
|
| 636 |
+
|
| 637 |
+
query_states = query_states.transpose(1, 2)
|
| 638 |
+
key_states = key_states.transpose(1, 2)
|
| 639 |
+
value_states = value_states.transpose(1, 2)
|
| 640 |
+
|
| 641 |
+
cos, sin = self.rotary_emb(value_states, position_ids)
|
| 642 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 643 |
+
|
| 644 |
+
if past_key_value is not None:
|
| 645 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 646 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 647 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 648 |
+
|
| 649 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
| 650 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
| 651 |
+
|
| 652 |
+
causal_mask = attention_mask
|
| 653 |
+
if attention_mask is not None:
|
| 654 |
+
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
| 655 |
+
|
| 656 |
+
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with
|
| 657 |
+
# custom attn_mask, Reference: https://github.com/pytorch/pytorch/issues/112577.
|
| 658 |
+
if query_states.device.type == "cuda" and causal_mask is not None:
|
| 659 |
+
query_states = query_states.contiguous()
|
| 660 |
+
key_states = key_states.contiguous()
|
| 661 |
+
value_states = value_states.contiguous()
|
| 662 |
+
|
| 663 |
+
# We dispatch to SDPA's Flash Attention or Efficient kernels via this `is_causal` if statement instead of
|
| 664 |
+
# an inline conditional assignment in SDPA to support both torch.compile's dynamic shapes and full graph
|
| 665 |
+
# options. An inline conditional prevents dynamic shapes from compiling.
|
| 666 |
+
is_causal = bool(causal_mask is None and q_len > 1)
|
| 667 |
+
|
| 668 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention( # pylint: disable=E1102
|
| 669 |
+
query_states,
|
| 670 |
+
key_states,
|
| 671 |
+
value_states,
|
| 672 |
+
attn_mask=causal_mask,
|
| 673 |
+
dropout_p=0.0,
|
| 674 |
+
is_causal=is_causal,
|
| 675 |
+
)
|
| 676 |
+
|
| 677 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
| 678 |
+
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
| 679 |
+
|
| 680 |
+
attn_output = self.wo(attn_output)
|
| 681 |
+
|
| 682 |
+
return attn_output, None, past_key_value
|
| 683 |
+
|
| 684 |
+
|
| 685 |
INTERNLM2_ATTENTION_CLASSES = {
|
| 686 |
"eager": InternLM2Attention,
|
| 687 |
"flash_attention_2": InternLM2FlashAttention2,
|
| 688 |
+
"sdpa": InternLM2SdpaAttention,
|
| 689 |
}
|
| 690 |
|
| 691 |
+
|
| 692 |
+
# Modified from transformers.models.llama.modeling_llama.LlamaDecoderLayer with Llama->InternLM2
|
| 693 |
class InternLM2DecoderLayer(nn.Module):
|
| 694 |
+
"""InternLM2 Decoder Layer. This module is a single layer of the InternLM2 model."""
|
| 695 |
+
|
| 696 |
+
def __init__(self, config: InternLM2Config, layer_idx: int):
|
| 697 |
super().__init__()
|
| 698 |
self.hidden_size = config.hidden_size
|
| 699 |
+
self.layer_idx = layer_idx
|
| 700 |
|
| 701 |
+
self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config, layer_idx=layer_idx)
|
| 702 |
|
| 703 |
self.feed_forward = InternLM2MLP(config)
|
| 704 |
self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
|
|
| 709 |
hidden_states: torch.Tensor,
|
| 710 |
attention_mask: Optional[torch.Tensor] = None,
|
| 711 |
position_ids: Optional[torch.LongTensor] = None,
|
| 712 |
+
past_key_value: Optional[Cache] = None,
|
| 713 |
output_attentions: Optional[bool] = False,
|
| 714 |
use_cache: Optional[bool] = False,
|
| 715 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 716 |
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
| 717 |
"""
|
| 718 |
Args:
|
|
|
|
| 728 |
(see `past_key_values`).
|
| 729 |
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
| 730 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 731 |
residual = hidden_states
|
| 732 |
|
| 733 |
hidden_states = self.attention_norm(hidden_states)
|
|
|
|
| 740 |
past_key_value=past_key_value,
|
| 741 |
output_attentions=output_attentions,
|
| 742 |
use_cache=use_cache,
|
| 743 |
+
cache_position=cache_position,
|
| 744 |
)
|
| 745 |
hidden_states = residual + hidden_states
|
| 746 |
|
|
|
|
| 784 |
InternLM2_START_DOCSTRING,
|
| 785 |
)
|
| 786 |
class InternLM2PreTrainedModel(PreTrainedModel):
|
| 787 |
+
"""
|
| 788 |
+
InternLM2 pretraiend model's base class.
|
| 789 |
+
"""
|
| 790 |
+
|
| 791 |
config_class = InternLM2Config
|
| 792 |
base_model_prefix = "model"
|
| 793 |
supports_gradient_checkpointing = True
|
| 794 |
_no_split_modules = ["InternLM2DecoderLayer"]
|
| 795 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 796 |
+
_supports_flash_attn_2 = True
|
| 797 |
+
_supports_sdpa = True
|
| 798 |
+
_supports_cache_class = True
|
| 799 |
+
_supports_quantized_cache = True
|
| 800 |
+
_supports_static_cache = True
|
| 801 |
|
| 802 |
def _init_weights(self, module):
|
| 803 |
std = self.config.initializer_range
|
|
|
|
| 846 |
config.n_positions - 1]`.
|
| 847 |
|
| 848 |
[What are position IDs?](../glossary#position-ids)
|
| 849 |
+
past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
|
| 850 |
+
Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
| 851 |
+
blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
|
| 852 |
+
returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
|
| 853 |
+
|
| 854 |
+
Two formats are allowed:
|
| 855 |
+
- a [`~cache_utils.Cache`] instance;
|
| 856 |
+
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
| 857 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
|
| 858 |
+
cache format.
|
| 859 |
|
| 860 |
+
The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
|
| 861 |
+
legacy cache format will be returned.
|
| 862 |
|
| 863 |
If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
|
| 864 |
have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
|
|
|
|
| 878 |
more detail.
|
| 879 |
return_dict (`bool`, *optional*):
|
| 880 |
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
| 881 |
+
cache_position (`torch.LongTensor` of shape `(sequence_length)`, *optional*):
|
| 882 |
+
Indices depicting the position of the input sequence tokens in the sequence. Contrarily to `position_ids`,
|
| 883 |
+
this tensor is not affected by padding. It is used to update the cache in the correct position and to infer
|
| 884 |
+
the complete sequence length.
|
| 885 |
"""
|
| 886 |
|
| 887 |
|
| 888 |
+
# Modified from transformers.models.llama.modeling_llama.LlamaModel with Llama->InternLM2
|
| 889 |
@add_start_docstrings(
|
| 890 |
"The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
|
| 891 |
InternLM2_START_DOCSTRING,
|
|
|
|
| 908 |
|
| 909 |
self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 910 |
|
| 911 |
+
self.layers = nn.ModuleList(
|
| 912 |
+
[InternLM2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 913 |
+
)
|
| 914 |
self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 915 |
|
| 916 |
self.gradient_checkpointing = False
|
|
|
|
| 923 |
def set_input_embeddings(self, value):
|
| 924 |
self.tok_embeddings = value
|
| 925 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 926 |
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
| 927 |
def forward(
|
| 928 |
self,
|
| 929 |
input_ids: torch.LongTensor = None,
|
| 930 |
attention_mask: Optional[torch.Tensor] = None,
|
| 931 |
position_ids: Optional[torch.LongTensor] = None,
|
| 932 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 933 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 934 |
use_cache: Optional[bool] = None,
|
| 935 |
output_attentions: Optional[bool] = None,
|
| 936 |
output_hidden_states: Optional[bool] = None,
|
| 937 |
return_dict: Optional[bool] = None,
|
| 938 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 939 |
) -> Union[Tuple, BaseModelOutputWithPast]:
|
| 940 |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 941 |
output_hidden_states = (
|
| 942 |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 943 |
)
|
| 944 |
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
| 945 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 946 |
|
| 947 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 948 |
+
raise ValueError(
|
| 949 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
| 950 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 951 |
|
| 952 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
| 953 |
+
logger.warning_once(
|
| 954 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
|
|
|
| 955 |
)
|
| 956 |
+
use_cache = False
|
| 957 |
|
| 958 |
if inputs_embeds is None:
|
| 959 |
inputs_embeds = self.tok_embeddings(input_ids)
|
| 960 |
|
| 961 |
+
return_legacy_cache = False
|
| 962 |
+
if use_cache and not isinstance(past_key_values, Cache): # kept for BC (non `Cache` `past_key_values` inputs)
|
| 963 |
+
return_legacy_cache = True
|
| 964 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
| 965 |
+
|
| 966 |
+
if cache_position is None:
|
| 967 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 968 |
+
cache_position = torch.arange(
|
| 969 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
|
|
|
| 970 |
)
|
| 971 |
+
if position_ids is None:
|
| 972 |
+
position_ids = cache_position.unsqueeze(0)
|
| 973 |
+
|
| 974 |
+
causal_mask = self._update_causal_mask(
|
| 975 |
+
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
| 976 |
+
)
|
| 977 |
|
| 978 |
# embed positions
|
| 979 |
hidden_states = inputs_embeds
|
| 980 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 981 |
# decoder layers
|
| 982 |
all_hidden_states = () if output_hidden_states else None
|
| 983 |
all_self_attns = () if output_attentions else None
|
| 984 |
+
next_decoder_cache = None
|
| 985 |
|
| 986 |
+
for decoder_layer in self.layers:
|
| 987 |
if output_hidden_states:
|
| 988 |
all_hidden_states += (hidden_states,)
|
| 989 |
|
|
|
|
|
|
|
| 990 |
if self.gradient_checkpointing and self.training:
|
| 991 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 992 |
+
decoder_layer.__call__,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 993 |
hidden_states,
|
| 994 |
+
causal_mask,
|
| 995 |
position_ids,
|
| 996 |
+
past_key_values,
|
| 997 |
+
output_attentions,
|
| 998 |
+
use_cache,
|
| 999 |
+
cache_position,
|
| 1000 |
)
|
| 1001 |
else:
|
| 1002 |
layer_outputs = decoder_layer(
|
| 1003 |
hidden_states,
|
| 1004 |
+
attention_mask=causal_mask,
|
| 1005 |
position_ids=position_ids,
|
| 1006 |
+
past_key_value=past_key_values,
|
| 1007 |
output_attentions=output_attentions,
|
| 1008 |
use_cache=use_cache,
|
| 1009 |
+
cache_position=cache_position,
|
| 1010 |
)
|
| 1011 |
|
| 1012 |
hidden_states = layer_outputs[0]
|
| 1013 |
|
| 1014 |
if use_cache:
|
| 1015 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
| 1016 |
|
| 1017 |
if output_attentions:
|
| 1018 |
all_self_attns += (layer_outputs[1],)
|
|
|
|
| 1024 |
all_hidden_states += (hidden_states,)
|
| 1025 |
|
| 1026 |
next_cache = next_decoder_cache if use_cache else None
|
| 1027 |
+
if return_legacy_cache:
|
| 1028 |
+
next_cache = next_cache.to_legacy_cache()
|
| 1029 |
+
|
| 1030 |
if not return_dict:
|
| 1031 |
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
| 1032 |
return BaseModelOutputWithPast(
|
|
|
|
| 1036 |
attentions=all_self_attns,
|
| 1037 |
)
|
| 1038 |
|
| 1039 |
+
def _update_causal_mask(
|
| 1040 |
+
self,
|
| 1041 |
+
attention_mask: torch.Tensor,
|
| 1042 |
+
input_tensor: torch.Tensor,
|
| 1043 |
+
cache_position: torch.Tensor,
|
| 1044 |
+
past_key_values: Cache,
|
| 1045 |
+
output_attentions: bool,
|
| 1046 |
+
):
|
| 1047 |
+
# TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length
|
| 1048 |
+
# even when the static KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at
|
| 1049 |
+
# each decode steps due to the dynamic shapes. (`recording cudagraph tree for symint key 13`, etc.), which is
|
| 1050 |
+
# VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using `fullgraph=True`.
|
| 1051 |
+
# See more context in https://github.com/huggingface/transformers/pull/29114
|
| 1052 |
|
| 1053 |
+
if self.config.attn_implementation == "flash_attention_2":
|
| 1054 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
| 1055 |
+
return attention_mask
|
| 1056 |
+
return None
|
| 1057 |
+
|
| 1058 |
+
# For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
|
| 1059 |
+
# order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
|
| 1060 |
+
# to infer the attention mask.
|
| 1061 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 1062 |
+
using_static_cache = isinstance(past_key_values, StaticCache)
|
| 1063 |
+
|
| 1064 |
+
# When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
|
| 1065 |
+
if self.config.attn_implementation == "sdpa" and not using_static_cache and not output_attentions:
|
| 1066 |
+
if AttentionMaskConverter._ignore_causal_mask_sdpa(
|
| 1067 |
+
attention_mask,
|
| 1068 |
+
inputs_embeds=input_tensor,
|
| 1069 |
+
past_key_values_length=past_seen_tokens,
|
| 1070 |
+
is_training=self.training,
|
| 1071 |
+
):
|
| 1072 |
+
return None
|
| 1073 |
+
|
| 1074 |
+
dtype, device = input_tensor.dtype, input_tensor.device
|
| 1075 |
+
min_dtype = torch.finfo(dtype).min
|
| 1076 |
+
sequence_length = input_tensor.shape[1]
|
| 1077 |
+
if using_static_cache:
|
| 1078 |
+
target_length = past_key_values.get_max_length()
|
| 1079 |
+
else:
|
| 1080 |
+
target_length = (
|
| 1081 |
+
attention_mask.shape[-1]
|
| 1082 |
+
if isinstance(attention_mask, torch.Tensor)
|
| 1083 |
+
else past_seen_tokens + sequence_length + 1
|
| 1084 |
+
)
|
| 1085 |
+
|
| 1086 |
+
if attention_mask is not None and attention_mask.dim() == 4:
|
| 1087 |
+
# in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
|
| 1088 |
+
if attention_mask.max() != 0:
|
| 1089 |
+
raise ValueError("Custom 4D attention mask should be passed in inverted form with max==0`")
|
| 1090 |
+
causal_mask = attention_mask
|
| 1091 |
+
else:
|
| 1092 |
+
causal_mask = torch.full((sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=device)
|
| 1093 |
+
if sequence_length != 1:
|
| 1094 |
+
causal_mask = torch.triu(causal_mask, diagonal=1)
|
| 1095 |
+
causal_mask *= torch.arange(target_length, device=device) > cache_position.reshape(-1, 1)
|
| 1096 |
+
causal_mask = causal_mask[None, None, :, :].expand(input_tensor.shape[0], 1, -1, -1)
|
| 1097 |
+
if attention_mask is not None:
|
| 1098 |
+
causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit
|
| 1099 |
+
mask_length = attention_mask.shape[-1]
|
| 1100 |
+
padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :]
|
| 1101 |
+
padding_mask = padding_mask == 0
|
| 1102 |
+
causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill(
|
| 1103 |
+
padding_mask, min_dtype
|
| 1104 |
+
)
|
| 1105 |
+
if (
|
| 1106 |
+
self.config.attn_implementation == "sdpa"
|
| 1107 |
+
and attention_mask is not None
|
| 1108 |
+
and attention_mask.device.type == "cuda"
|
| 1109 |
+
and not output_attentions
|
| 1110 |
+
):
|
| 1111 |
+
# Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
|
| 1112 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
| 1113 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
| 1114 |
+
causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) # pylint: disable=E1120
|
| 1115 |
+
|
| 1116 |
+
return causal_mask
|
| 1117 |
+
|
| 1118 |
+
|
| 1119 |
+
# Modified from transformers.models.llama.modeling_llama.LlamaForCausalLM
|
| 1120 |
class InternLM2ForCausalLM(InternLM2PreTrainedModel):
|
| 1121 |
+
"""Causal language model (CLM) for InternLM2."""
|
| 1122 |
|
| 1123 |
+
_auto_class = "AutoModelForCausalLM"
|
| 1124 |
_tied_weights_keys = ["output.weight"]
|
| 1125 |
|
| 1126 |
def __init__(self, config):
|
|
|
|
| 1157 |
input_ids: torch.LongTensor = None,
|
| 1158 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1159 |
position_ids: Optional[torch.LongTensor] = None,
|
| 1160 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 1161 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1162 |
labels: Optional[torch.LongTensor] = None,
|
| 1163 |
use_cache: Optional[bool] = None,
|
| 1164 |
output_attentions: Optional[bool] = None,
|
| 1165 |
output_hidden_states: Optional[bool] = None,
|
| 1166 |
return_dict: Optional[bool] = None,
|
| 1167 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 1168 |
) -> Union[Tuple, CausalLMOutputWithPast]:
|
| 1169 |
r"""
|
| 1170 |
Args:
|
|
|
|
| 1180 |
```python
|
| 1181 |
>>> from transformers import AutoTokenizer, InternLM2ForCausalLM
|
| 1182 |
|
| 1183 |
+
>>> model = InternLM2ForCausalLM.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
|
| 1184 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("meta-InternLM2/InternLM2-2-7b-hf")
|
| 1185 |
|
| 1186 |
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
| 1187 |
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
| 1209 |
output_attentions=output_attentions,
|
| 1210 |
output_hidden_states=output_hidden_states,
|
| 1211 |
return_dict=return_dict,
|
| 1212 |
+
cache_position=cache_position,
|
| 1213 |
)
|
| 1214 |
|
| 1215 |
hidden_states = outputs[0]
|
| 1216 |
+
if self.config.pretraining_tp > 1:
|
| 1217 |
+
output_slices = self.output.weight.split(self.vocab_size // self.config.pretraining_tp, dim=0)
|
| 1218 |
+
logits = [
|
| 1219 |
+
F.linear(hidden_states, output_slices[i]) # pylint: disable=not-callable
|
| 1220 |
+
for i in range(self.config.pretraining_tp)
|
| 1221 |
+
]
|
| 1222 |
+
logits = torch.cat(logits, dim=-1)
|
| 1223 |
+
else:
|
| 1224 |
+
logits = self.output(hidden_states)
|
| 1225 |
logits = logits.float()
|
| 1226 |
|
| 1227 |
loss = None
|
|
|
|
| 1250 |
)
|
| 1251 |
|
| 1252 |
def prepare_inputs_for_generation(
|
| 1253 |
+
self,
|
| 1254 |
+
input_ids,
|
| 1255 |
+
past_key_values=None,
|
| 1256 |
+
attention_mask=None,
|
| 1257 |
+
inputs_embeds=None,
|
| 1258 |
+
cache_position=None,
|
| 1259 |
+
use_cache=True,
|
| 1260 |
+
**kwargs,
|
| 1261 |
):
|
| 1262 |
+
past_length = 0
|
| 1263 |
if past_key_values is not None:
|
| 1264 |
+
if isinstance(past_key_values, Cache):
|
| 1265 |
+
past_length = cache_position[0] if cache_position is not None else past_key_values.get_seq_length()
|
| 1266 |
+
max_cache_length = (
|
| 1267 |
+
torch.tensor(past_key_values.get_max_length(), device=input_ids.device)
|
| 1268 |
+
if past_key_values.get_max_length() is not None
|
| 1269 |
+
else None
|
| 1270 |
+
)
|
| 1271 |
+
cache_length = past_length if max_cache_length is None else torch.min(max_cache_length, past_length)
|
| 1272 |
+
# TODO joao: remove this `else` after `generate` prioritizes `Cache` objects
|
| 1273 |
else:
|
| 1274 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
| 1275 |
+
max_cache_length = None
|
| 1276 |
+
|
| 1277 |
+
# Keep only the unprocessed tokens:
|
| 1278 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
| 1279 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as input)
|
| 1280 |
+
if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
|
| 1281 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
| 1282 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
| 1283 |
+
# input_ids based on the past_length.
|
| 1284 |
+
elif past_length < input_ids.shape[1]:
|
| 1285 |
+
input_ids = input_ids[:, past_length:]
|
| 1286 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
| 1287 |
+
|
| 1288 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
| 1289 |
+
if (
|
| 1290 |
+
max_cache_length is not None
|
| 1291 |
+
and attention_mask is not None
|
| 1292 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
| 1293 |
+
):
|
| 1294 |
+
attention_mask = attention_mask[:, -max_cache_length:] # pylint: disable=E1130
|
| 1295 |
|
| 1296 |
position_ids = kwargs.get("position_ids", None)
|
| 1297 |
if attention_mask is not None and position_ids is None:
|
|
|
|
| 1305 |
if inputs_embeds is not None and past_key_values is None:
|
| 1306 |
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1307 |
else:
|
| 1308 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
| 1309 |
+
# recompiles graphs as the stride of the inputs is a guard.
|
| 1310 |
+
# Ref: https://github.com/huggingface/transformers/pull/29114
|
| 1311 |
+
# TODO: use `next_tokens` directly instead.
|
| 1312 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
| 1313 |
+
|
| 1314 |
+
input_length = position_ids.shape[-1] if position_ids is not None else input_ids.shape[-1]
|
| 1315 |
+
if cache_position is None:
|
| 1316 |
+
cache_position = torch.arange(past_length, past_length + input_length, device=input_ids.device)
|
| 1317 |
+
elif use_cache:
|
| 1318 |
+
cache_position = cache_position[-input_length:]
|
| 1319 |
|
| 1320 |
model_inputs.update(
|
| 1321 |
{
|
| 1322 |
"position_ids": position_ids,
|
| 1323 |
+
"cache_position": cache_position,
|
| 1324 |
"past_key_values": past_key_values,
|
| 1325 |
+
"use_cache": use_cache,
|
| 1326 |
"attention_mask": attention_mask,
|
| 1327 |
}
|
| 1328 |
)
|
|
|
|
| 1337 |
)
|
| 1338 |
return reordered_past
|
| 1339 |
|
| 1340 |
+
def build_inputs(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, meta_instruction=""):
|
| 1341 |
+
if history is None:
|
| 1342 |
+
history = []
|
| 1343 |
if tokenizer.add_bos_token:
|
| 1344 |
prompt = ""
|
| 1345 |
else:
|
|
|
|
| 1356 |
self,
|
| 1357 |
tokenizer,
|
| 1358 |
query: str,
|
| 1359 |
+
history: Optional[List[Tuple[str, str]]] = None,
|
| 1360 |
streamer: Optional[BaseStreamer] = None,
|
| 1361 |
max_new_tokens: int = 1024,
|
| 1362 |
do_sample: bool = True,
|
| 1363 |
temperature: float = 0.8,
|
| 1364 |
top_p: float = 0.8,
|
| 1365 |
meta_instruction: str = "You are an AI assistant whose name is InternLM (书生·浦语).\n"
|
| 1366 |
+
"- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory "
|
| 1367 |
+
"(上海人工智能实验室). It is designed to be helpful, honest, and harmless.\n"
|
| 1368 |
+
"- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such "
|
| 1369 |
+
"as English and 中文.",
|
| 1370 |
**kwargs,
|
| 1371 |
):
|
| 1372 |
+
if history is None:
|
| 1373 |
+
history = []
|
| 1374 |
inputs = self.build_inputs(tokenizer, query, history, meta_instruction)
|
| 1375 |
inputs = {k: v.to(self.device) for k, v in inputs.items() if torch.is_tensor(v)}
|
| 1376 |
# also add end-of-assistant token in eos token id to avoid unnecessary generation
|
|
|
|
| 1396 |
self,
|
| 1397 |
tokenizer,
|
| 1398 |
query: str,
|
| 1399 |
+
history: List[Tuple[str, str]] = None,
|
| 1400 |
max_new_tokens: int = 1024,
|
| 1401 |
do_sample: bool = True,
|
| 1402 |
temperature: float = 0.8,
|
| 1403 |
top_p: float = 0.8,
|
| 1404 |
**kwargs,
|
| 1405 |
):
|
| 1406 |
+
if history is None:
|
| 1407 |
+
history = []
|
| 1408 |
"""
|
| 1409 |
Return a generator in format: (response, history)
|
| 1410 |
Eg.
|
|
|
|
| 1420 |
response_queue = queue.Queue(maxsize=20)
|
| 1421 |
|
| 1422 |
class ChatStreamer(BaseStreamer):
|
| 1423 |
+
"""
|
| 1424 |
+
Streamer used in generate to print words one by one.
|
| 1425 |
+
"""
|
| 1426 |
+
|
| 1427 |
def __init__(self, tokenizer) -> None:
|
| 1428 |
super().__init__()
|
| 1429 |
self.tokenizer = tokenizer
|
|
|
|
| 1484 |
return consumer()
|
| 1485 |
|
| 1486 |
|
| 1487 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->InternLM2
|
| 1488 |
@add_start_docstrings(
|
| 1489 |
"""
|
| 1490 |
The InternLM2 Model transformer with a sequence classification head on top (linear layer).
|
| 1491 |
|
| 1492 |
+
[`InternLM2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
| 1493 |
+
(e.g. GPT-2) do.
|
| 1494 |
|
| 1495 |
Since it does classification on the last token, it requires to know the position of the last token. If a
|
| 1496 |
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
|
|
|
| 1501 |
InternLM2_START_DOCSTRING,
|
| 1502 |
)
|
| 1503 |
class InternLM2ForSequenceClassification(InternLM2PreTrainedModel):
|
| 1504 |
+
"""Sequence Classification Head for InternLM2 Model."""
|
| 1505 |
+
|
| 1506 |
def __init__(self, config):
|
| 1507 |
super().__init__(config)
|
| 1508 |
self.num_labels = config.num_labels
|
|
|
|
| 1524 |
input_ids: torch.LongTensor = None,
|
| 1525 |
attention_mask: Optional[torch.Tensor] = None,
|
| 1526 |
position_ids: Optional[torch.LongTensor] = None,
|
| 1527 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 1528 |
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1529 |
labels: Optional[torch.LongTensor] = None,
|
| 1530 |
use_cache: Optional[bool] = None,
|
|
|
|
| 1565 |
sequence_lengths = -1
|
| 1566 |
else:
|
| 1567 |
if input_ids is not None:
|
| 1568 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
| 1569 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
| 1570 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
| 1571 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
| 1572 |
else:
|
| 1573 |
sequence_lengths = -1
|
| 1574 |
|
|
|
|
| 1580 |
if self.config.problem_type is None:
|
| 1581 |
if self.num_labels == 1:
|
| 1582 |
self.config.problem_type = "regression"
|
| 1583 |
+
elif self.num_labels > 1 and (labels.dtype in (torch.long, torch.int)):
|
| 1584 |
self.config.problem_type = "single_label_classification"
|
| 1585 |
else:
|
| 1586 |
self.config.problem_type = "multi_label_classification"
|
|
|
|
| 1608 |
hidden_states=transformer_outputs.hidden_states,
|
| 1609 |
attentions=transformer_outputs.attentions,
|
| 1610 |
)
|
| 1611 |
+
|
| 1612 |
+
|
| 1613 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForQuestionAnswering with Llama->InternLM2
|
| 1614 |
+
@add_start_docstrings(
|
| 1615 |
+
"""
|
| 1616 |
+
The InternLM2 Model transformer with a span classification head on top for extractive question-answering tasks like
|
| 1617 |
+
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
| 1618 |
+
""",
|
| 1619 |
+
InternLM2_START_DOCSTRING,
|
| 1620 |
+
)
|
| 1621 |
+
class InternLM2ForQuestionAnswering(InternLM2PreTrainedModel):
|
| 1622 |
+
"""Question Answering model for InternLM2."""
|
| 1623 |
+
|
| 1624 |
+
base_model_prefix = "transformer"
|
| 1625 |
+
|
| 1626 |
+
def __init__(self, config):
|
| 1627 |
+
super().__init__(config)
|
| 1628 |
+
self.transformer = InternLM2Model(config)
|
| 1629 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
| 1630 |
+
|
| 1631 |
+
# Initialize weights and apply final processing
|
| 1632 |
+
self.post_init()
|
| 1633 |
+
|
| 1634 |
+
def get_input_embeddings(self):
|
| 1635 |
+
return self.transformer.embed_tokens
|
| 1636 |
+
|
| 1637 |
+
def set_input_embeddings(self, value):
|
| 1638 |
+
self.transformer.embed_tokens = value
|
| 1639 |
+
|
| 1640 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
| 1641 |
+
def forward(
|
| 1642 |
+
self,
|
| 1643 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 1644 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 1645 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1646 |
+
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
|
| 1647 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1648 |
+
start_positions: Optional[torch.LongTensor] = None,
|
| 1649 |
+
end_positions: Optional[torch.LongTensor] = None,
|
| 1650 |
+
output_attentions: Optional[bool] = None,
|
| 1651 |
+
output_hidden_states: Optional[bool] = None,
|
| 1652 |
+
return_dict: Optional[bool] = None,
|
| 1653 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
| 1654 |
+
r"""
|
| 1655 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1656 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
| 1657 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1658 |
+
are not taken into account for computing the loss.
|
| 1659 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1660 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
| 1661 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1662 |
+
are not taken into account for computing the loss.
|
| 1663 |
+
"""
|
| 1664 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1665 |
+
|
| 1666 |
+
outputs = self.transformer(
|
| 1667 |
+
input_ids,
|
| 1668 |
+
attention_mask=attention_mask,
|
| 1669 |
+
position_ids=position_ids,
|
| 1670 |
+
past_key_values=past_key_values,
|
| 1671 |
+
inputs_embeds=inputs_embeds,
|
| 1672 |
+
output_attentions=output_attentions,
|
| 1673 |
+
output_hidden_states=output_hidden_states,
|
| 1674 |
+
return_dict=return_dict,
|
| 1675 |
+
)
|
| 1676 |
+
|
| 1677 |
+
sequence_output = outputs[0]
|
| 1678 |
+
|
| 1679 |
+
logits = self.qa_outputs(sequence_output)
|
| 1680 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
| 1681 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
| 1682 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
| 1683 |
+
|
| 1684 |
+
total_loss = None
|
| 1685 |
+
if start_positions is not None and end_positions is not None:
|
| 1686 |
+
# If we are on multi-GPU, split add a dimension
|
| 1687 |
+
if len(start_positions.size()) > 1:
|
| 1688 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
| 1689 |
+
if len(end_positions.size()) > 1:
|
| 1690 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
| 1691 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
| 1692 |
+
ignored_index = start_logits.size(1)
|
| 1693 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
| 1694 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
| 1695 |
+
|
| 1696 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
| 1697 |
+
start_loss = loss_fct(start_logits, start_positions)
|
| 1698 |
+
end_loss = loss_fct(end_logits, end_positions)
|
| 1699 |
+
total_loss = (start_loss + end_loss) / 2
|
| 1700 |
+
|
| 1701 |
+
if not return_dict:
|
| 1702 |
+
output = (start_logits, end_logits) + outputs[2:]
|
| 1703 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
| 1704 |
+
|
| 1705 |
+
return QuestionAnsweringModelOutput(
|
| 1706 |
+
loss=total_loss,
|
| 1707 |
+
start_logits=start_logits,
|
| 1708 |
+
end_logits=end_logits,
|
| 1709 |
+
hidden_states=outputs.hidden_states,
|
| 1710 |
+
attentions=outputs.attentions,
|
| 1711 |
+
)
|
| 1712 |
+
|
| 1713 |
+
|
| 1714 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaForTokenClassification with Llama->InternLM2
|
| 1715 |
+
@add_start_docstrings(
|
| 1716 |
+
"""
|
| 1717 |
+
The InternLM2 Model transformer with a token classification head on top (a linear layer on top of the hidden-states
|
| 1718 |
+
output) e.g. for Named-Entity-Recognition (NER) tasks.
|
| 1719 |
+
""",
|
| 1720 |
+
InternLM2_START_DOCSTRING,
|
| 1721 |
+
)
|
| 1722 |
+
class InternLM2ForTokenClassification(InternLM2PreTrainedModel):
|
| 1723 |
+
"""Token classification model for InternLM2."""
|
| 1724 |
+
|
| 1725 |
+
def __init__(self, config):
|
| 1726 |
+
super().__init__(config)
|
| 1727 |
+
self.num_labels = config.num_labels
|
| 1728 |
+
self.model = InternLM2Model(config)
|
| 1729 |
+
if getattr(config, "classifier_dropout", None) is not None:
|
| 1730 |
+
classifier_dropout = config.classifier_dropout
|
| 1731 |
+
elif getattr(config, "hidden_dropout", None) is not None:
|
| 1732 |
+
classifier_dropout = config.hidden_dropout
|
| 1733 |
+
else:
|
| 1734 |
+
classifier_dropout = 0.1
|
| 1735 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1736 |
+
self.score = nn.Linear(config.hidden_size, config.num_labels)
|
| 1737 |
+
|
| 1738 |
+
# Initialize weights and apply final processing
|
| 1739 |
+
self.post_init()
|
| 1740 |
+
|
| 1741 |
+
def get_input_embeddings(self):
|
| 1742 |
+
return self.model.embed_tokens
|
| 1743 |
+
|
| 1744 |
+
def set_input_embeddings(self, value):
|
| 1745 |
+
self.model.embed_tokens = value
|
| 1746 |
+
|
| 1747 |
+
@add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
|
| 1748 |
+
def forward(
|
| 1749 |
+
self,
|
| 1750 |
+
input_ids: torch.LongTensor = None,
|
| 1751 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1752 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 1753 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
| 1754 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 1755 |
+
labels: Optional[torch.LongTensor] = None,
|
| 1756 |
+
use_cache: Optional[bool] = None,
|
| 1757 |
+
output_attentions: Optional[bool] = None,
|
| 1758 |
+
output_hidden_states: Optional[bool] = None,
|
| 1759 |
+
return_dict: Optional[bool] = None,
|
| 1760 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
| 1761 |
+
r"""
|
| 1762 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1763 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1764 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1765 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1766 |
+
"""
|
| 1767 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1768 |
+
|
| 1769 |
+
outputs = self.model(
|
| 1770 |
+
input_ids,
|
| 1771 |
+
attention_mask=attention_mask,
|
| 1772 |
+
position_ids=position_ids,
|
| 1773 |
+
past_key_values=past_key_values,
|
| 1774 |
+
inputs_embeds=inputs_embeds,
|
| 1775 |
+
use_cache=use_cache,
|
| 1776 |
+
output_attentions=output_attentions,
|
| 1777 |
+
output_hidden_states=output_hidden_states,
|
| 1778 |
+
return_dict=return_dict,
|
| 1779 |
+
)
|
| 1780 |
+
sequence_output = outputs[0]
|
| 1781 |
+
sequence_output = self.dropout(sequence_output)
|
| 1782 |
+
logits = self.score(sequence_output)
|
| 1783 |
+
|
| 1784 |
+
loss = None
|
| 1785 |
+
if labels is not None:
|
| 1786 |
+
loss_fct = CrossEntropyLoss()
|
| 1787 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1788 |
+
|
| 1789 |
+
if not return_dict:
|
| 1790 |
+
output = (logits,) + outputs[2:]
|
| 1791 |
+
return ((loss,) + output) if loss is not None else output
|
| 1792 |
+
|
| 1793 |
+
return TokenClassifierOutput(
|
| 1794 |
+
loss=loss,
|
| 1795 |
+
logits=logits,
|
| 1796 |
+
hidden_states=outputs.hidden_states,
|
| 1797 |
+
attentions=outputs.attentions,
|
| 1798 |
+
)
|