Yuhang Zang
		
	commited on
		
		
					Commit 
							
							·
						
						adedd7a
	
1
								Parent(s):
							
							65ae685
								
update model file
Browse files- added_tokens.json +8 -0
- build_mlp.py +250 -0
- config.json +37 -0
- configuration_internlm_xcomposer2.py +150 -0
- examples/cars1.jpg +0 -0
- generation_config.json +9 -0
- ixc_utils.py +145 -0
- modeling_internlm2.py +997 -0
- modeling_internlm_xcomposer2.py +714 -0
- special_tokens_map.json +38 -0
- tokenization_internlm2.py +236 -0
- tokenizer.model +3 -0
- tokenizer_config.json +99 -0
    	
        added_tokens.json
    ADDED
    
    | @@ -0,0 +1,8 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "<|action_end|>": 92547,
         | 
| 3 | 
            +
              "<|action_start|>": 92546,
         | 
| 4 | 
            +
              "<|im_end|>": 92545,
         | 
| 5 | 
            +
              "<|im_start|>": 92544,
         | 
| 6 | 
            +
              "<|interpreter|>": 92548,
         | 
| 7 | 
            +
              "<|plugin|>": 92549
         | 
| 8 | 
            +
            }
         | 
    	
        build_mlp.py
    ADDED
    
    | @@ -0,0 +1,250 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch
         | 
| 2 | 
            +
            import torch.nn as nn
         | 
| 3 | 
            +
            import re
         | 
| 4 | 
            +
            import math
         | 
| 5 | 
            +
            from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
         | 
| 6 | 
            +
             | 
| 7 | 
            +
             | 
| 8 | 
            +
            def build_vision_tower():
         | 
| 9 | 
            +
                vision_tower = 'internlm/internlm-xcomposer2d5-clip'
         | 
| 10 | 
            +
                return CLIPVisionTower(vision_tower)
         | 
| 11 | 
            +
             | 
| 12 | 
            +
             | 
| 13 | 
            +
            def build_vision_projector():
         | 
| 14 | 
            +
                projector_type = 'mlp2x_gelu'
         | 
| 15 | 
            +
                mm_hidden_size = 4096
         | 
| 16 | 
            +
                mid_hidden_size = 4096
         | 
| 17 | 
            +
                hidden_size = 4096
         | 
| 18 | 
            +
             | 
| 19 | 
            +
                mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type)
         | 
| 20 | 
            +
                if mlp_gelu_match:
         | 
| 21 | 
            +
                    mlp_depth = int(mlp_gelu_match.group(1))
         | 
| 22 | 
            +
                    modules = [nn.Linear(mm_hidden_size, mid_hidden_size)]
         | 
| 23 | 
            +
                    for _ in range(1, mlp_depth):
         | 
| 24 | 
            +
                        modules.append(nn.GELU())
         | 
| 25 | 
            +
                        modules.append(nn.Linear(mid_hidden_size, mid_hidden_size))
         | 
| 26 | 
            +
             | 
| 27 | 
            +
                    return nn.Sequential(*modules)
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                if projector_type == 'identity':
         | 
| 30 | 
            +
                    return IdentityMap()
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                raise ValueError(f'Unknown projector type: {projector_type}')
         | 
| 33 | 
            +
             | 
| 34 | 
            +
             | 
| 35 | 
            +
            class IdentityMap(nn.Module):
         | 
| 36 | 
            +
                def __init__(self):
         | 
| 37 | 
            +
                    super().__init__()
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                def forward(self, x, *args, **kwargs):
         | 
| 40 | 
            +
                    return x
         | 
| 41 | 
            +
             | 
| 42 | 
            +
                @property
         | 
| 43 | 
            +
                def config(self):
         | 
| 44 | 
            +
                    return {"mm_projector_type": 'identity'}
         | 
| 45 | 
            +
             | 
| 46 | 
            +
             | 
| 47 | 
            +
            class CLIPVisionTower(nn.Module):
         | 
| 48 | 
            +
                def __init__(self, vision_tower):
         | 
| 49 | 
            +
                    super().__init__()
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                    self.is_loaded = False
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                    self.vision_tower_name = vision_tower
         | 
| 54 | 
            +
                    #self.conv_dim = 8192
         | 
| 55 | 
            +
                    #self.conv = torch.nn.Conv2d(1024, self.conv_dim,3,2,1)
         | 
| 56 | 
            +
                    self.select_layer = -1
         | 
| 57 | 
            +
                    self.select_feature = 'patch'
         | 
| 58 | 
            +
                    self.load_model()
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                def load_model(self):
         | 
| 61 | 
            +
                    self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name)
         | 
| 62 | 
            +
                    self.vision_tower.requires_grad_(False)
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                    self.is_loaded = True
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                def resize_pos(self):
         | 
| 67 | 
            +
                    print ('Dummy Resized')
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                def feature_select(self, image_forward_outs):
         | 
| 70 | 
            +
                    image_features = image_forward_outs.hidden_states[self.select_layer]
         | 
| 71 | 
            +
                    if self.select_feature == 'patch':
         | 
| 72 | 
            +
                        image_features = image_features[:, 1:]
         | 
| 73 | 
            +
                    elif self.select_feature == 'cls_patch':
         | 
| 74 | 
            +
                        image_features = image_features
         | 
| 75 | 
            +
                    else:
         | 
| 76 | 
            +
                        raise ValueError(f'Unexpected select feature: {self.select_feature}')
         | 
| 77 | 
            +
                    return image_features
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                def forward(self, images, glb_GN, sub_GN):
         | 
| 80 | 
            +
                    if not self.is_loaded:
         | 
| 81 | 
            +
                        self.load_model()
         | 
| 82 | 
            +
                    assert type(images) is list
         | 
| 83 | 
            +
                    shapes = []
         | 
| 84 | 
            +
                    input_imgs = []
         | 
| 85 | 
            +
                    for img in images:
         | 
| 86 | 
            +
                        _, C, H, W = img.shape
         | 
| 87 | 
            +
                        shapes.append([H//560, W//560])
         | 
| 88 | 
            +
                        sub_img = img.reshape(1,3,H//560,560,W//560,560).permute(0,2,4,1,3,5).reshape(-1,3,560,560).contiguous()
         | 
| 89 | 
            +
                        glb_img = torch.nn.functional.interpolate(img.float(), size=(560,560), mode='bicubic',).to(sub_img.dtype)
         | 
| 90 | 
            +
                        input_imgs.append(glb_img)
         | 
| 91 | 
            +
                        input_imgs.append(sub_img)
         | 
| 92 | 
            +
                    input_imgs = torch.cat(input_imgs, dim=0)
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                    image_forward_outs = self.vision_tower(input_imgs.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
         | 
| 95 | 
            +
                    image_features = self.feature_select(image_forward_outs).to(input_imgs.dtype) ### B*?, N, C
         | 
| 96 | 
            +
                    _, N, C = image_features.shape
         | 
| 97 | 
            +
                    H = int(math.sqrt(N))
         | 
| 98 | 
            +
                    assert N == 40 ** 2
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                    output_imgs = []
         | 
| 101 | 
            +
                    output_len = []
         | 
| 102 | 
            +
                    for [h, w] in shapes:
         | 
| 103 | 
            +
                        B_ = h*w
         | 
| 104 | 
            +
                        glb_img = image_features[:1] ### 1, N, C
         | 
| 105 | 
            +
                        glb_img = glb_img.reshape(1,H,H,C).reshape(1,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(1,H//2,H//2,4*C).contiguous()
         | 
| 106 | 
            +
                        temp_glb_GN = sub_GN.repeat(1, H//2, 1, 1)
         | 
| 107 | 
            +
                        glb_img = torch.cat([glb_img, temp_glb_GN], dim=2).reshape(1,-1,4*C)
         | 
| 108 | 
            +
                        
         | 
| 109 | 
            +
                        sub_img = image_features[1:1+B_] ### ?, N, C
         | 
| 110 | 
            +
                        sub_img = sub_img.reshape(B_,H,H,C).reshape(B_,H//2,2,H//2,2,C).contiguous().permute(0,1,3,2,4,5).reshape(B_,-1,4*C).contiguous()
         | 
| 111 | 
            +
                        sub_img = sub_img.reshape(1, h, w, 20, 20, -1).permute(0,1,3,2,4,5).reshape(1,h*20,w*20,4*C)
         | 
| 112 | 
            +
                        temp_sub_GN = sub_GN.repeat(1, h*20, 1, 1)
         | 
| 113 | 
            +
                        sub_img = torch.cat([sub_img, temp_sub_GN], dim=2).reshape(1,-1,4*C)
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                        output_imgs.append(torch.cat([glb_img, glb_GN, sub_img], dim=1))
         | 
| 116 | 
            +
                        temp_len = int((h*w+1)*400 + 1 + (h+1)*20)
         | 
| 117 | 
            +
                        assert temp_len == output_imgs[-1].shape[1]
         | 
| 118 | 
            +
                        output_len.append(temp_len)
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                        image_features = image_features[1+h*w:]
         | 
| 121 | 
            +
             | 
| 122 | 
            +
                    output_imgs = torch.cat(output_imgs, dim=1)
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                    return output_imgs, output_len
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                @property
         | 
| 127 | 
            +
                def dummy_feature(self):
         | 
| 128 | 
            +
                    return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                @property
         | 
| 131 | 
            +
                def dtype(self):
         | 
| 132 | 
            +
                    return self.vision_tower.dtype
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                @property
         | 
| 135 | 
            +
                def device(self):
         | 
| 136 | 
            +
                    return self.vision_tower.device
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                @property
         | 
| 139 | 
            +
                def config(self):
         | 
| 140 | 
            +
                    if self.is_loaded:
         | 
| 141 | 
            +
                        return self.vision_tower.config
         | 
| 142 | 
            +
                    else:
         | 
| 143 | 
            +
                        return self.cfg_only
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                @property
         | 
| 146 | 
            +
                def hidden_size(self):
         | 
| 147 | 
            +
                    return self.config.hidden_size
         | 
| 148 | 
            +
             | 
| 149 | 
            +
                @property
         | 
| 150 | 
            +
                def num_patches(self):
         | 
| 151 | 
            +
                    return (self.config.image_size // self.config.patch_size) ** 2
         | 
| 152 | 
            +
             | 
| 153 | 
            +
            class PLoRA(nn.Linear):
         | 
| 154 | 
            +
                def __init__(self,
         | 
| 155 | 
            +
                             in_features: int,
         | 
| 156 | 
            +
                             out_features: int,
         | 
| 157 | 
            +
                             bias: bool = True,
         | 
| 158 | 
            +
                             device=None,
         | 
| 159 | 
            +
                             dtype=None,
         | 
| 160 | 
            +
                             lora_r=8,
         | 
| 161 | 
            +
                             lora_alpha=16,
         | 
| 162 | 
            +
                             lora_dropout=0.05,
         | 
| 163 | 
            +
                             lora_len=0,
         | 
| 164 | 
            +
                             **kwargs) -> None:
         | 
| 165 | 
            +
                    super().__init__(in_features, out_features, bias, device, dtype)
         | 
| 166 | 
            +
                    self.lora_r = lora_r
         | 
| 167 | 
            +
                    self.lora_alpha = lora_alpha
         | 
| 168 | 
            +
                    self.lora_len = lora_len
         | 
| 169 | 
            +
                    if lora_dropout > 0.:
         | 
| 170 | 
            +
                        self.lora_dropout = nn.Dropout(p=lora_dropout)
         | 
| 171 | 
            +
                    else:
         | 
| 172 | 
            +
                        self.lora_dropout = lambda x: x
         | 
| 173 | 
            +
                    self.lora_scaling = self.lora_alpha / self.lora_r
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                    self.Plora_A = nn.Linear(in_features,
         | 
| 176 | 
            +
                                            self.lora_r,
         | 
| 177 | 
            +
                                            bias=False,
         | 
| 178 | 
            +
                                            device=device,
         | 
| 179 | 
            +
                                            dtype=dtype)
         | 
| 180 | 
            +
                    self.Plora_B = nn.Linear(self.lora_r,
         | 
| 181 | 
            +
                                            out_features,
         | 
| 182 | 
            +
                                            bias=False,
         | 
| 183 | 
            +
                                            device=device,
         | 
| 184 | 
            +
                                            dtype=dtype)
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    self.lora_sft_A = nn.Linear(in_features,
         | 
| 187 | 
            +
                                            256,
         | 
| 188 | 
            +
                                            bias=False,
         | 
| 189 | 
            +
                                            device=device,
         | 
| 190 | 
            +
                                            dtype=dtype)
         | 
| 191 | 
            +
                    self.lora_sft_B = nn.Linear(256,
         | 
| 192 | 
            +
                                            out_features,
         | 
| 193 | 
            +
                                            bias=False,
         | 
| 194 | 
            +
                                            device=device,
         | 
| 195 | 
            +
                                            dtype=dtype)
         | 
| 196 | 
            +
             | 
| 197 | 
            +
                    self.lora_dpo_A = nn.Linear(in_features,
         | 
| 198 | 
            +
                                            256,
         | 
| 199 | 
            +
                                            bias=False,
         | 
| 200 | 
            +
                                            device=device,
         | 
| 201 | 
            +
                                            dtype=dtype)
         | 
| 202 | 
            +
                    self.lora_dpo_B = nn.Linear(256,
         | 
| 203 | 
            +
                                            out_features,
         | 
| 204 | 
            +
                                            bias=False,
         | 
| 205 | 
            +
                                            device=device,
         | 
| 206 | 
            +
                                            dtype=dtype)
         | 
| 207 | 
            +
                    
         | 
| 208 | 
            +
                    self.lora_web_A = nn.Linear(in_features,
         | 
| 209 | 
            +
                                            512,
         | 
| 210 | 
            +
                                            bias=False,
         | 
| 211 | 
            +
                                            device=device,
         | 
| 212 | 
            +
                                            dtype=dtype)
         | 
| 213 | 
            +
                    self.lora_web_B = nn.Linear(512,
         | 
| 214 | 
            +
                                            out_features,
         | 
| 215 | 
            +
                                            bias=False,
         | 
| 216 | 
            +
                                            device=device,
         | 
| 217 | 
            +
                                            dtype=dtype)
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                    self.reset_parameters()
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                def reset_parameters(self):
         | 
| 222 | 
            +
                    if hasattr(self, 'lora_A'):
         | 
| 223 | 
            +
                        # initialize A the same way as the default for nn.Linear and B to zero
         | 
| 224 | 
            +
                        nn.init.kaiming_uniform_(self.lora_A.weight, a=math.sqrt(5))
         | 
| 225 | 
            +
                        nn.init.zeros_(self.lora_B.weight)
         | 
| 226 | 
            +
                        #print ("lora weight init {} {}".format(torch.mean(self.lora_A.weight), torch.mean(self.lora_B.weight)))
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                def forward(self, x, im_mask=None, infer_mode='base'):
         | 
| 229 | 
            +
                    B, N, C = x.shape
         | 
| 230 | 
            +
                    im_mask = im_mask.view(-1)
         | 
| 231 | 
            +
                    x = x.reshape(-1, C)
         | 
| 232 | 
            +
                    res = super().forward(x)
         | 
| 233 | 
            +
                    if infer_mode == 'web':
         | 
| 234 | 
            +
                        res += self.lora_web_B(self.lora_web_A(x))
         | 
| 235 | 
            +
                    elif infer_mode == 'write':
         | 
| 236 | 
            +
                        res += self.lora_sft_B(self.lora_sft_A(x))
         | 
| 237 | 
            +
                        res += self.lora_dpo_B(self.lora_dpo_A(x))
         | 
| 238 | 
            +
                    else:
         | 
| 239 | 
            +
                        pass
         | 
| 240 | 
            +
                    if im_mask is not None:
         | 
| 241 | 
            +
                        if torch.sum(im_mask) > 0:
         | 
| 242 | 
            +
                            part_x = x[im_mask]
         | 
| 243 | 
            +
                            res[im_mask] += self.Plora_B(self.Plora_A(
         | 
| 244 | 
            +
                                self.lora_dropout(part_x))) * self.lora_scaling
         | 
| 245 | 
            +
                        else:
         | 
| 246 | 
            +
                            part_x = x[:1]
         | 
| 247 | 
            +
                            res[:1] += self.Plora_B(self.Plora_A(
         | 
| 248 | 
            +
                                self.lora_dropout(part_x))) * 0
         | 
| 249 | 
            +
                    
         | 
| 250 | 
            +
                    return res.reshape(B, N, -1)
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,37 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_name_or_path": "internlm/internlm-xcomposer2d5-7b",
         | 
| 3 | 
            +
              "architectures": [
         | 
| 4 | 
            +
                "InternLMXComposer2ForCausalLM"
         | 
| 5 | 
            +
              ],
         | 
| 6 | 
            +
              "attn_implementation": "flash_attention_2",
         | 
| 7 | 
            +
              "auto_map": {
         | 
| 8 | 
            +
                "AutoConfig": "configuration_internlm_xcomposer2.InternLMXcomposer2Config",
         | 
| 9 | 
            +
                "AutoModel": "modeling_internlm_xcomposer2.InternLMXComposer2ForCausalLM",
         | 
| 10 | 
            +
                "AutoModelForCausalLM": "modeling_internlm_xcomposer2.InternLMXComposer2ForCausalLM"
         | 
| 11 | 
            +
              },
         | 
| 12 | 
            +
              "bias": false,
         | 
| 13 | 
            +
              "bos_token_id": 1,
         | 
| 14 | 
            +
              "eos_token_id": 2,
         | 
| 15 | 
            +
              "hidden_act": "silu",
         | 
| 16 | 
            +
              "hidden_size": 4096,
         | 
| 17 | 
            +
              "initializer_range": 0.02,
         | 
| 18 | 
            +
              "intermediate_size": 14336,
         | 
| 19 | 
            +
              "max_length":16384,
         | 
| 20 | 
            +
              "max_position_embeddings": 24576,
         | 
| 21 | 
            +
              "model_type": "internlm2",
         | 
| 22 | 
            +
              "num_attention_heads": 32,
         | 
| 23 | 
            +
              "num_hidden_layers": 32,
         | 
| 24 | 
            +
              "num_key_value_heads": 8,
         | 
| 25 | 
            +
              "pad_token_id": 2,
         | 
| 26 | 
            +
              "rms_norm_eps": 1e-05,
         | 
| 27 | 
            +
              "rope_scaling": {
         | 
| 28 | 
            +
                "factor": 2.0,
         | 
| 29 | 
            +
                "type": "dynamic"
         | 
| 30 | 
            +
              },
         | 
| 31 | 
            +
              "rope_theta": 1000000,
         | 
| 32 | 
            +
              "tie_word_embeddings": false,
         | 
| 33 | 
            +
              "torch_dtype": "bfloat16",
         | 
| 34 | 
            +
              "transformers_version": "4.33.1",
         | 
| 35 | 
            +
              "use_cache": false,
         | 
| 36 | 
            +
              "vocab_size": 92544
         | 
| 37 | 
            +
            }
         | 
    	
        configuration_internlm_xcomposer2.py
    ADDED
    
    | @@ -0,0 +1,150 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code is based on transformers/src/transformers/models/llama/configuration_llama.py
         | 
| 5 | 
            +
            #
         | 
| 6 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 7 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 8 | 
            +
            # You may obtain a copy of the License at
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 11 | 
            +
            #
         | 
| 12 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 13 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 14 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 15 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 16 | 
            +
            # limitations under the License.
         | 
| 17 | 
            +
            """ InternLM2 model configuration"""
         | 
| 18 | 
            +
             | 
| 19 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 20 | 
            +
            from transformers.utils import logging
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            INTERNLM2_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
         | 
| 25 | 
            +
             | 
| 26 | 
            +
             | 
| 27 | 
            +
            class InternLMXcomposer2Config(PretrainedConfig):
         | 
| 28 | 
            +
                r"""
         | 
| 29 | 
            +
                This is the configuration class to store the configuration of a [`InternLM2Model`]. It is used to instantiate
         | 
| 30 | 
            +
                an InternLM2 model according to the specified arguments, defining the model architecture. Instantiating a
         | 
| 31 | 
            +
                configuration with the defaults will yield a similar configuration to that of the InternLM2-7B.
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
         | 
| 34 | 
            +
                documentation from [`PretrainedConfig`] for more information.
         | 
| 35 | 
            +
             | 
| 36 | 
            +
             | 
| 37 | 
            +
                Args:
         | 
| 38 | 
            +
                    vocab_size (`int`, *optional*, defaults to 32000):
         | 
| 39 | 
            +
                        Vocabulary size of the InternLM2 model. Defines the number of different tokens that can be represented by the
         | 
| 40 | 
            +
                        `inputs_ids` passed when calling [`InternLM2Model`]
         | 
| 41 | 
            +
                    hidden_size (`int`, *optional*, defaults to 4096):
         | 
| 42 | 
            +
                        Dimension of the hidden representations.
         | 
| 43 | 
            +
                    intermediate_size (`int`, *optional*, defaults to 11008):
         | 
| 44 | 
            +
                        Dimension of the MLP representations.
         | 
| 45 | 
            +
                    num_hidden_layers (`int`, *optional*, defaults to 32):
         | 
| 46 | 
            +
                        Number of hidden layers in the Transformer encoder.
         | 
| 47 | 
            +
                    num_attention_heads (`int`, *optional*, defaults to 32):
         | 
| 48 | 
            +
                        Number of attention heads for each attention layer in the Transformer encoder.
         | 
| 49 | 
            +
                    num_key_value_heads (`int`, *optional*):
         | 
| 50 | 
            +
                        This is the number of key_value heads that should be used to implement Grouped Query Attention. If
         | 
| 51 | 
            +
                        `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
         | 
| 52 | 
            +
                        `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
         | 
| 53 | 
            +
                        converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
         | 
| 54 | 
            +
                        by meanpooling all the original heads within that group. For more details checkout [this
         | 
| 55 | 
            +
                        paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
         | 
| 56 | 
            +
                        `num_attention_heads`.
         | 
| 57 | 
            +
                    hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
         | 
| 58 | 
            +
                        The non-linear activation function (function or string) in the decoder.
         | 
| 59 | 
            +
                    max_position_embeddings (`int`, *optional*, defaults to 2048):
         | 
| 60 | 
            +
                        The maximum sequence length that this model might ever be used with. Typically set this to something large
         | 
| 61 | 
            +
                        just in case (e.g., 512 or 1024 or 2048).
         | 
| 62 | 
            +
                    initializer_range (`float`, *optional*, defaults to 0.02):
         | 
| 63 | 
            +
                        The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
         | 
| 64 | 
            +
                    rms_norm_eps (`float`, *optional*, defaults to 1e-12):
         | 
| 65 | 
            +
                        The epsilon used by the rms normalization layers.
         | 
| 66 | 
            +
                    use_cache (`bool`, *optional*, defaults to `True`):
         | 
| 67 | 
            +
                        Whether or not the model should return the last key/values attentions (not used by all models). Only
         | 
| 68 | 
            +
                        relevant if `config.is_decoder=True`.
         | 
| 69 | 
            +
                    tie_word_embeddings(`bool`, *optional*, defaults to `False`):
         | 
| 70 | 
            +
                        Whether to tie weight embeddings
         | 
| 71 | 
            +
                    Example:
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                """
         | 
| 74 | 
            +
                model_type = "internlm2"
         | 
| 75 | 
            +
                _auto_class = "AutoConfig"
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                def __init__(  # pylint: disable=W0102
         | 
| 78 | 
            +
                    self,
         | 
| 79 | 
            +
                    vocab_size=103168,
         | 
| 80 | 
            +
                    hidden_size=4096,
         | 
| 81 | 
            +
                    intermediate_size=11008,
         | 
| 82 | 
            +
                    num_hidden_layers=32,
         | 
| 83 | 
            +
                    num_attention_heads=32,
         | 
| 84 | 
            +
                    num_key_value_heads=None,
         | 
| 85 | 
            +
                    hidden_act="silu",
         | 
| 86 | 
            +
                    max_position_embeddings=2048,
         | 
| 87 | 
            +
                    initializer_range=0.02,
         | 
| 88 | 
            +
                    rms_norm_eps=1e-6,
         | 
| 89 | 
            +
                    use_cache=True,
         | 
| 90 | 
            +
                    pad_token_id=0,
         | 
| 91 | 
            +
                    bos_token_id=1,
         | 
| 92 | 
            +
                    eos_token_id=2,
         | 
| 93 | 
            +
                    tie_word_embeddings=False,
         | 
| 94 | 
            +
                    bias=True,
         | 
| 95 | 
            +
                    rope_theta=10000,
         | 
| 96 | 
            +
                    rope_scaling=None,
         | 
| 97 | 
            +
                    attn_implementation="flash_attention_2",
         | 
| 98 | 
            +
                    **kwargs,
         | 
| 99 | 
            +
                ):
         | 
| 100 | 
            +
                    self.vocab_size = vocab_size
         | 
| 101 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 102 | 
            +
                    self.hidden_size = hidden_size
         | 
| 103 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 104 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 105 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 106 | 
            +
                    self.bias = bias
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                    if num_key_value_heads is None:
         | 
| 109 | 
            +
                        num_key_value_heads = num_attention_heads
         | 
| 110 | 
            +
                    self.num_key_value_heads = num_key_value_heads
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                    self.hidden_act = hidden_act
         | 
| 113 | 
            +
                    self.initializer_range = initializer_range
         | 
| 114 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 115 | 
            +
                    self.use_cache = use_cache
         | 
| 116 | 
            +
                    self.rope_theta = rope_theta
         | 
| 117 | 
            +
                    self.rope_scaling = rope_scaling
         | 
| 118 | 
            +
                    self._rope_scaling_validation()
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                    self.attn_implementation = attn_implementation
         | 
| 121 | 
            +
                    if self.attn_implementation is None:
         | 
| 122 | 
            +
                        self.attn_implementation = "flash_attention_2"
         | 
| 123 | 
            +
                    super().__init__(
         | 
| 124 | 
            +
                        pad_token_id=pad_token_id,
         | 
| 125 | 
            +
                        bos_token_id=bos_token_id,
         | 
| 126 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 127 | 
            +
                        tie_word_embeddings=tie_word_embeddings,
         | 
| 128 | 
            +
                        **kwargs,
         | 
| 129 | 
            +
                    )
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                def _rope_scaling_validation(self):
         | 
| 132 | 
            +
                    """
         | 
| 133 | 
            +
                    Validate the `rope_scaling` configuration.
         | 
| 134 | 
            +
                    """
         | 
| 135 | 
            +
                    if self.rope_scaling is None:
         | 
| 136 | 
            +
                        return
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                    if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 2:
         | 
| 139 | 
            +
                        raise ValueError(
         | 
| 140 | 
            +
                            "`rope_scaling` must be a dictionary with with two fields, `type` and `factor`, "
         | 
| 141 | 
            +
                            f"got {self.rope_scaling}"
         | 
| 142 | 
            +
                        )
         | 
| 143 | 
            +
                    rope_scaling_type = self.rope_scaling.get("type", None)
         | 
| 144 | 
            +
                    rope_scaling_factor = self.rope_scaling.get("factor", None)
         | 
| 145 | 
            +
                    if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
         | 
| 146 | 
            +
                        raise ValueError(
         | 
| 147 | 
            +
                            f"`rope_scaling`'s type field must be one of ['linear', 'dynamic'], got {rope_scaling_type}"
         | 
| 148 | 
            +
                        )
         | 
| 149 | 
            +
                    if rope_scaling_factor is None or not isinstance(rope_scaling_factor, float) or rope_scaling_factor < 1.0:
         | 
| 150 | 
            +
                        raise ValueError(f"`rope_scaling`'s factor field must be a float >= 1, got {rope_scaling_factor}")
         | 
    	
        examples/cars1.jpg
    ADDED
    
    |   | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,9 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_from_model_config": true,
         | 
| 3 | 
            +
              "bos_token_id": 1,
         | 
| 4 | 
            +
              "eos_token_id": 2,
         | 
| 5 | 
            +
              "max_length": 16384,
         | 
| 6 | 
            +
              "pad_token_id": 2,
         | 
| 7 | 
            +
              "transformers_version": "4.33.1",
         | 
| 8 | 
            +
              "use_cache": false
         | 
| 9 | 
            +
            }
         | 
    	
        ixc_utils.py
    ADDED
    
    | @@ -0,0 +1,145 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import os
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
            +
            import numpy as np
         | 
| 4 | 
            +
            import torchvision
         | 
| 5 | 
            +
            from urllib.request import urlopen
         | 
| 6 | 
            +
            from PIL import Image, ImageDraw, ImageFont
         | 
| 7 | 
            +
            from torchvision.transforms.functional import InterpolationMode
         | 
| 8 | 
            +
            import torchvision.transforms as transforms
         | 
| 9 | 
            +
            from decord import VideoReader
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            def get_font():
         | 
| 12 | 
            +
                truetype_url = 'https://huggingface.co/internlm/internlm-xcomposer2d5-7b/resolve/main/SimHei.ttf?download=true'
         | 
| 13 | 
            +
                ff = urlopen(truetype_url)
         | 
| 14 | 
            +
                font = ImageFont.truetype(ff, size=40)
         | 
| 15 | 
            +
                return font
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            def padding_336(b, pad=336):
         | 
| 18 | 
            +
                width, height = b.size
         | 
| 19 | 
            +
                tar = int(np.ceil(height / pad) * pad)
         | 
| 20 | 
            +
                top_padding = 0 # int((tar - height)/2)
         | 
| 21 | 
            +
                bottom_padding = tar - height - top_padding
         | 
| 22 | 
            +
                left_padding = 0
         | 
| 23 | 
            +
                right_padding = 0
         | 
| 24 | 
            +
                b = transforms.functional.pad(b, [left_padding, top_padding, right_padding, bottom_padding], fill=[255,255,255])
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                return b
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            def Image_transform(img, hd_num=25):
         | 
| 29 | 
            +
                width, height = img.size
         | 
| 30 | 
            +
                trans = False
         | 
| 31 | 
            +
                if width < height:
         | 
| 32 | 
            +
                    img = img.transpose(Image.TRANSPOSE)
         | 
| 33 | 
            +
                    trans = True
         | 
| 34 | 
            +
                    width, height = img.size
         | 
| 35 | 
            +
                ratio = (width/ height)
         | 
| 36 | 
            +
                scale = 1
         | 
| 37 | 
            +
                while scale*np.ceil(scale/ratio) <= hd_num:
         | 
| 38 | 
            +
                    scale += 1
         | 
| 39 | 
            +
                scale -= 1
         | 
| 40 | 
            +
                scale = min(np.ceil(width / 560), scale)
         | 
| 41 | 
            +
                new_w = int(scale * 560)
         | 
| 42 | 
            +
                new_h = int(new_w / ratio)
         | 
| 43 | 
            +
                #print (scale, f'{height}/{new_h}, {width}/{new_w}')
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                img = transforms.functional.resize(img, [new_h, new_w],)
         | 
| 46 | 
            +
                img = padding_336(img, 560)
         | 
| 47 | 
            +
                width, height = img.size
         | 
| 48 | 
            +
                if trans:
         | 
| 49 | 
            +
                    img = img.transpose(Image.TRANSPOSE)
         | 
| 50 | 
            +
             | 
| 51 | 
            +
                return img
         | 
| 52 | 
            +
             | 
| 53 | 
            +
             | 
| 54 | 
            +
            def Video_transform(img, hd_num=25):
         | 
| 55 | 
            +
                width, height = img.size
         | 
| 56 | 
            +
                trans = False
         | 
| 57 | 
            +
                if width < height:
         | 
| 58 | 
            +
                    img = img.transpose(Image.TRANSPOSE)
         | 
| 59 | 
            +
                    trans = True
         | 
| 60 | 
            +
                    width, height = img.size
         | 
| 61 | 
            +
                ratio = (width/ height)
         | 
| 62 | 
            +
                scale = 1
         | 
| 63 | 
            +
                new_h = int(scale * 560)
         | 
| 64 | 
            +
                new_w = int(new_h * ratio)
         | 
| 65 | 
            +
                #print (new_h, new_w)
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                img = transforms.functional.resize(img, [new_h, new_w],)
         | 
| 68 | 
            +
                img = img.transpose(Image.TRANSPOSE)
         | 
| 69 | 
            +
                img = padding_336(img, 560)
         | 
| 70 | 
            +
                width, height = img.size
         | 
| 71 | 
            +
                if not trans:
         | 
| 72 | 
            +
                    img = img.transpose(Image.TRANSPOSE)
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                return img
         | 
| 75 | 
            +
             | 
| 76 | 
            +
            def frame2img(imgs, font):
         | 
| 77 | 
            +
                new_imgs = []
         | 
| 78 | 
            +
                for img in imgs:
         | 
| 79 | 
            +
                    w, h = img.size
         | 
| 80 | 
            +
                    scale = w/h
         | 
| 81 | 
            +
                    if w > h:
         | 
| 82 | 
            +
                        new_w = 560 * 2
         | 
| 83 | 
            +
                        new_h = int(560 * 2 / scale)
         | 
| 84 | 
            +
                    else:
         | 
| 85 | 
            +
                        new_w = int(560 * 2 * scale)
         | 
| 86 | 
            +
                        new_h = 560 * 2
         | 
| 87 | 
            +
                    img = transforms.functional.resize(img, [new_h, new_w],)
         | 
| 88 | 
            +
                    new_imgs.append(img)
         | 
| 89 | 
            +
                imgs = new_imgs
         | 
| 90 | 
            +
                new_w = 0
         | 
| 91 | 
            +
                new_h = 0
         | 
| 92 | 
            +
                pad = 40
         | 
| 93 | 
            +
                if w > h:
         | 
| 94 | 
            +
                    for im in imgs:
         | 
| 95 | 
            +
                        w,h = im.size
         | 
| 96 | 
            +
                        new_w = max(new_w, w)
         | 
| 97 | 
            +
                        new_h += h + 10 + pad
         | 
| 98 | 
            +
                    new_img = Image.new('RGB', (new_w, new_h), 'white')
         | 
| 99 | 
            +
                    draw = ImageDraw.Draw(new_img)
         | 
| 100 | 
            +
                    curr_h = 0
         | 
| 101 | 
            +
                    for idx, im in enumerate(imgs):
         | 
| 102 | 
            +
                        w,h = im.size
         | 
| 103 | 
            +
                        new_img.paste(im, (0, pad + curr_h))
         | 
| 104 | 
            +
                        draw.text((0, curr_h ), f'<IMAGE {idx}>', font=font, fill='black')
         | 
| 105 | 
            +
                        if idx + 1 < len(imgs):
         | 
| 106 | 
            +
                            draw.line([(0, pad +curr_h + h +5), (new_w, pad +curr_h + h +5)], fill = 'black', width=2)
         | 
| 107 | 
            +
                        curr_h += h + 10 + pad
         | 
| 108 | 
            +
                    #print (new_w, new_h)
         | 
| 109 | 
            +
                else:
         | 
| 110 | 
            +
                    for im in imgs:
         | 
| 111 | 
            +
                        w,h = im.size
         | 
| 112 | 
            +
                        new_w += w + 10
         | 
| 113 | 
            +
                        new_h = max(new_h, h)
         | 
| 114 | 
            +
                    new_h += pad
         | 
| 115 | 
            +
                    new_img = Image.new('RGB', (new_w, new_h), 'white')
         | 
| 116 | 
            +
                    draw = ImageDraw.Draw(new_img)
         | 
| 117 | 
            +
                    curr_w = 0
         | 
| 118 | 
            +
                    for idx, im in enumerate(imgs):
         | 
| 119 | 
            +
                        w,h = im.size
         | 
| 120 | 
            +
                        new_img.paste(im, (curr_w, pad))
         | 
| 121 | 
            +
                        draw.text((curr_w, 0), f'<IMAGE {idx}>', font=font, fill='black')
         | 
| 122 | 
            +
                        if idx + 1 < len(imgs):
         | 
| 123 | 
            +
                            draw.line([(curr_w + w + 5, 0), (curr_w + w + 5, new_h)], fill = 'black', width=2)
         | 
| 124 | 
            +
                        curr_w += w + 10
         | 
| 125 | 
            +
                return new_img
         | 
| 126 | 
            +
             | 
| 127 | 
            +
            def load_video(video_path, num_frm=32, start=None, end=None):
         | 
| 128 | 
            +
                vid = VideoReader(video_path, num_threads=1)
         | 
| 129 | 
            +
                fps = vid.get_avg_fps()
         | 
| 130 | 
            +
                t_stride = int(round(float(fps) / int(1)))
         | 
| 131 | 
            +
                start_idx = 0 if start is None else start
         | 
| 132 | 
            +
                end_idx = len(vid) if end is None else end
         | 
| 133 | 
            +
                all_pos = list(range(start_idx, end_idx, t_stride))
         | 
| 134 | 
            +
                try:
         | 
| 135 | 
            +
                    images = [vid[i].numpy() for i in all_pos]
         | 
| 136 | 
            +
                except:
         | 
| 137 | 
            +
                    images = [vid[i].asnumpy() for i in all_pos]
         | 
| 138 | 
            +
                if len(images) > num_frm:
         | 
| 139 | 
            +
                    num_frm = min(num_frm, len(images))
         | 
| 140 | 
            +
                    step_size = len(images) / (num_frm + 1)
         | 
| 141 | 
            +
                    indices = [int(i*step_size) for i in range(num_frm)]
         | 
| 142 | 
            +
                    images = [images[i] for i in indices]
         | 
| 143 | 
            +
                images = [Image.fromarray(arr) for arr in images]
         | 
| 144 | 
            +
                return images
         | 
| 145 | 
            +
             | 
    	
        modeling_internlm2.py
    ADDED
    
    | @@ -0,0 +1,997 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
         | 
| 4 | 
            +
            #
         | 
| 5 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 6 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 7 | 
            +
            # You may obtain a copy of the License at
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 10 | 
            +
            #
         | 
| 11 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 12 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 13 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 14 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 15 | 
            +
            # limitations under the License.
         | 
| 16 | 
            +
            """ PyTorch InternLM2 model."""
         | 
| 17 | 
            +
            import math
         | 
| 18 | 
            +
            import queue
         | 
| 19 | 
            +
            import threading
         | 
| 20 | 
            +
            import warnings
         | 
| 21 | 
            +
            import copy
         | 
| 22 | 
            +
            import numpy as np
         | 
| 23 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 24 | 
            +
            from torchvision import transforms
         | 
| 25 | 
            +
            from torchvision.transforms.functional import InterpolationMode
         | 
| 26 | 
            +
            from PIL import Image
         | 
| 27 | 
            +
             | 
| 28 | 
            +
            import torch
         | 
| 29 | 
            +
            import torch.nn.functional as F
         | 
| 30 | 
            +
            import torch.utils.checkpoint
         | 
| 31 | 
            +
            from einops import rearrange
         | 
| 32 | 
            +
            from torch import nn
         | 
| 33 | 
            +
            from transformers.activations import ACT2FN
         | 
| 34 | 
            +
            from transformers.modeling_outputs import (
         | 
| 35 | 
            +
                BaseModelOutputWithPast,
         | 
| 36 | 
            +
                CausalLMOutputWithPast,
         | 
| 37 | 
            +
                SequenceClassifierOutputWithPast,
         | 
| 38 | 
            +
            )
         | 
| 39 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 40 | 
            +
            from transformers.utils import (
         | 
| 41 | 
            +
                add_start_docstrings,
         | 
| 42 | 
            +
                add_start_docstrings_to_model_forward,
         | 
| 43 | 
            +
                logging,
         | 
| 44 | 
            +
                replace_return_docstrings,
         | 
| 45 | 
            +
            )
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            try:
         | 
| 48 | 
            +
                from transformers.generation.streamers import BaseStreamer
         | 
| 49 | 
            +
            except:  # noqa # pylint: disable=bare-except
         | 
| 50 | 
            +
                BaseStreamer = None
         | 
| 51 | 
            +
             | 
| 52 | 
            +
            from .build_mlp import PLoRA
         | 
| 53 | 
            +
            from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config as InternLM2Config
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            _CONFIG_FOR_DOC = "InternLM2Config"
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            flash_attn_func, flash_attn_varlen_func = None, None
         | 
| 60 | 
            +
            pad_input, index_first_axis, unpad_input = None, None, None
         | 
| 61 | 
            +
            def _import_flash_attn():
         | 
| 62 | 
            +
                global flash_attn_func, flash_attn_varlen_func
         | 
| 63 | 
            +
                global pad_input, index_first_axis, unpad_input
         | 
| 64 | 
            +
                try:
         | 
| 65 | 
            +
                    from flash_attn import flash_attn_func as _flash_attn_func, flash_attn_varlen_func as _flash_attn_varlen_func
         | 
| 66 | 
            +
                    from flash_attn.bert_padding import pad_input as _pad_input, index_first_axis as _index_first_axis, unpad_input as _unpad_input
         | 
| 67 | 
            +
                    flash_attn_func, flash_attn_varlen_func = _flash_attn_func, _flash_attn_varlen_func
         | 
| 68 | 
            +
                    pad_input, index_first_axis, unpad_input = _pad_input, _index_first_axis, _unpad_input
         | 
| 69 | 
            +
                except ImportError:
         | 
| 70 | 
            +
                    raise ImportError("flash_attn is not installed.")
         | 
| 71 | 
            +
             | 
| 72 | 
            +
            # Copied from transformers.models.llama.modeling_llama._get_unpad_data
         | 
| 73 | 
            +
            def _get_unpad_data(attention_mask):
         | 
| 74 | 
            +
                seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
         | 
| 75 | 
            +
                indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
         | 
| 76 | 
            +
                max_seqlen_in_batch = seqlens_in_batch.max().item()
         | 
| 77 | 
            +
                cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0))
         | 
| 78 | 
            +
                return (
         | 
| 79 | 
            +
                    indices,
         | 
| 80 | 
            +
                    cu_seqlens,
         | 
| 81 | 
            +
                    max_seqlen_in_batch,
         | 
| 82 | 
            +
                )
         | 
| 83 | 
            +
             | 
| 84 | 
            +
             | 
| 85 | 
            +
            # Copied from transformers.models.bart.modeling_bart._make_causal_mask
         | 
| 86 | 
            +
            def _make_causal_mask(
         | 
| 87 | 
            +
                input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
         | 
| 88 | 
            +
            ):
         | 
| 89 | 
            +
                """
         | 
| 90 | 
            +
                Make causal mask used for bi-directional self-attention.
         | 
| 91 | 
            +
                """
         | 
| 92 | 
            +
                bsz, tgt_len = input_ids_shape
         | 
| 93 | 
            +
                mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
         | 
| 94 | 
            +
                mask_cond = torch.arange(mask.size(-1), device=device)
         | 
| 95 | 
            +
                mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
         | 
| 96 | 
            +
                mask = mask.to(dtype)
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                if past_key_values_length > 0:
         | 
| 99 | 
            +
                    mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
         | 
| 100 | 
            +
                return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
         | 
| 101 | 
            +
             | 
| 102 | 
            +
             | 
| 103 | 
            +
            # Copied from transformers.models.bart.modeling_bart._expand_mask
         | 
| 104 | 
            +
            def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
         | 
| 105 | 
            +
                """
         | 
| 106 | 
            +
                Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
         | 
| 107 | 
            +
                """
         | 
| 108 | 
            +
                bsz, src_len = mask.size()
         | 
| 109 | 
            +
                tgt_len = tgt_len if tgt_len is not None else src_len
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                inverted_mask = 1.0 - expanded_mask
         | 
| 114 | 
            +
             | 
| 115 | 
            +
                return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
         | 
| 116 | 
            +
             | 
| 117 | 
            +
             | 
| 118 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->InternLM2
         | 
| 119 | 
            +
            class InternLM2RMSNorm(nn.Module):
         | 
| 120 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 121 | 
            +
                    """
         | 
| 122 | 
            +
                    InternLM2RMSNorm is equivalent to T5LayerNorm
         | 
| 123 | 
            +
                    """
         | 
| 124 | 
            +
                    super().__init__()
         | 
| 125 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 126 | 
            +
                    self.variance_epsilon = eps
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                def forward(self, hidden_states):
         | 
| 129 | 
            +
                    input_dtype = hidden_states.dtype
         | 
| 130 | 
            +
                    hidden_states = hidden_states.to(torch.float32)
         | 
| 131 | 
            +
                    variance = hidden_states.pow(2).mean(-1, keepdim=True)
         | 
| 132 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 133 | 
            +
                    return self.weight * hidden_states.to(input_dtype)
         | 
| 134 | 
            +
             | 
| 135 | 
            +
             | 
| 136 | 
            +
            # Copied from transformers.model.llama.modeling_llama.LlamaRotaryEmbedding with Llama->InternLM2
         | 
| 137 | 
            +
            class InternLM2RotaryEmbedding(nn.Module):
         | 
| 138 | 
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
         | 
| 139 | 
            +
                    super().__init__()
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                    self.dim = dim
         | 
| 142 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 143 | 
            +
                    self.base = base
         | 
| 144 | 
            +
                    inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
         | 
| 145 | 
            +
                    self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 146 | 
            +
             | 
| 147 | 
            +
                    # Build here to make `torch.jit.trace` work.
         | 
| 148 | 
            +
                    self._set_cos_sin_cache(
         | 
| 149 | 
            +
                        seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
         | 
| 150 | 
            +
                    )
         | 
| 151 | 
            +
             | 
| 152 | 
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         | 
| 153 | 
            +
                    self.max_seq_len_cached = seq_len
         | 
| 154 | 
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    freqs = torch.einsum("i,j->ij", t, self.inv_freq)
         | 
| 157 | 
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 158 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 159 | 
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         | 
| 160 | 
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                def forward(self, x, seq_len=None):
         | 
| 163 | 
            +
                    # x: [bs, num_attention_heads, seq_len, head_size]
         | 
| 164 | 
            +
                    if seq_len > self.max_seq_len_cached:
         | 
| 165 | 
            +
                        self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=torch.float32)
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                    return (
         | 
| 168 | 
            +
                        self.cos_cached[:seq_len].to(dtype=x.dtype),
         | 
| 169 | 
            +
                        self.sin_cached[:seq_len].to(dtype=x.dtype),
         | 
| 170 | 
            +
                    )
         | 
| 171 | 
            +
             | 
| 172 | 
            +
             | 
| 173 | 
            +
            # Copied from transformers.model.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->InternLM2
         | 
| 174 | 
            +
            class InternLM2LinearScalingRotaryEmbedding(InternLM2RotaryEmbedding):
         | 
| 175 | 
            +
                """InternLM2RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
         | 
| 178 | 
            +
                    self.scaling_factor = scaling_factor
         | 
| 179 | 
            +
                    super().__init__(dim, max_position_embeddings, base, device)
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         | 
| 182 | 
            +
                    self.max_seq_len_cached = seq_len
         | 
| 183 | 
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
         | 
| 184 | 
            +
                    t = t / self.scaling_factor
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                    freqs = torch.einsum("i,j->ij", t, self.inv_freq)
         | 
| 187 | 
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 188 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 189 | 
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         | 
| 190 | 
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         | 
| 191 | 
            +
             | 
| 192 | 
            +
             | 
| 193 | 
            +
            # Copied from transformers.model.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->InternLM2
         | 
| 194 | 
            +
            class InternLM2DynamicNTKScalingRotaryEmbedding(InternLM2RotaryEmbedding):
         | 
| 195 | 
            +
                """InternLM2RotaryEmbedding extended with Dynamic NTK scaling.
         | 
| 196 | 
            +
                Credits to the Reddit users /u/bloc97 and /u/emozilla.
         | 
| 197 | 
            +
                """
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None, scaling_factor=1.0):
         | 
| 200 | 
            +
                    self.scaling_factor = scaling_factor
         | 
| 201 | 
            +
                    super().__init__(dim, max_position_embeddings, base, device)
         | 
| 202 | 
            +
             | 
| 203 | 
            +
                def _set_cos_sin_cache(self, seq_len, device, dtype):
         | 
| 204 | 
            +
                    self.max_seq_len_cached = seq_len
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                    if seq_len > self.max_position_embeddings:
         | 
| 207 | 
            +
                        base = self.base * (
         | 
| 208 | 
            +
                            (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
         | 
| 209 | 
            +
                        ) ** (self.dim / (self.dim - 2))
         | 
| 210 | 
            +
                        inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
         | 
| 211 | 
            +
                        self.register_buffer("inv_freq", inv_freq, persistent=False)
         | 
| 212 | 
            +
             | 
| 213 | 
            +
                    t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                    freqs = torch.einsum("i,j->ij", t, self.inv_freq)
         | 
| 216 | 
            +
                    # Different from paper, but it uses a different permutation in order to obtain the same calculation
         | 
| 217 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 218 | 
            +
                    self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
         | 
| 219 | 
            +
                    self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
         | 
| 220 | 
            +
             | 
| 221 | 
            +
             | 
| 222 | 
            +
            # Copied from transformers.model.llama.modeling_llama.rotate_half
         | 
| 223 | 
            +
            def rotate_half(x):
         | 
| 224 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 225 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 226 | 
            +
                x2 = x[..., x.shape[-1] // 2 :]
         | 
| 227 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 228 | 
            +
             | 
| 229 | 
            +
             | 
| 230 | 
            +
            # Copied from transformers.model.llama.modeling_llama.apply_rotary_pos_emb
         | 
| 231 | 
            +
            def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
         | 
| 232 | 
            +
                """Applies Rotary Position Embedding to the query and key tensors."""
         | 
| 233 | 
            +
                cos = cos[position_ids].unsqueeze(unsqueeze_dim)
         | 
| 234 | 
            +
                sin = sin[position_ids].unsqueeze(unsqueeze_dim)
         | 
| 235 | 
            +
                q_embed = (q * cos) + (rotate_half(q) * sin)
         | 
| 236 | 
            +
                k_embed = (k * cos) + (rotate_half(k) * sin)
         | 
| 237 | 
            +
                return q_embed, k_embed
         | 
| 238 | 
            +
             | 
| 239 | 
            +
             | 
| 240 | 
            +
            class InternLM2MLP(nn.Module):
         | 
| 241 | 
            +
                def __init__(self, config):
         | 
| 242 | 
            +
                    super().__init__()
         | 
| 243 | 
            +
                    self.config = config
         | 
| 244 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 245 | 
            +
                    self.intermediate_size = config.intermediate_size
         | 
| 246 | 
            +
                    #self.w1 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 247 | 
            +
                    #self.w3 = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
         | 
| 248 | 
            +
                    #self.w2 = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
         | 
| 249 | 
            +
                    
         | 
| 250 | 
            +
                    self.w1 = PLoRA(self.hidden_size, self.intermediate_size, bias=False,
         | 
| 251 | 
            +
                                        lora_r=256, lora_alpha=256, lora_len=1225)
         | 
| 252 | 
            +
                    self.w3 = PLoRA(self.hidden_size, self.intermediate_size, bias=False,
         | 
| 253 | 
            +
                                        lora_r=256, lora_alpha=256, lora_len=1225)
         | 
| 254 | 
            +
                    self.w2 = PLoRA(self.intermediate_size, self.hidden_size, bias=False,
         | 
| 255 | 
            +
                                        lora_r=256, lora_alpha=256, lora_len=1225)
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                    self.act_fn = ACT2FN[config.hidden_act]
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                def forward(self, x, im_mask, infer_mode):
         | 
| 260 | 
            +
                    down_proj = self.w2(self.act_fn(self.w1(x, im_mask, infer_mode)) * self.w3(x, im_mask, infer_mode), im_mask, infer_mode)
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                    return down_proj
         | 
| 263 | 
            +
             | 
| 264 | 
            +
             | 
| 265 | 
            +
            # Copied from transformers.model.llama.modeling_llama.repeat_kv
         | 
| 266 | 
            +
            def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
         | 
| 267 | 
            +
                """
         | 
| 268 | 
            +
                This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
         | 
| 269 | 
            +
                num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
         | 
| 270 | 
            +
                """
         | 
| 271 | 
            +
                batch, num_key_value_heads, slen, head_dim = hidden_states.shape
         | 
| 272 | 
            +
                if n_rep == 1:
         | 
| 273 | 
            +
                    return hidden_states
         | 
| 274 | 
            +
                hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
         | 
| 275 | 
            +
                return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
         | 
| 276 | 
            +
             | 
| 277 | 
            +
             | 
| 278 | 
            +
            # Modified from transformers.model.llama.modeling_llama.LlamaAttention
         | 
| 279 | 
            +
            class InternLM2Attention(nn.Module):
         | 
| 280 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 281 | 
            +
             | 
| 282 | 
            +
                def __init__(self, config: InternLM2Config):
         | 
| 283 | 
            +
                    super().__init__()
         | 
| 284 | 
            +
                    self.config = config
         | 
| 285 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 286 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 287 | 
            +
                    self.head_dim = self.hidden_size // self.num_heads
         | 
| 288 | 
            +
                    self.num_key_value_heads = config.num_key_value_heads
         | 
| 289 | 
            +
                    self.num_key_value_groups = self.num_heads // self.num_key_value_heads
         | 
| 290 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 291 | 
            +
                    self.is_causal = True
         | 
| 292 | 
            +
             | 
| 293 | 
            +
                    if (self.head_dim * self.num_heads) != self.hidden_size:
         | 
| 294 | 
            +
                        raise ValueError(
         | 
| 295 | 
            +
                            f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
         | 
| 296 | 
            +
                            f" and `num_heads`: {self.num_heads})."
         | 
| 297 | 
            +
                        )
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                    #self.wqkv = nn.Linear(
         | 
| 300 | 
            +
                    self.wqkv = PLoRA(
         | 
| 301 | 
            +
                        self.hidden_size,
         | 
| 302 | 
            +
                        (self.num_heads + 2 * self.num_key_value_heads) * self.head_dim,
         | 
| 303 | 
            +
                        bias=config.bias,
         | 
| 304 | 
            +
                        lora_r=256, lora_alpha=256, lora_len=1225
         | 
| 305 | 
            +
                    )
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                    #self.wo = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias)
         | 
| 308 | 
            +
                    self.wo = PLoRA(self.num_heads * self.head_dim, self.hidden_size, bias=config.bias,
         | 
| 309 | 
            +
                                       lora_r=256, lora_alpha=256, lora_len=1225)
         | 
| 310 | 
            +
                    self._init_rope()
         | 
| 311 | 
            +
                
         | 
| 312 | 
            +
                def _init_rope(self):
         | 
| 313 | 
            +
                    if self.config.rope_scaling is None:
         | 
| 314 | 
            +
                        self.rotary_emb = InternLM2RotaryEmbedding(
         | 
| 315 | 
            +
                            self.head_dim,
         | 
| 316 | 
            +
                            max_position_embeddings=self.max_position_embeddings,
         | 
| 317 | 
            +
                            base=self.config.rope_theta,
         | 
| 318 | 
            +
                        )
         | 
| 319 | 
            +
                    else:
         | 
| 320 | 
            +
                        scaling_type = self.config.rope_scaling["type"]
         | 
| 321 | 
            +
                        scaling_factor = self.config.rope_scaling["factor"]
         | 
| 322 | 
            +
                        if scaling_type == "dynamic":
         | 
| 323 | 
            +
                            self.rotary_emb = InternLM2DynamicNTKScalingRotaryEmbedding(
         | 
| 324 | 
            +
                                self.head_dim,
         | 
| 325 | 
            +
                                max_position_embeddings=self.max_position_embeddings,
         | 
| 326 | 
            +
                                base=self.config.rope_theta,
         | 
| 327 | 
            +
                                scaling_factor=scaling_factor,
         | 
| 328 | 
            +
                            )
         | 
| 329 | 
            +
                        elif scaling_type == "linear":
         | 
| 330 | 
            +
                            self.rotary_emb = InternLM2LinearScalingRotaryEmbedding(
         | 
| 331 | 
            +
                                self.head_dim,
         | 
| 332 | 
            +
                                max_position_embeddings=self.max_position_embeddings,
         | 
| 333 | 
            +
                                base=self.config.rope_theta,
         | 
| 334 | 
            +
                                scaling_factor=scaling_factor,
         | 
| 335 | 
            +
                            )
         | 
| 336 | 
            +
                        else:
         | 
| 337 | 
            +
                            raise ValueError("Currently we only support rotary embedding's type being 'dynamic' or 'linear'.")
         | 
| 338 | 
            +
                    return self.rotary_emb
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
         | 
| 341 | 
            +
                    return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                def forward(
         | 
| 344 | 
            +
                    self,
         | 
| 345 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 346 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 347 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 348 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 349 | 
            +
                    output_attentions: bool = False,
         | 
| 350 | 
            +
                    use_cache: bool = False,
         | 
| 351 | 
            +
                    im_mask: Optional[Tuple[torch.Tensor]] = None,
         | 
| 352 | 
            +
                    infer_mode: str = 'base',
         | 
| 353 | 
            +
                    **kwargs,
         | 
| 354 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 355 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 356 | 
            +
                        warnings.warn(
         | 
| 357 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
         | 
| 358 | 
            +
                            "Please make sure use `attention_mask` instead.`"
         | 
| 359 | 
            +
                        )
         | 
| 360 | 
            +
             | 
| 361 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                    qkv_states = self.wqkv(hidden_states, im_mask, infer_mode)
         | 
| 364 | 
            +
             | 
| 365 | 
            +
                    qkv_states = rearrange(
         | 
| 366 | 
            +
                        qkv_states,
         | 
| 367 | 
            +
                        "b q (h gs d) -> b q h gs d",
         | 
| 368 | 
            +
                        gs=2 + self.num_key_value_groups,
         | 
| 369 | 
            +
                        d=self.head_dim,
         | 
| 370 | 
            +
                    )
         | 
| 371 | 
            +
             | 
| 372 | 
            +
                    query_states = qkv_states[..., : self.num_key_value_groups, :]
         | 
| 373 | 
            +
                    query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
         | 
| 374 | 
            +
                    key_states = qkv_states[..., -2, :]
         | 
| 375 | 
            +
                    value_states = qkv_states[..., -1, :]
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 378 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 379 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 380 | 
            +
             | 
| 381 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 382 | 
            +
                    if past_key_value is not None:
         | 
| 383 | 
            +
                        kv_seq_len += past_key_value[0].shape[-2]
         | 
| 384 | 
            +
                    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 385 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 386 | 
            +
             | 
| 387 | 
            +
                    if past_key_value is not None:
         | 
| 388 | 
            +
                        # reuse k, v, self_attention
         | 
| 389 | 
            +
                        key_states = torch.cat([past_key_value[0], key_states], dim=2)
         | 
| 390 | 
            +
                        value_states = torch.cat([past_key_value[1], value_states], dim=2)
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                    past_key_value = (key_states, value_states) if use_cache else None
         | 
| 393 | 
            +
             | 
| 394 | 
            +
                    key_states = repeat_kv(key_states, self.num_key_value_groups)
         | 
| 395 | 
            +
                    value_states = repeat_kv(value_states, self.num_key_value_groups)
         | 
| 396 | 
            +
             | 
| 397 | 
            +
                    attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
         | 
| 398 | 
            +
             | 
| 399 | 
            +
                    if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
         | 
| 400 | 
            +
                        raise ValueError(
         | 
| 401 | 
            +
                            f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
         | 
| 402 | 
            +
                            f" {attn_weights.size()}"
         | 
| 403 | 
            +
                        )
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                    if attention_mask is not None:
         | 
| 406 | 
            +
                        if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
         | 
| 407 | 
            +
                            raise ValueError(
         | 
| 408 | 
            +
                                f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
         | 
| 409 | 
            +
                            )
         | 
| 410 | 
            +
                        attn_weights = attn_weights + attention_mask
         | 
| 411 | 
            +
             | 
| 412 | 
            +
                    # upcast attention to fp32
         | 
| 413 | 
            +
                    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
         | 
| 414 | 
            +
                    attn_output = torch.matmul(attn_weights, value_states)
         | 
| 415 | 
            +
             | 
| 416 | 
            +
                    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
         | 
| 417 | 
            +
                        raise ValueError(
         | 
| 418 | 
            +
                            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
         | 
| 419 | 
            +
                            f" {attn_output.size()}"
         | 
| 420 | 
            +
                        )
         | 
| 421 | 
            +
             | 
| 422 | 
            +
                    attn_output = attn_output.transpose(1, 2).contiguous()
         | 
| 423 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         | 
| 424 | 
            +
             | 
| 425 | 
            +
                    attn_output = self.wo(attn_output, im_mask, infer_mode)
         | 
| 426 | 
            +
             | 
| 427 | 
            +
                    if not output_attentions:
         | 
| 428 | 
            +
                        attn_weights = None
         | 
| 429 | 
            +
             | 
| 430 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 431 | 
            +
             | 
| 432 | 
            +
             | 
| 433 | 
            +
            # Modified from transformers.model.llama.modeling_llama.InternLM2FlashAttention2
         | 
| 434 | 
            +
            class InternLM2FlashAttention2(InternLM2Attention):
         | 
| 435 | 
            +
                """
         | 
| 436 | 
            +
                InternLM2 flash attention module. This module inherits from `InternLM2Attention` as the weights of the module stays
         | 
| 437 | 
            +
                untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
         | 
| 438 | 
            +
                flash attention and deal with padding tokens in case the input contains any of them.
         | 
| 439 | 
            +
                """
         | 
| 440 | 
            +
             | 
| 441 | 
            +
                def forward(
         | 
| 442 | 
            +
                    self,
         | 
| 443 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 444 | 
            +
                    attention_mask: Optional[torch.LongTensor] = None,
         | 
| 445 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 446 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 447 | 
            +
                    output_attentions: bool = False,
         | 
| 448 | 
            +
                    use_cache: bool = False,
         | 
| 449 | 
            +
                    im_mask: Optional[Tuple[torch.Tensor]] = None,
         | 
| 450 | 
            +
                    infer_mode: str = 'base',
         | 
| 451 | 
            +
                    **kwargs,
         | 
| 452 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 453 | 
            +
                    # InternLM2FlashAttention2 attention does not support output_attentions
         | 
| 454 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 455 | 
            +
                        warnings.warn(
         | 
| 456 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
         | 
| 457 | 
            +
                            "Please make sure use `attention_mask` instead.`"
         | 
| 458 | 
            +
                        )
         | 
| 459 | 
            +
             | 
| 460 | 
            +
                        # overwrite attention_mask with padding_mask
         | 
| 461 | 
            +
                        attention_mask = kwargs.pop("padding_mask")
         | 
| 462 | 
            +
             | 
| 463 | 
            +
                    output_attentions = False
         | 
| 464 | 
            +
             | 
| 465 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                    qkv_states = self.wqkv(hidden_states, im_mask, infer_mode)
         | 
| 468 | 
            +
             | 
| 469 | 
            +
                    qkv_states = rearrange(
         | 
| 470 | 
            +
                        qkv_states,
         | 
| 471 | 
            +
                        "b q (h gs d) -> b q h gs d",
         | 
| 472 | 
            +
                        gs=2 + self.num_key_value_groups,
         | 
| 473 | 
            +
                        d=self.head_dim,
         | 
| 474 | 
            +
                    )
         | 
| 475 | 
            +
             | 
| 476 | 
            +
                    query_states = qkv_states[..., : self.num_key_value_groups, :]
         | 
| 477 | 
            +
                    query_states = rearrange(query_states, "b q h gs d -> b q (h gs) d")
         | 
| 478 | 
            +
                    key_states = qkv_states[..., -2, :]
         | 
| 479 | 
            +
                    value_states = qkv_states[..., -1, :]
         | 
| 480 | 
            +
             | 
| 481 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 482 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 483 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 484 | 
            +
             | 
| 485 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 486 | 
            +
                    if past_key_value is not None:
         | 
| 487 | 
            +
                        kv_seq_len += past_key_value[0].shape[-2]
         | 
| 488 | 
            +
             | 
| 489 | 
            +
                    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 490 | 
            +
             | 
| 491 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 492 | 
            +
             | 
| 493 | 
            +
                    if past_key_value is not None:
         | 
| 494 | 
            +
                        # reuse k, v, self_attention
         | 
| 495 | 
            +
                        key_states = torch.cat([past_key_value[0], key_states], dim=2)
         | 
| 496 | 
            +
                        value_states = torch.cat([past_key_value[1], value_states], dim=2)
         | 
| 497 | 
            +
             | 
| 498 | 
            +
                    past_key_value = (key_states, value_states) if use_cache else None
         | 
| 499 | 
            +
             | 
| 500 | 
            +
                    query_states = query_states.transpose(1, 2)
         | 
| 501 | 
            +
                    key_states = key_states.transpose(1, 2)
         | 
| 502 | 
            +
                    value_states = value_states.transpose(1, 2)
         | 
| 503 | 
            +
             | 
| 504 | 
            +
                    attn_output = self._flash_attention_forward(
         | 
| 505 | 
            +
                        query_states, key_states, value_states, attention_mask, q_len
         | 
| 506 | 
            +
                    )
         | 
| 507 | 
            +
             | 
| 508 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
         | 
| 509 | 
            +
                    attn_output = self.wo(attn_output, im_mask, infer_mode)
         | 
| 510 | 
            +
             | 
| 511 | 
            +
                    if not output_attentions:
         | 
| 512 | 
            +
                        attn_weights = None
         | 
| 513 | 
            +
             | 
| 514 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 515 | 
            +
             | 
| 516 | 
            +
                def _flash_attention_forward(
         | 
| 517 | 
            +
                    self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
         | 
| 518 | 
            +
                ):
         | 
| 519 | 
            +
                    """
         | 
| 520 | 
            +
                    Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
         | 
| 521 | 
            +
                    first unpad the input, then computes the attention scores and pad the final attention scores.
         | 
| 522 | 
            +
             | 
| 523 | 
            +
                    Args:
         | 
| 524 | 
            +
                        query_states (`torch.Tensor`):
         | 
| 525 | 
            +
                            Input query states to be passed to Flash Attention API
         | 
| 526 | 
            +
                        key_states (`torch.Tensor`):
         | 
| 527 | 
            +
                            Input key states to be passed to Flash Attention API
         | 
| 528 | 
            +
                        value_states (`torch.Tensor`):
         | 
| 529 | 
            +
                            Input value states to be passed to Flash Attention API
         | 
| 530 | 
            +
                        attention_mask (`torch.Tensor`):
         | 
| 531 | 
            +
                            The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
         | 
| 532 | 
            +
                            position of padding tokens and 1 for the position of non-padding tokens.
         | 
| 533 | 
            +
                        dropout (`int`, *optional*):
         | 
| 534 | 
            +
                            Attention dropout
         | 
| 535 | 
            +
                        softmax_scale (`float`, *optional*):
         | 
| 536 | 
            +
                            The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
         | 
| 537 | 
            +
                    """
         | 
| 538 | 
            +
                    # Contains at least one padding token in the sequence
         | 
| 539 | 
            +
                    causal = self.is_causal and query_length != 1
         | 
| 540 | 
            +
                    if attention_mask is not None:
         | 
| 541 | 
            +
                        batch_size = query_states.shape[0]
         | 
| 542 | 
            +
                        query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._unpad_input(
         | 
| 543 | 
            +
                            query_states, key_states, value_states, attention_mask, query_length
         | 
| 544 | 
            +
                        )
         | 
| 545 | 
            +
             | 
| 546 | 
            +
                        cu_seqlens_q, cu_seqlens_k = cu_seq_lens
         | 
| 547 | 
            +
                        max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                        attn_output_unpad = flash_attn_varlen_func(
         | 
| 550 | 
            +
                            query_states,
         | 
| 551 | 
            +
                            key_states,
         | 
| 552 | 
            +
                            value_states,
         | 
| 553 | 
            +
                            cu_seqlens_q=cu_seqlens_q,
         | 
| 554 | 
            +
                            cu_seqlens_k=cu_seqlens_k,
         | 
| 555 | 
            +
                            max_seqlen_q=max_seqlen_in_batch_q,
         | 
| 556 | 
            +
                            max_seqlen_k=max_seqlen_in_batch_k,
         | 
| 557 | 
            +
                            dropout_p=dropout,
         | 
| 558 | 
            +
                            softmax_scale=softmax_scale,
         | 
| 559 | 
            +
                            causal=causal,
         | 
| 560 | 
            +
                        )
         | 
| 561 | 
            +
             | 
| 562 | 
            +
                        attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
         | 
| 563 | 
            +
                    else:
         | 
| 564 | 
            +
                        attn_output = flash_attn_func(
         | 
| 565 | 
            +
                            query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
         | 
| 566 | 
            +
                        )
         | 
| 567 | 
            +
             | 
| 568 | 
            +
                    return attn_output
         | 
| 569 | 
            +
             | 
| 570 | 
            +
                def _unpad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
         | 
| 571 | 
            +
                    indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
         | 
| 572 | 
            +
                    batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
         | 
| 573 | 
            +
             | 
| 574 | 
            +
                    key_layer = index_first_axis(
         | 
| 575 | 
            +
                        key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
         | 
| 576 | 
            +
                    )
         | 
| 577 | 
            +
                    value_layer = index_first_axis(
         | 
| 578 | 
            +
                        value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
         | 
| 579 | 
            +
                    )
         | 
| 580 | 
            +
             | 
| 581 | 
            +
                    if query_length == kv_seq_len:
         | 
| 582 | 
            +
                        query_layer = index_first_axis(
         | 
| 583 | 
            +
                            query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
         | 
| 584 | 
            +
                        )
         | 
| 585 | 
            +
                        cu_seqlens_q = cu_seqlens_k
         | 
| 586 | 
            +
                        max_seqlen_in_batch_q = max_seqlen_in_batch_k
         | 
| 587 | 
            +
                        indices_q = indices_k
         | 
| 588 | 
            +
                    elif query_length == 1:
         | 
| 589 | 
            +
                        max_seqlen_in_batch_q = 1
         | 
| 590 | 
            +
                        cu_seqlens_q = torch.arange(
         | 
| 591 | 
            +
                            batch_size + 1, dtype=torch.int32, device=query_layer.device
         | 
| 592 | 
            +
                        )  # There is a memcpy here, that is very bad.
         | 
| 593 | 
            +
                        indices_q = cu_seqlens_q[:-1]
         | 
| 594 | 
            +
                        query_layer = query_layer.squeeze(1)
         | 
| 595 | 
            +
                    else:
         | 
| 596 | 
            +
                        # The -q_len: slice assumes left padding.
         | 
| 597 | 
            +
                        attention_mask = attention_mask[:, -query_length:]
         | 
| 598 | 
            +
                        query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
         | 
| 599 | 
            +
             | 
| 600 | 
            +
                    return (
         | 
| 601 | 
            +
                        query_layer,
         | 
| 602 | 
            +
                        key_layer,
         | 
| 603 | 
            +
                        value_layer,
         | 
| 604 | 
            +
                        indices_q.to(torch.int64),
         | 
| 605 | 
            +
                        (cu_seqlens_q, cu_seqlens_k),
         | 
| 606 | 
            +
                        (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
         | 
| 607 | 
            +
                    )
         | 
| 608 | 
            +
             | 
| 609 | 
            +
            INTERNLM2_ATTENTION_CLASSES = {
         | 
| 610 | 
            +
                "eager": InternLM2Attention,
         | 
| 611 | 
            +
                "flash_attention_2": InternLM2FlashAttention2,
         | 
| 612 | 
            +
            }
         | 
| 613 | 
            +
             | 
| 614 | 
            +
            # Modified from transformers.model.llama.modeling_llama.LlamaDecoderLayer
         | 
| 615 | 
            +
            class InternLM2DecoderLayer(nn.Module):
         | 
| 616 | 
            +
                def __init__(self, config: InternLM2Config):
         | 
| 617 | 
            +
                    super().__init__()
         | 
| 618 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 619 | 
            +
             | 
| 620 | 
            +
                    self.attention = INTERNLM2_ATTENTION_CLASSES[config.attn_implementation](config=config)
         | 
| 621 | 
            +
             | 
| 622 | 
            +
                    self.feed_forward = InternLM2MLP(config)
         | 
| 623 | 
            +
                    self.attention_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 624 | 
            +
                    self.ffn_norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 625 | 
            +
             | 
| 626 | 
            +
                def forward(
         | 
| 627 | 
            +
                    self,
         | 
| 628 | 
            +
                    hidden_states: torch.Tensor,
         | 
| 629 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 630 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 631 | 
            +
                    past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 632 | 
            +
                    output_attentions: Optional[bool] = False,
         | 
| 633 | 
            +
                    use_cache: Optional[bool] = False,
         | 
| 634 | 
            +
                    im_mask: Optional[Tuple[torch.Tensor]] = None,
         | 
| 635 | 
            +
                    infer_mode: str='base',
         | 
| 636 | 
            +
                    **kwargs,
         | 
| 637 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 638 | 
            +
                    """
         | 
| 639 | 
            +
                    Args:
         | 
| 640 | 
            +
                        hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
         | 
| 641 | 
            +
                        attention_mask (`torch.FloatTensor`, *optional*):
         | 
| 642 | 
            +
                            attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
         | 
| 643 | 
            +
                            query_sequence_length, key_sequence_length)` if default attention is used.
         | 
| 644 | 
            +
                        output_attentions (`bool`, *optional*):
         | 
| 645 | 
            +
                            Whether or not to return the attentions tensors of all attention layers. See `attentions` under
         | 
| 646 | 
            +
                            returned tensors for more detail.
         | 
| 647 | 
            +
                        use_cache (`bool`, *optional*):
         | 
| 648 | 
            +
                            If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
         | 
| 649 | 
            +
                            (see `past_key_values`).
         | 
| 650 | 
            +
                        past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
         | 
| 651 | 
            +
                    """
         | 
| 652 | 
            +
                    if "padding_mask" in kwargs:
         | 
| 653 | 
            +
                        warnings.warn(
         | 
| 654 | 
            +
                            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
         | 
| 655 | 
            +
                            "Please make sure use `attention_mask` instead.`"
         | 
| 656 | 
            +
                        )
         | 
| 657 | 
            +
             | 
| 658 | 
            +
                    residual = hidden_states
         | 
| 659 | 
            +
             | 
| 660 | 
            +
                    hidden_states = self.attention_norm(hidden_states)
         | 
| 661 | 
            +
             | 
| 662 | 
            +
                    # Self Attention
         | 
| 663 | 
            +
                    hidden_states, self_attn_weights, present_key_value = self.attention(
         | 
| 664 | 
            +
                        hidden_states=hidden_states,
         | 
| 665 | 
            +
                        attention_mask=attention_mask,
         | 
| 666 | 
            +
                        position_ids=position_ids,
         | 
| 667 | 
            +
                        past_key_value=past_key_value,
         | 
| 668 | 
            +
                        output_attentions=output_attentions,
         | 
| 669 | 
            +
                        use_cache=use_cache,
         | 
| 670 | 
            +
                        im_mask=im_mask,
         | 
| 671 | 
            +
                        infer_mode=infer_mode,
         | 
| 672 | 
            +
                        **kwargs,
         | 
| 673 | 
            +
                    )
         | 
| 674 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 675 | 
            +
             | 
| 676 | 
            +
                    # Fully Connected
         | 
| 677 | 
            +
                    residual = hidden_states
         | 
| 678 | 
            +
                    hidden_states = self.ffn_norm(hidden_states)
         | 
| 679 | 
            +
                    hidden_states = self.feed_forward(hidden_states, im_mask, infer_mode)
         | 
| 680 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 681 | 
            +
             | 
| 682 | 
            +
                    outputs = (hidden_states,)
         | 
| 683 | 
            +
             | 
| 684 | 
            +
                    if output_attentions:
         | 
| 685 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 686 | 
            +
             | 
| 687 | 
            +
                    if use_cache:
         | 
| 688 | 
            +
                        outputs += (present_key_value,)
         | 
| 689 | 
            +
             | 
| 690 | 
            +
                    return outputs
         | 
| 691 | 
            +
             | 
| 692 | 
            +
             | 
| 693 | 
            +
            InternLM2_START_DOCSTRING = r"""
         | 
| 694 | 
            +
                This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
         | 
| 695 | 
            +
                library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
         | 
| 696 | 
            +
                etc.)
         | 
| 697 | 
            +
             | 
| 698 | 
            +
                This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
         | 
| 699 | 
            +
                Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
         | 
| 700 | 
            +
                and behavior.
         | 
| 701 | 
            +
             | 
| 702 | 
            +
                Parameters:
         | 
| 703 | 
            +
                    config ([`InternLM2Config`]):
         | 
| 704 | 
            +
                        Model configuration class with all the parameters of the model. Initializing with a config file does not
         | 
| 705 | 
            +
                        load the weights associated with the model, only the configuration. Check out the
         | 
| 706 | 
            +
                        [`~PreTrainedModel.from_pretrained`] method to load the model weights.
         | 
| 707 | 
            +
            """
         | 
| 708 | 
            +
             | 
| 709 | 
            +
             | 
| 710 | 
            +
            # Copied from transformers.models.llama.modeling_llama.LlamaPreTrainedModel with Llama->InternLM2
         | 
| 711 | 
            +
            @add_start_docstrings(
         | 
| 712 | 
            +
                "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
         | 
| 713 | 
            +
                InternLM2_START_DOCSTRING,
         | 
| 714 | 
            +
            )
         | 
| 715 | 
            +
            class InternLM2PreTrainedModel(PreTrainedModel):
         | 
| 716 | 
            +
                config_class = InternLM2Config
         | 
| 717 | 
            +
                base_model_prefix = "model"
         | 
| 718 | 
            +
                supports_gradient_checkpointing = True
         | 
| 719 | 
            +
                _no_split_modules = ["InternLM2DecoderLayer"]
         | 
| 720 | 
            +
                _skip_keys_device_placement = "past_key_values"
         | 
| 721 | 
            +
             | 
| 722 | 
            +
                def _init_weights(self, module):
         | 
| 723 | 
            +
                    std = self.config.initializer_range
         | 
| 724 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 725 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 726 | 
            +
                        if module.bias is not None:
         | 
| 727 | 
            +
                            module.bias.data.zero_()
         | 
| 728 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 729 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 730 | 
            +
                        if module.padding_idx is not None:
         | 
| 731 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 732 | 
            +
             | 
| 733 | 
            +
             | 
| 734 | 
            +
            InternLM2_INPUTS_DOCSTRING = r"""
         | 
| 735 | 
            +
                Args:
         | 
| 736 | 
            +
                    input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
         | 
| 737 | 
            +
                        Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
         | 
| 738 | 
            +
                        it.
         | 
| 739 | 
            +
             | 
| 740 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 741 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 742 | 
            +
             | 
| 743 | 
            +
                        [What are input IDs?](../glossary#input-ids)
         | 
| 744 | 
            +
                    attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 745 | 
            +
                        Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
         | 
| 746 | 
            +
             | 
| 747 | 
            +
                        - 1 for tokens that are **not masked**,
         | 
| 748 | 
            +
                        - 0 for tokens that are **masked**.
         | 
| 749 | 
            +
             | 
| 750 | 
            +
                        [What are attention masks?](../glossary#attention-mask)
         | 
| 751 | 
            +
             | 
| 752 | 
            +
                        Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
         | 
| 753 | 
            +
                        [`PreTrainedTokenizer.__call__`] for details.
         | 
| 754 | 
            +
             | 
| 755 | 
            +
                        If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
         | 
| 756 | 
            +
                        `past_key_values`).
         | 
| 757 | 
            +
             | 
| 758 | 
            +
                        If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
         | 
| 759 | 
            +
                        and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
         | 
| 760 | 
            +
                        information on the default strategy.
         | 
| 761 | 
            +
             | 
| 762 | 
            +
                        - 1 indicates the head is **not masked**,
         | 
| 763 | 
            +
                        - 0 indicates the head is **masked**.
         | 
| 764 | 
            +
                    position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 765 | 
            +
                        Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
         | 
| 766 | 
            +
                        config.n_positions - 1]`.
         | 
| 767 | 
            +
             | 
| 768 | 
            +
                        [What are position IDs?](../glossary#position-ids)
         | 
| 769 | 
            +
                    past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or
         | 
| 770 | 
            +
                        when `config.use_cache=True`):
         | 
| 771 | 
            +
                        Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
         | 
| 772 | 
            +
                        `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
         | 
| 773 | 
            +
                        `(batch_size, num_heads, decoder_sequence_length, embed_size_per_head)`.
         | 
| 774 | 
            +
             | 
| 775 | 
            +
                        Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
         | 
| 776 | 
            +
                        blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
         | 
| 777 | 
            +
             | 
| 778 | 
            +
                        If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
         | 
| 779 | 
            +
                        have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
         | 
| 780 | 
            +
                        of shape `(batch_size, sequence_length)`.
         | 
| 781 | 
            +
                    inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
         | 
| 782 | 
            +
                        Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
         | 
| 783 | 
            +
                        is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
         | 
| 784 | 
            +
                        model's internal embedding lookup matrix.
         | 
| 785 | 
            +
                    use_cache (`bool`, *optional*):
         | 
| 786 | 
            +
                        If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
         | 
| 787 | 
            +
                        `past_key_values`).
         | 
| 788 | 
            +
                    output_attentions (`bool`, *optional*):
         | 
| 789 | 
            +
                        Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
         | 
| 790 | 
            +
                        tensors for more detail.
         | 
| 791 | 
            +
                    output_hidden_states (`bool`, *optional*):
         | 
| 792 | 
            +
                        Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
         | 
| 793 | 
            +
                        more detail.
         | 
| 794 | 
            +
                    return_dict (`bool`, *optional*):
         | 
| 795 | 
            +
                        Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
         | 
| 796 | 
            +
            """
         | 
| 797 | 
            +
             | 
| 798 | 
            +
             | 
| 799 | 
            +
            # Modified from transformers.model.llama.modeling_llama.LlamaModel
         | 
| 800 | 
            +
            @add_start_docstrings(
         | 
| 801 | 
            +
                "The bare InternLM2 Model outputting raw hidden-states without any specific head on top.",
         | 
| 802 | 
            +
                InternLM2_START_DOCSTRING,
         | 
| 803 | 
            +
            )
         | 
| 804 | 
            +
            class InternLM2Model(InternLM2PreTrainedModel):
         | 
| 805 | 
            +
                """
         | 
| 806 | 
            +
                Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`InternLM2DecoderLayer`]
         | 
| 807 | 
            +
             | 
| 808 | 
            +
                Args:
         | 
| 809 | 
            +
                    config: InternLM2Config
         | 
| 810 | 
            +
                """
         | 
| 811 | 
            +
             | 
| 812 | 
            +
                _auto_class = "AutoModel"
         | 
| 813 | 
            +
             | 
| 814 | 
            +
                def __init__(self, config: InternLM2Config):
         | 
| 815 | 
            +
                    super().__init__(config)
         | 
| 816 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 817 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 818 | 
            +
                    self.config = config
         | 
| 819 | 
            +
             | 
| 820 | 
            +
                    self.tok_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         | 
| 821 | 
            +
             | 
| 822 | 
            +
                    self.layers = nn.ModuleList([InternLM2DecoderLayer(config) for _ in range(config.num_hidden_layers)])
         | 
| 823 | 
            +
                    self.norm = InternLM2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 824 | 
            +
             | 
| 825 | 
            +
                    self.gradient_checkpointing = False
         | 
| 826 | 
            +
                    # Initialize weights and apply final processing
         | 
| 827 | 
            +
                    self.post_init()
         | 
| 828 | 
            +
             | 
| 829 | 
            +
                def get_input_embeddings(self):
         | 
| 830 | 
            +
                    return self.tok_embeddings
         | 
| 831 | 
            +
             | 
| 832 | 
            +
                def set_input_embeddings(self, value):
         | 
| 833 | 
            +
                    self.tok_embeddings = value
         | 
| 834 | 
            +
             | 
| 835 | 
            +
                def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
         | 
| 836 | 
            +
                    # create causal mask
         | 
| 837 | 
            +
                    # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
         | 
| 838 | 
            +
                    combined_attention_mask = None
         | 
| 839 | 
            +
                    if input_shape[-1] > 1:
         | 
| 840 | 
            +
                        combined_attention_mask = _make_causal_mask(
         | 
| 841 | 
            +
                            input_shape,
         | 
| 842 | 
            +
                            inputs_embeds.dtype,
         | 
| 843 | 
            +
                            device=inputs_embeds.device,
         | 
| 844 | 
            +
                            past_key_values_length=past_key_values_length,
         | 
| 845 | 
            +
                        )
         | 
| 846 | 
            +
             | 
| 847 | 
            +
                    if attention_mask is not None:
         | 
| 848 | 
            +
                        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
         | 
| 849 | 
            +
                        expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
         | 
| 850 | 
            +
                            inputs_embeds.device
         | 
| 851 | 
            +
                        )
         | 
| 852 | 
            +
                        combined_attention_mask = (
         | 
| 853 | 
            +
                            expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
         | 
| 854 | 
            +
                        )
         | 
| 855 | 
            +
             | 
| 856 | 
            +
                    return combined_attention_mask
         | 
| 857 | 
            +
             | 
| 858 | 
            +
                @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
         | 
| 859 | 
            +
                def forward(
         | 
| 860 | 
            +
                    self,
         | 
| 861 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 862 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 863 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 864 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 865 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 866 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 867 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 868 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 869 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 870 | 
            +
                    **kwargs
         | 
| 871 | 
            +
                ) -> Union[Tuple, BaseModelOutputWithPast]:
         | 
| 872 | 
            +
             | 
| 873 | 
            +
                    im_mask = kwargs.get('im_mask', None)
         | 
| 874 | 
            +
                    infer_mode = kwargs.get('infer_mode', 'base')
         | 
| 875 | 
            +
             | 
| 876 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 877 | 
            +
                    output_hidden_states = (
         | 
| 878 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 879 | 
            +
                    )
         | 
| 880 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 881 | 
            +
             | 
| 882 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 883 | 
            +
             | 
| 884 | 
            +
                    if self.config.attn_implementation == "flash_attention_2":
         | 
| 885 | 
            +
                        _import_flash_attn()
         | 
| 886 | 
            +
             | 
| 887 | 
            +
                    # retrieve input_ids and inputs_embeds
         | 
| 888 | 
            +
                    if input_ids is not None and inputs_embeds is not None:
         | 
| 889 | 
            +
                        raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
         | 
| 890 | 
            +
                    elif input_ids is not None:
         | 
| 891 | 
            +
                        batch_size, seq_length = input_ids.shape[:2]
         | 
| 892 | 
            +
                    elif inputs_embeds is not None:
         | 
| 893 | 
            +
                        batch_size, seq_length = inputs_embeds.shape[:2]
         | 
| 894 | 
            +
                    else:
         | 
| 895 | 
            +
                        raise ValueError("You have to specify either input_ids or inputs_embeds")
         | 
| 896 | 
            +
             | 
| 897 | 
            +
                    seq_length_with_past = seq_length
         | 
| 898 | 
            +
                    past_key_values_length = 0
         | 
| 899 | 
            +
                    if past_key_values is not None:
         | 
| 900 | 
            +
                        past_key_values_length = past_key_values[0][0].shape[2]
         | 
| 901 | 
            +
                        seq_length_with_past = seq_length_with_past + past_key_values_length
         | 
| 902 | 
            +
             | 
| 903 | 
            +
                    if position_ids is None:
         | 
| 904 | 
            +
                        device = input_ids.device if input_ids is not None else inputs_embeds.device
         | 
| 905 | 
            +
                        position_ids = torch.arange(
         | 
| 906 | 
            +
                            past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
         | 
| 907 | 
            +
                        )
         | 
| 908 | 
            +
                        position_ids = position_ids.unsqueeze(0)
         | 
| 909 | 
            +
             | 
| 910 | 
            +
                    if inputs_embeds is None:
         | 
| 911 | 
            +
                        inputs_embeds = self.tok_embeddings(input_ids)
         | 
| 912 | 
            +
                        im_mask = torch.zeros(inputs_embeds.shape[:2]).to(inputs_embeds.device).bool()
         | 
| 913 | 
            +
             | 
| 914 | 
            +
                    if self.config.attn_implementation == "flash_attention_2":
         | 
| 915 | 
            +
                        # 2d mask is passed through the layers
         | 
| 916 | 
            +
                        attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
         | 
| 917 | 
            +
                    else:
         | 
| 918 | 
            +
                        if attention_mask is None:
         | 
| 919 | 
            +
                            attention_mask = torch.ones(
         | 
| 920 | 
            +
                                (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
         | 
| 921 | 
            +
                            )
         | 
| 922 | 
            +
                        attention_mask = self._prepare_decoder_attention_mask(
         | 
| 923 | 
            +
                            attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
         | 
| 924 | 
            +
                        )
         | 
| 925 | 
            +
             | 
| 926 | 
            +
                    # embed positions
         | 
| 927 | 
            +
                    hidden_states = inputs_embeds
         | 
| 928 | 
            +
             | 
| 929 | 
            +
                    if self.gradient_checkpointing and self.training:
         | 
| 930 | 
            +
                        if use_cache:
         | 
| 931 | 
            +
                            logger.warning_once(
         | 
| 932 | 
            +
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         | 
| 933 | 
            +
                            )
         | 
| 934 | 
            +
                            use_cache = False
         | 
| 935 | 
            +
             | 
| 936 | 
            +
                    # decoder layers
         | 
| 937 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 938 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 939 | 
            +
                    next_decoder_cache = () if use_cache else None
         | 
| 940 | 
            +
             | 
| 941 | 
            +
                    for idx, decoder_layer in enumerate(self.layers):
         | 
| 942 | 
            +
                        if output_hidden_states:
         | 
| 943 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 944 | 
            +
             | 
| 945 | 
            +
                        past_key_value = past_key_values[idx] if past_key_values is not None else None
         | 
| 946 | 
            +
             | 
| 947 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 948 | 
            +
             | 
| 949 | 
            +
                            def create_custom_forward(module):
         | 
| 950 | 
            +
                                def custom_forward(*inputs):
         | 
| 951 | 
            +
                                    # None for past_key_value
         | 
| 952 | 
            +
                                    return module(*inputs, output_attentions, None, im_mask, infer_mode)
         | 
| 953 | 
            +
             | 
| 954 | 
            +
                                return custom_forward
         | 
| 955 | 
            +
             | 
| 956 | 
            +
                            layer_outputs = torch.utils.checkpoint.checkpoint(
         | 
| 957 | 
            +
                                create_custom_forward(decoder_layer),
         | 
| 958 | 
            +
                                hidden_states,
         | 
| 959 | 
            +
                                attention_mask,
         | 
| 960 | 
            +
                                position_ids,
         | 
| 961 | 
            +
                                None,
         | 
| 962 | 
            +
                            )
         | 
| 963 | 
            +
                        else:
         | 
| 964 | 
            +
                            layer_outputs = decoder_layer(
         | 
| 965 | 
            +
                                hidden_states,
         | 
| 966 | 
            +
                                attention_mask=attention_mask,
         | 
| 967 | 
            +
                                position_ids=position_ids,
         | 
| 968 | 
            +
                                past_key_value=past_key_value,
         | 
| 969 | 
            +
                                output_attentions=output_attentions,
         | 
| 970 | 
            +
                                use_cache=use_cache,
         | 
| 971 | 
            +
                                im_mask=im_mask,
         | 
| 972 | 
            +
                                infer_mode=infer_mode,
         | 
| 973 | 
            +
                            )
         | 
| 974 | 
            +
             | 
| 975 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 976 | 
            +
             | 
| 977 | 
            +
                        if use_cache:
         | 
| 978 | 
            +
                            next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
         | 
| 979 | 
            +
             | 
| 980 | 
            +
                        if output_attentions:
         | 
| 981 | 
            +
                            all_self_attns += (layer_outputs[1],)
         | 
| 982 | 
            +
             | 
| 983 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 984 | 
            +
             | 
| 985 | 
            +
                    # add hidden states from the last decoder layer
         | 
| 986 | 
            +
                    if output_hidden_states:
         | 
| 987 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 988 | 
            +
             | 
| 989 | 
            +
                    next_cache = next_decoder_cache if use_cache else None
         | 
| 990 | 
            +
                    if not return_dict:
         | 
| 991 | 
            +
                        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
         | 
| 992 | 
            +
                    return BaseModelOutputWithPast(
         | 
| 993 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 994 | 
            +
                        past_key_values=next_cache,
         | 
| 995 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 996 | 
            +
                        attentions=all_self_attns,
         | 
| 997 | 
            +
                    )
         | 
    	
        modeling_internlm_xcomposer2.py
    ADDED
    
    | @@ -0,0 +1,714 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
         | 
| 2 | 
            +
            #
         | 
| 3 | 
            +
            # This code is based on transformers/src/transformers/models/llama/modeling_llama.py
         | 
| 4 | 
            +
            #
         | 
| 5 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 6 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 7 | 
            +
            # You may obtain a copy of the License at
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 10 | 
            +
            #
         | 
| 11 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 12 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 13 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 14 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 15 | 
            +
            # limitations under the License.
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            """PyTorch InternLMXComposer2 model."""
         | 
| 18 | 
            +
            import os
         | 
| 19 | 
            +
            import re
         | 
| 20 | 
            +
            import copy
         | 
| 21 | 
            +
            import queue
         | 
| 22 | 
            +
            import threading
         | 
| 23 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            import torch
         | 
| 26 | 
            +
            import torch.utils.checkpoint
         | 
| 27 | 
            +
            from PIL import Image
         | 
| 28 | 
            +
            import numpy as np
         | 
| 29 | 
            +
            import random
         | 
| 30 | 
            +
            from torch import nn
         | 
| 31 | 
            +
            import torch.nn.functional as F
         | 
| 32 | 
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         | 
| 33 | 
            +
            from torchvision import transforms
         | 
| 34 | 
            +
            from torchvision.transforms.functional import InterpolationMode
         | 
| 35 | 
            +
            from transformers.modeling_outputs import CausalLMOutputWithPast, SequenceClassifierOutputWithPast
         | 
| 36 | 
            +
            from transformers.utils import (add_start_docstrings_to_model_forward,
         | 
| 37 | 
            +
                                            replace_return_docstrings)
         | 
| 38 | 
            +
            from transformers import StoppingCriteria, StoppingCriteriaList
         | 
| 39 | 
            +
            from transformers import AutoModelForCausalLM, AutoTokenizer, set_seed
         | 
| 40 | 
            +
            try:
         | 
| 41 | 
            +
                from transformers.generation.streamers import BaseStreamer
         | 
| 42 | 
            +
            except:  # noqa # pylint: disable=bare-except
         | 
| 43 | 
            +
                BaseStreamer = None
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            import torchvision.transforms as transforms
         | 
| 46 | 
            +
            from torchvision.transforms.functional import InterpolationMode
         | 
| 47 | 
            +
             | 
| 48 | 
            +
            from .build_mlp import build_vision_projector, build_vision_tower
         | 
| 49 | 
            +
            from .ixc_utils import Image_transform, Video_transform, load_video, frame2img, get_font
         | 
| 50 | 
            +
            from .configuration_internlm_xcomposer2 import InternLMXcomposer2Config
         | 
| 51 | 
            +
            from .modeling_internlm2 import (InternLM2_INPUTS_DOCSTRING, InternLM2Model,
         | 
| 52 | 
            +
                                             InternLM2PreTrainedModel)
         | 
| 53 | 
            +
             | 
| 54 | 
            +
            _CONFIG_FOR_DOC = 'InternLMXcomposer2Config'
         | 
| 55 | 
            +
             | 
| 56 | 
            +
            image_extensions = {'.jpg', '.jpeg', '.png', '.gif', '.bmp', '.webp'}
         | 
| 57 | 
            +
            video_extensions = {'.mp4', '.avi', '.mkv', '.mov', '.wmv'}
         | 
| 58 | 
            +
             | 
| 59 | 
            +
             | 
| 60 | 
            +
            class StoppingCriteriaSub(StoppingCriteria):
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                def __init__(self, stops=[], encounters=1):
         | 
| 63 | 
            +
                    super().__init__()
         | 
| 64 | 
            +
                    self.stops = stops
         | 
| 65 | 
            +
             | 
| 66 | 
            +
                def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
         | 
| 67 | 
            +
                    for stop in self.stops:
         | 
| 68 | 
            +
                        if torch.all((stop == input_ids[0][-len(stop):])).item():
         | 
| 69 | 
            +
                            return True
         | 
| 70 | 
            +
                    return False
         | 
| 71 | 
            +
             | 
| 72 | 
            +
             | 
| 73 | 
            +
            def get_stopping_criteria(stop_words_ids):
         | 
| 74 | 
            +
                stop_words_ids = [torch.tensor([i]).cuda() for i in stop_words_ids]
         | 
| 75 | 
            +
                stopping_criteria = StoppingCriteriaList(
         | 
| 76 | 
            +
                    [StoppingCriteriaSub(stops=stop_words_ids)])
         | 
| 77 | 
            +
                return stopping_criteria
         | 
| 78 | 
            +
             | 
| 79 | 
            +
             | 
| 80 | 
            +
            def set_random_seed(seed, set_cudnn=False):
         | 
| 81 | 
            +
                """Set the random seed for reproducibility.
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                Parameters:
         | 
| 84 | 
            +
                seed (int): The seed to use for generating random numbers.
         | 
| 85 | 
            +
                """
         | 
| 86 | 
            +
                torch.manual_seed(seed)
         | 
| 87 | 
            +
                if torch.cuda.is_available():
         | 
| 88 | 
            +
                    torch.cuda.manual_seed_all(seed)  # For multi-GPU.
         | 
| 89 | 
            +
                np.random.seed(seed)
         | 
| 90 | 
            +
                random.seed(seed)
         | 
| 91 | 
            +
                if set_cudnn and torch.backends.cudnn.is_available():
         | 
| 92 | 
            +
                    torch.backends.cudnn.deterministic = True
         | 
| 93 | 
            +
                    torch.backends.cudnn.benchmark = False
         | 
| 94 | 
            +
             | 
| 95 | 
            +
             | 
| 96 | 
            +
            def find_subarray_indices(tensor, subarray):
         | 
| 97 | 
            +
                tensor_len = len(tensor)
         | 
| 98 | 
            +
                subarray_len = len(subarray)
         | 
| 99 | 
            +
                indices = []
         | 
| 100 | 
            +
             | 
| 101 | 
            +
                if subarray_len > tensor_len:
         | 
| 102 | 
            +
                    return indices  # Subarray longer than tensor, can't be a match
         | 
| 103 | 
            +
             | 
| 104 | 
            +
                for i in range(tensor_len - subarray_len + 1):
         | 
| 105 | 
            +
                    if torch.equal(tensor[i:i + subarray_len], subarray):
         | 
| 106 | 
            +
                        indices.append((i, i + subarray_len))
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                return indices
         | 
| 109 | 
            +
             | 
| 110 | 
            +
             | 
| 111 | 
            +
            class InternLMXComposer2ForCausalLM(InternLM2PreTrainedModel):
         | 
| 112 | 
            +
                _auto_class = 'AutoModelForCausalLM'
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                _tied_weights_keys = ['output.weight']
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                def __init__(self, config):
         | 
| 117 | 
            +
                    super().__init__(config)
         | 
| 118 | 
            +
                    self.model = InternLM2Model(config)
         | 
| 119 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                    self.score = nn.Linear(config.hidden_size, 1, bias=False)
         | 
| 122 | 
            +
                    
         | 
| 123 | 
            +
                    self.tokenizer = None
         | 
| 124 | 
            +
                    self.hd_num = 25
         | 
| 125 | 
            +
                    self.font = get_font()
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                    self.max_length = config.max_length
         | 
| 128 | 
            +
                    print(f'Set max length to {self.max_length}')
         | 
| 129 | 
            +
                    # Initialize weights and apply final processing
         | 
| 130 | 
            +
                    self.post_init()
         | 
| 131 | 
            +
                    self.plora_glb_GN = nn.Parameter(torch.zeros([1, 1, 4096]))
         | 
| 132 | 
            +
                    self.plora_sub_GN = nn.Parameter(torch.zeros([1, 1, 1, 4096]))
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                    self.vit = build_vision_tower()
         | 
| 135 | 
            +
                    self.vision_proj = build_vision_projector()
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                    self.vis_processor = transforms.Compose([
         | 
| 138 | 
            +
                        transforms.ToTensor(),
         | 
| 139 | 
            +
                        transforms.Normalize((0.48145466, 0.4578275, 0.40821073),
         | 
| 140 | 
            +
                                             (0.26862954, 0.26130258, 0.27577711)),
         | 
| 141 | 
            +
                    ])
         | 
| 142 | 
            +
             | 
| 143 | 
            +
             | 
| 144 | 
            +
                def _set_gradient_checkpointing(self, module, value=False):
         | 
| 145 | 
            +
                    if isinstance(module, InternLM2Model):
         | 
| 146 | 
            +
                        module.gradient_checkpointing = value
         | 
| 147 | 
            +
                    if value:
         | 
| 148 | 
            +
                        self.vit.vision_tower.vision_model.encoder.gradient_checkpointing = value
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                def get_input_embeddings(self):
         | 
| 151 | 
            +
                    return self.model.tok_embeddings
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                def set_input_embeddings(self, value):
         | 
| 154 | 
            +
                    self.model.tok_embeddings = value
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                def set_decoder(self, decoder):
         | 
| 157 | 
            +
                    self.model = decoder
         | 
| 158 | 
            +
             | 
| 159 | 
            +
                def get_decoder(self):
         | 
| 160 | 
            +
                    return self.model
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                def encode_text(self, text, add_special_tokens=False):
         | 
| 163 | 
            +
                    token = self.tokenizer(
         | 
| 164 | 
            +
                        text, return_tensors='pt',
         | 
| 165 | 
            +
                        add_special_tokens=add_special_tokens).input_ids.to(self.device)
         | 
| 166 | 
            +
                    embs = self.model.tok_embeddings(token)
         | 
| 167 | 
            +
                    return embs
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                def encode_img(self, image, hd_num=25):
         | 
| 170 | 
            +
                    if image is None:
         | 
| 171 | 
            +
                        return None
         | 
| 172 | 
            +
                    if isinstance(image, str):
         | 
| 173 | 
            +
                        _, ext = os.path.splitext(image)
         | 
| 174 | 
            +
                        if ext.lower() in image_extensions:
         | 
| 175 | 
            +
                            image = Image.open(image).convert('RGB')
         | 
| 176 | 
            +
                            image = Image_transform(image, hd_num = hd_num)
         | 
| 177 | 
            +
                        elif ext.lower() in video_extensions:
         | 
| 178 | 
            +
                            image = load_video(image)
         | 
| 179 | 
            +
                            image = frame2img(image, self.font)
         | 
| 180 | 
            +
                            image = Video_transform(image, hd_num = hd_num)
         | 
| 181 | 
            +
                        else:
         | 
| 182 | 
            +
                            print ('Unknow input format', image)
         | 
| 183 | 
            +
                            return None
         | 
| 184 | 
            +
                        image = self.vis_processor(image).unsqueeze(0).to(self.device)
         | 
| 185 | 
            +
                    else:
         | 
| 186 | 
            +
                        assert isinstance(image, torch.Tensor)
         | 
| 187 | 
            +
             | 
| 188 | 
            +
                    img_embeds, atts_img, img_target = self.img2emb(image)
         | 
| 189 | 
            +
                    return img_embeds
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                def img2emb(self, image):
         | 
| 192 | 
            +
                    img_embeds, img_split = self.vit([image], 
         | 
| 193 | 
            +
                        self.plora_glb_GN, self.plora_sub_GN)
         | 
| 194 | 
            +
                    if len(img_split) > 1:
         | 
| 195 | 
            +
                        print ('Batch Size >1 is not supported.')
         | 
| 196 | 
            +
                        assert 0
         | 
| 197 | 
            +
                    #print (img_embeds.shape)
         | 
| 198 | 
            +
                    img_embeds = self.vision_proj(img_embeds)
         | 
| 199 | 
            +
                    atts_img = torch.ones(
         | 
| 200 | 
            +
                        img_embeds.size()[:-1], dtype=torch.long).to(img_embeds.device)
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                    img_target = torch.ones(
         | 
| 203 | 
            +
                        img_embeds.size()[:2], dtype=torch.long).to(
         | 
| 204 | 
            +
                            img_embeds.device) * -100
         | 
| 205 | 
            +
             | 
| 206 | 
            +
                    return img_embeds, atts_img, img_target
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                def prompt_wrap(self, img_embeds, prompt):
         | 
| 209 | 
            +
                    batch_size = img_embeds.shape[0]
         | 
| 210 | 
            +
                    p_before, p_after = prompt.split('<ImageHere>')
         | 
| 211 | 
            +
                    p_before_tokens = self.tokenizer(
         | 
| 212 | 
            +
                        p_before, return_tensors='pt',
         | 
| 213 | 
            +
                        add_special_tokens=True).to(img_embeds.device)
         | 
| 214 | 
            +
             | 
| 215 | 
            +
                    p_before_embeds = self.model.tok_embeddings(
         | 
| 216 | 
            +
                        p_before_tokens.input_ids).expand(batch_size, -1, -1)
         | 
| 217 | 
            +
                    wrapped_img_embeds = torch.cat([p_before_embeds, img_embeds], dim=1)
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                    wrapped_atts_img = torch.ones(
         | 
| 220 | 
            +
                        wrapped_img_embeds.size()[:-1],
         | 
| 221 | 
            +
                        dtype=torch.long).to(img_embeds.device)
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                    wrapped_target = torch.ones(
         | 
| 224 | 
            +
                        batch_size, wrapped_img_embeds.shape[1], dtype=torch.long).to(
         | 
| 225 | 
            +
                            img_embeds.device) * -100
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                    return wrapped_img_embeds, wrapped_atts_img, wrapped_target
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                def text2emb(self, text, add_special_tokens=False):
         | 
| 230 | 
            +
                    to_regress_tokens = self.tokenizer(
         | 
| 231 | 
            +
                        text,
         | 
| 232 | 
            +
                        return_tensors='pt',
         | 
| 233 | 
            +
                        padding='longest',
         | 
| 234 | 
            +
                        truncation=True,
         | 
| 235 | 
            +
                        max_length=self.max_length,
         | 
| 236 | 
            +
                        add_special_tokens=add_special_tokens
         | 
| 237 | 
            +
                    ).to(self.device)
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                    targets = self.mask_human_targets(to_regress_tokens.input_ids)
         | 
| 240 | 
            +
                    targets = targets.to(self.device)
         | 
| 241 | 
            +
                    return to_regress_tokens, targets
         | 
| 242 | 
            +
             | 
| 243 | 
            +
                def apply_chat_template(self, conversation, image, max_length: int=16384, hd_num: int=24, apply_template=True):
         | 
| 244 | 
            +
                    if apply_template:
         | 
| 245 | 
            +
                        prompt = ''
         | 
| 246 | 
            +
                        for message in conversation:
         | 
| 247 | 
            +
                            role = message['role']
         | 
| 248 | 
            +
                            content = message['content']
         | 
| 249 | 
            +
                            if role in ['system', 'user', 'assistant']:
         | 
| 250 | 
            +
                                prompt += f"""[UNUSED_TOKEN_146]{role}\n{content}[UNUSED_TOKEN_145]\n"""
         | 
| 251 | 
            +
                            else:
         | 
| 252 | 
            +
                                raise NotImplementedError(f"The role '{role}' is not a valid")
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                        # end
         | 
| 255 | 
            +
                        prompt = prompt + '</s>'
         | 
| 256 | 
            +
                        # reward token id
         | 
| 257 | 
            +
                        prompt = prompt + '[UNUSED_TOKEN_130]'
         | 
| 258 | 
            +
                    else:
         | 
| 259 | 
            +
                        image_nums = len(image)
         | 
| 260 | 
            +
                        prompt = conversation
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                    image_nums = len(image)
         | 
| 263 | 
            +
                    if image_nums == 1 and prompt.find('<ImageHere>') == -1:
         | 
| 264 | 
            +
                        # print ('auto append image at the begining')
         | 
| 265 | 
            +
                        prompt = '<ImageHere>' + prompt
         | 
| 266 | 
            +
             | 
| 267 | 
            +
                    parts = prompt.split('<ImageHere>')
         | 
| 268 | 
            +
                    wrap_tokens = []
         | 
| 269 | 
            +
                    wrap_embeds, wrap_im_mask = [], []
         | 
| 270 | 
            +
                    temp_len = 0
         | 
| 271 | 
            +
                    need_bos = True
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                    if len(parts) != image_nums + 1:
         | 
| 274 | 
            +
                        #raise ValueError('Invalid <ImageHere> prompt format.')
         | 
| 275 | 
            +
                        print ('Waring! The image number != given position!')
         | 
| 276 | 
            +
                    if image_nums > 1:
         | 
| 277 | 
            +
                        hd_num = 6
         | 
| 278 | 
            +
                    else:
         | 
| 279 | 
            +
                        hu_num = hd_num
         | 
| 280 | 
            +
                    for idx, part in enumerate(parts):
         | 
| 281 | 
            +
                        if need_bos or len(part) > 0:
         | 
| 282 | 
            +
                            part_tokens = self.tokenizer(
         | 
| 283 | 
            +
                                part,
         | 
| 284 | 
            +
                                return_tensors='pt',
         | 
| 285 | 
            +
                                padding='longest',
         | 
| 286 | 
            +
                                add_special_tokens=need_bos).to(self.device)
         | 
| 287 | 
            +
                            if need_bos:
         | 
| 288 | 
            +
                                need_bos = False
         | 
| 289 | 
            +
             | 
| 290 | 
            +
                            wrap_tokens.append(part_tokens.input_ids)
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                            part_embeds = self.model.tok_embeddings(
         | 
| 293 | 
            +
                                part_tokens.input_ids)
         | 
| 294 | 
            +
                            wrap_embeds.append(part_embeds)
         | 
| 295 | 
            +
                            wrap_im_mask.append(torch.zeros(part_embeds.shape[:2]))
         | 
| 296 | 
            +
                            temp_len += part_embeds.shape[1]
         | 
| 297 | 
            +
                        if idx < image_nums:
         | 
| 298 | 
            +
                            if isinstance(image[idx], str):
         | 
| 299 | 
            +
                                img = self.encode_img(image[idx], hd_num)
         | 
| 300 | 
            +
                            else:
         | 
| 301 | 
            +
                                # torch.tensor
         | 
| 302 | 
            +
                                img, _, _ = self.img2emb(image[idx])
         | 
| 303 | 
            +
                            wrap_embeds.append(img)
         | 
| 304 | 
            +
                            wrap_token = torch.ones(img.shape[:2], dtype=torch.long).to(self.device) * -100
         | 
| 305 | 
            +
                            wrap_tokens.append(wrap_token)
         | 
| 306 | 
            +
                            wrap_im_mask.append(torch.ones(img.shape[:2]))
         | 
| 307 | 
            +
                            temp_len += img.shape[1]
         | 
| 308 | 
            +
                        if temp_len > max_length:
         | 
| 309 | 
            +
                            break
         | 
| 310 | 
            +
             | 
| 311 | 
            +
                    wrap_tokens = torch.cat(wrap_tokens, dim=1)
         | 
| 312 | 
            +
                
         | 
| 313 | 
            +
                    wrap_embeds = torch.cat(wrap_embeds, dim=1)
         | 
| 314 | 
            +
                    wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
         | 
| 315 | 
            +
                    wrap_embeds = wrap_embeds[:, :max_length].to(self.device)
         | 
| 316 | 
            +
                    wrap_im_mask = wrap_im_mask[:, :max_length].to(self.device).bool()
         | 
| 317 | 
            +
                    return wrap_embeds, wrap_im_mask, temp_len
         | 
| 318 | 
            +
             | 
| 319 | 
            +
                def get_score(self, conversation: List[dict], image: List[str], max_length: int=16384, hd_num: int=24, apply_template: bool=True):
         | 
| 320 | 
            +
                    inputs_embeds, im_mask, _ = self.apply_chat_template(conversation, image, max_length, hd_num, apply_template)
         | 
| 321 | 
            +
                    attention_mask = torch.ones(1, inputs_embeds.shape[1]).to(bool).to(self.device)
         | 
| 322 | 
            +
                    outputs = self.forward(inputs_embeds=inputs_embeds, attention_mask=attention_mask, im_mask=im_mask)
         | 
| 323 | 
            +
                    score = outputs.logits.cpu().item()
         | 
| 324 | 
            +
                    return score
         | 
| 325 | 
            +
             | 
| 326 | 
            +
                def get_scores(self, conversations: List[List[dict]], images: List[List[str]], max_length: int=16384, hd_num: int=24, apply_template: bool=True):
         | 
| 327 | 
            +
                    temp_embeds = []
         | 
| 328 | 
            +
                    temp_im_mask = []
         | 
| 329 | 
            +
                    for conversation, image in zip(conversations, images):
         | 
| 330 | 
            +
                        inputs_embeds, im_mask, _ = self.apply_chat_template(conversation, image, max_length, hd_num, apply_template)
         | 
| 331 | 
            +
                        temp_embeds.append(inputs_embeds)
         | 
| 332 | 
            +
                        temp_im_mask.append(im_mask)
         | 
| 333 | 
            +
             | 
| 334 | 
            +
                    temp_max_len = np.max([i.shape[1] for i in temp_embeds])
         | 
| 335 | 
            +
                    temp_max_len = min(temp_max_len, max_length)
         | 
| 336 | 
            +
             | 
| 337 | 
            +
                    batch_input_embeds, batch_atts, batch_im_mask = [], [], []
         | 
| 338 | 
            +
                    pad = torch.ones([1, 1]) * self.tokenizer.pad_token_id
         | 
| 339 | 
            +
                    pad = pad.long().to(self.device)
         | 
| 340 | 
            +
                    pad_emb = self.model.tok_embeddings(pad)
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                    for idx in range(len(temp_embeds)):
         | 
| 343 | 
            +
                        temp_len = temp_embeds[idx].shape[1]
         | 
| 344 | 
            +
                        dtype = temp_im_mask[idx].dtype
         | 
| 345 | 
            +
                        if temp_len >= temp_max_len:
         | 
| 346 | 
            +
                            batch_input_embeds.append(temp_embeds[idx][:, :temp_max_len])
         | 
| 347 | 
            +
                            batch_atts.append(torch.ones(1, temp_max_len).to(dtype).to(self.device))
         | 
| 348 | 
            +
                            batch_im_mask.append(temp_im_mask[idx][:, :temp_max_len])
         | 
| 349 | 
            +
                        else:
         | 
| 350 | 
            +
                            batch_input_embeds.append(torch.cat([temp_embeds[idx], pad_emb.repeat(1, temp_max_len-temp_len, 1)], dim=1))
         | 
| 351 | 
            +
                            batch_atts.append(torch.cat([torch.ones(1, temp_len), torch.zeros(1, temp_max_len-temp_len)], dim=1).to(dtype).to(self.device))
         | 
| 352 | 
            +
                            batch_im_mask.append(torch.cat([temp_im_mask[idx], (torch.zeros(1, temp_max_len-temp_len)).to(dtype).to(self.device)], dim=1))
         | 
| 353 | 
            +
             | 
| 354 | 
            +
                    batch_inputs_embeds = torch.cat(batch_input_embeds, dim=0)
         | 
| 355 | 
            +
                    batch_atts = torch.cat(batch_atts, dim=0)
         | 
| 356 | 
            +
                    batch_im_mask = torch.cat(batch_im_mask, dim=0)
         | 
| 357 | 
            +
             | 
| 358 | 
            +
                    outputs = self.forward(inputs_embeds=batch_inputs_embeds, attention_mask=batch_atts, im_mask=batch_im_mask)
         | 
| 359 | 
            +
                    scores = outputs.logits.squeeze().cpu().tolist()
         | 
| 360 | 
            +
                    return scores
         | 
| 361 | 
            +
             | 
| 362 | 
            +
                @torch.no_grad()
         | 
| 363 | 
            +
                def compare(self, conversation1: List[dict], image1: List[str], conversation2: List[dict], image2: List[str], max_length: int=16384, hd_num: int=24, return_logits: bool=False, apply_template: bool=True):
         | 
| 364 | 
            +
                    score1 = self.get_score(conversation1, image1, max_length, hd_num, apply_template)
         | 
| 365 | 
            +
                    score2 = self.get_score(conversation2, image2, max_length, hd_num, apply_template)
         | 
| 366 | 
            +
                    if return_logits:
         | 
| 367 | 
            +
                        return score1 > score2, [score1, score2]
         | 
| 368 | 
            +
                    else:
         | 
| 369 | 
            +
                        return score1 > score2
         | 
| 370 | 
            +
             | 
| 371 | 
            +
                @torch.no_grad()
         | 
| 372 | 
            +
                def rank(self, conversations: List[List[dict]], images: List[List[str]], max_length: int=16384, hd_num: int=24, return_logits: bool=False, apply_template: bool=True):
         | 
| 373 | 
            +
                    scores = self.get_scores(conversations, images, max_length, hd_num, apply_template)
         | 
| 374 | 
            +
                    if return_logits:
         | 
| 375 | 
            +
                        return sorted(range(len(scores)), key=lambda i: scores[i], reverse=True), scores
         | 
| 376 | 
            +
                    else:
         | 
| 377 | 
            +
                        return sorted(range(len(scores)), key=lambda i: scores[i], reverse=True)
         | 
| 378 | 
            +
             | 
| 379 | 
            +
                def interleav_wrap(self, img_list, text_list, image_nums):
         | 
| 380 | 
            +
                    temp_tokens = []
         | 
| 381 | 
            +
                    temp_embeds = []
         | 
| 382 | 
            +
                    temp_im_mask = []
         | 
| 383 | 
            +
                    temp_tars = []
         | 
| 384 | 
            +
             | 
| 385 | 
            +
                    # encode_image
         | 
| 386 | 
            +
                    img_embeds, img_split = self.vit(img_list, self.plora_glb_GN, self.plora_sub_GN)
         | 
| 387 | 
            +
                    img_embeds = self.vision_proj(img_embeds)
         | 
| 388 | 
            +
             | 
| 389 | 
            +
                    for idx, text in enumerate(text_list):
         | 
| 390 | 
            +
                        idx_ = idx // 2
         | 
| 391 | 
            +
                        image_num = image_nums[idx_]
         | 
| 392 | 
            +
                        im_id = int(np.sum(image_nums[:idx_]))
         | 
| 393 | 
            +
                        images = []
         | 
| 394 | 
            +
                        for i in range(image_num):
         | 
| 395 | 
            +
                            st = int(np.sum(img_split[:im_id + i]))
         | 
| 396 | 
            +
                            sp = img_split[im_id + i]
         | 
| 397 | 
            +
                            temp_img = img_embeds[:, st:st+sp]
         | 
| 398 | 
            +
                            images.append(temp_img)
         | 
| 399 | 
            +
                        atts_img = torch.ones((len(images), images[0].shape[1]), dtype=torch.long).to(self.device)
         | 
| 400 | 
            +
                        img_target = torch.ones(
         | 
| 401 | 
            +
                            (len(images), images[0].shape[1]), dtype=torch.long).to(
         | 
| 402 | 
            +
                                self.device) * -100
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                        if image_num == 1 and text.find('<ImageHere>') == -1:
         | 
| 405 | 
            +
                            text = '<ImageHere>' + text
         | 
| 406 | 
            +
                        parts = text.split('<ImageHere>')
         | 
| 407 | 
            +
             | 
| 408 | 
            +
                        wrap_tokens, wrap_embeds, wrap_im_mask = [], [], []
         | 
| 409 | 
            +
                        temp_len = 0
         | 
| 410 | 
            +
                        need_bos = True
         | 
| 411 | 
            +
                        for idx, part in enumerate(parts):
         | 
| 412 | 
            +
                            if need_bos or len(part) > 0:
         | 
| 413 | 
            +
                                part_tokens = self.tokenizer(part, return_tensors='pt', padding='longest',
         | 
| 414 | 
            +
                                                             add_special_tokens=need_bos).to(self.device)
         | 
| 415 | 
            +
                                if need_bos:
         | 
| 416 | 
            +
                                    need_bos = False
         | 
| 417 | 
            +
                                wrap_tokens.append(part_tokens.input_ids)
         | 
| 418 | 
            +
                                part_embeds = self.model.tok_embeddings(part_tokens.input_ids)
         | 
| 419 | 
            +
                                wrap_embeds.append(part_embeds)
         | 
| 420 | 
            +
                                wrap_im_mask.append(torch.zeros(part_embeds.shape[:2]).to(self.device))
         | 
| 421 | 
            +
                                temp_len += part_embeds.shape[1]
         | 
| 422 | 
            +
                            if idx < image_num:
         | 
| 423 | 
            +
                                wrap_embeds.append(images[idx])
         | 
| 424 | 
            +
                                wrap_token = torch.ones(images[idx].shape[:2], dtype=torch.long).to(self.device) * -100
         | 
| 425 | 
            +
                                wrap_tokens.append(wrap_token)
         | 
| 426 | 
            +
                                wrap_im_mask.append(torch.ones(images[idx].shape[:2]).to(self.device))
         | 
| 427 | 
            +
                                temp_len += images[idx].shape[1]
         | 
| 428 | 
            +
                            if temp_len > self.max_length:
         | 
| 429 | 
            +
                                break
         | 
| 430 | 
            +
                        wrap_tokens = torch.cat(wrap_tokens, dim=1)
         | 
| 431 | 
            +
                        wrap_embeds = torch.cat(wrap_embeds, dim=1)
         | 
| 432 | 
            +
                        wrap_im_mask = torch.cat(wrap_im_mask, dim=1)
         | 
| 433 | 
            +
             | 
| 434 | 
            +
                        wrap_target = self.mask_human_targets(wrap_tokens).to(self.device)
         | 
| 435 | 
            +
             | 
| 436 | 
            +
                        temp_tokens.append(wrap_tokens)
         | 
| 437 | 
            +
                        temp_embeds.append(wrap_embeds)
         | 
| 438 | 
            +
                        temp_im_mask.append(wrap_im_mask)
         | 
| 439 | 
            +
                        temp_tars.append(wrap_target)
         | 
| 440 | 
            +
             | 
| 441 | 
            +
                    temp_max_len = np.max([i.shape[1] for i in temp_embeds])
         | 
| 442 | 
            +
                    temp_max_len = min(temp_max_len, self.max_length)
         | 
| 443 | 
            +
             | 
| 444 | 
            +
                    final_input_ids, final_input_embeds, final_atts, final_tars, final_mask = [], [], [], [], []
         | 
| 445 | 
            +
                    pad = torch.ones([1, 1]) * self.tokenizer.pad_token_id
         | 
| 446 | 
            +
                    pad = pad.long().to(self.device)
         | 
| 447 | 
            +
                    pad_emb = self.model.tok_embeddings(pad)
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                    for idx in range(len(temp_embeds)):
         | 
| 450 | 
            +
                        temp_len = temp_embeds[idx].shape[1]
         | 
| 451 | 
            +
                        if temp_len >= temp_max_len:
         | 
| 452 | 
            +
                            final_input_ids.append(temp_tokens[idx][:, :temp_max_len])
         | 
| 453 | 
            +
                            final_input_embeds.append(temp_embeds[idx][:, :temp_max_len])
         | 
| 454 | 
            +
                            final_atts.append(torch.ones(1, temp_max_len).to(wrap_target.dtype).to(self.device))
         | 
| 455 | 
            +
                            final_tars.append(temp_tars[idx][:, :temp_max_len])
         | 
| 456 | 
            +
                            final_mask.append(temp_im_mask[idx][:, :temp_max_len])
         | 
| 457 | 
            +
                        else:
         | 
| 458 | 
            +
                            final_input_ids.append(torch.cat([temp_tokens[idx], (torch.ones(1, temp_max_len-temp_len) * self.tokenizer.pad_token_id).to(wrap_target.dtype).to(self.device)], dim=1))
         | 
| 459 | 
            +
                            final_input_embeds.append(torch.cat([temp_embeds[idx], pad_emb.repeat(1, temp_max_len-temp_len, 1)], dim=1))
         | 
| 460 | 
            +
                            final_atts.append(torch.cat([torch.ones(1, temp_len), torch.zeros(1, temp_max_len-temp_len)], dim=1).to(wrap_target.dtype).to(self.device))
         | 
| 461 | 
            +
                            final_tars.append(torch.cat([temp_tars[idx], (torch.ones(1, temp_max_len-temp_len)*-100).to(wrap_target.dtype).to(self.device)], dim=1))
         | 
| 462 | 
            +
                            final_mask.append(torch.cat([temp_im_mask[idx], (torch.zeros(1, temp_max_len-temp_len)).to(wrap_target.dtype).to(self.device)], dim=1))
         | 
| 463 | 
            +
             | 
| 464 | 
            +
                    input_ids = torch.cat(final_input_ids, dim=0)
         | 
| 465 | 
            +
                    inputs_embeds = torch.cat(final_input_embeds, dim=0)
         | 
| 466 | 
            +
                    attention_mask = torch.cat(final_atts, dim=0)
         | 
| 467 | 
            +
                    targets = torch.cat(final_tars, dim=0)
         | 
| 468 | 
            +
                    im_mask = torch.cat(final_mask, dim=0)
         | 
| 469 | 
            +
             | 
| 470 | 
            +
                    # to avoid error in DPO loss
         | 
| 471 | 
            +
                    input_ids[input_ids == -100] = self.tokenizer.pad_token_id
         | 
| 472 | 
            +
             | 
| 473 | 
            +
                    return input_ids, inputs_embeds, attention_mask, targets, im_mask
         | 
| 474 | 
            +
             | 
| 475 | 
            +
                def mask_human_targets(self, input_ids, pure=False):
         | 
| 476 | 
            +
                    target_batch = []
         | 
| 477 | 
            +
                    system_tokens = torch.tensor([92543, 9081]).to(self.device)
         | 
| 478 | 
            +
                    for bs in range(input_ids.shape[0]):
         | 
| 479 | 
            +
                        ids = input_ids[bs]
         | 
| 480 | 
            +
                        targets = copy.deepcopy(ids)
         | 
| 481 | 
            +
                        end_count = 0
         | 
| 482 | 
            +
                        last_eoa = 0
         | 
| 483 | 
            +
                        # 92542 -> [UNUSED_TOKEN_145]
         | 
| 484 | 
            +
                        # 92543 -> [UNUSED_TOKEN_146]
         | 
| 485 | 
            +
                        # 9081 -> system
         | 
| 486 | 
            +
                        for i, temp_id in enumerate(ids):
         | 
| 487 | 
            +
                            if temp_id == 92542:
         | 
| 488 | 
            +
                                search_results = find_subarray_indices(targets[last_eoa:i + 1], system_tokens)
         | 
| 489 | 
            +
                                if len(search_results) > 0:
         | 
| 490 | 
            +
                                    targets[last_eoa:i + 1] = -100
         | 
| 491 | 
            +
                                    last_eoa = i + 1
         | 
| 492 | 
            +
                                else:
         | 
| 493 | 
            +
                                    if end_count % 2 == 0:
         | 
| 494 | 
            +
                                        targets[last_eoa:i + 6] = -100
         | 
| 495 | 
            +
                                    else:
         | 
| 496 | 
            +
                                        last_eoa = i + 1
         | 
| 497 | 
            +
                                    end_count += 1
         | 
| 498 | 
            +
                            # # eos and following pad
         | 
| 499 | 
            +
                            elif temp_id == 2:
         | 
| 500 | 
            +
                                # loss on eos, but not on pad
         | 
| 501 | 
            +
                                targets[i + 1:] = -100
         | 
| 502 | 
            +
                                break
         | 
| 503 | 
            +
                        # trunction, end at last question
         | 
| 504 | 
            +
                        if temp_id != 2 and end_count % 2 == 0:
         | 
| 505 | 
            +
                            # mask all after the last answer
         | 
| 506 | 
            +
                            targets[last_eoa + 1:] = -100
         | 
| 507 | 
            +
                        target_batch.append(targets.unsqueeze(0))
         | 
| 508 | 
            +
                    target_batch = torch.cat(target_batch, dim=0)
         | 
| 509 | 
            +
                    return target_batch
         | 
| 510 | 
            +
             | 
| 511 | 
            +
                @add_start_docstrings_to_model_forward(InternLM2_INPUTS_DOCSTRING)
         | 
| 512 | 
            +
                @replace_return_docstrings(
         | 
| 513 | 
            +
                    output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
         | 
| 514 | 
            +
                def forward(self,
         | 
| 515 | 
            +
                            input_ids: torch.LongTensor = None,
         | 
| 516 | 
            +
                            attention_mask: Optional[torch.Tensor] = None,
         | 
| 517 | 
            +
                            position_ids: Optional[torch.LongTensor] = None,
         | 
| 518 | 
            +
                            past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 519 | 
            +
                            inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 520 | 
            +
                            labels: Optional[torch.LongTensor] = None,
         | 
| 521 | 
            +
                            use_cache: Optional[bool] = None,
         | 
| 522 | 
            +
                            output_attentions: Optional[bool] = None,
         | 
| 523 | 
            +
                            output_hidden_states: Optional[bool] = None,
         | 
| 524 | 
            +
                            return_dict: Optional[bool] = None,
         | 
| 525 | 
            +
                            **kwargs) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 526 | 
            +
                    r"""
         | 
| 527 | 
            +
                    Args:
         | 
| 528 | 
            +
                        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 529 | 
            +
                            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
         | 
| 530 | 
            +
                            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         | 
| 531 | 
            +
                            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         | 
| 532 | 
            +
                    Returns:
         | 
| 533 | 
            +
                    """
         | 
| 534 | 
            +
             | 
| 535 | 
            +
                    samples = kwargs.get('samples', None)
         | 
| 536 | 
            +
                    if samples:
         | 
| 537 | 
            +
                        infer_mode = samples.get('infer_mode', 'base')
         | 
| 538 | 
            +
                        if samples['data_type'][0] == 'text':
         | 
| 539 | 
            +
                            has_img = False
         | 
| 540 | 
            +
                        elif samples['data_type'][0] == 'multi':
         | 
| 541 | 
            +
                            has_img = True
         | 
| 542 | 
            +
                        else:
         | 
| 543 | 
            +
                            raise NotImplementedError
         | 
| 544 | 
            +
             | 
| 545 | 
            +
                        # encode text
         | 
| 546 | 
            +
                        text_chosen = samples['chosen'][0]
         | 
| 547 | 
            +
                        text_rejected = samples['rejected'][0]
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                        text = [x for pair in zip(text_chosen, text_rejected) for x in pair]
         | 
| 550 | 
            +
             | 
| 551 | 
            +
                        # encode image
         | 
| 552 | 
            +
                        if has_img:
         | 
| 553 | 
            +
                            image = samples['image'][0]
         | 
| 554 | 
            +
                            bs = len(text)
         | 
| 555 | 
            +
                            image_nums = []
         | 
| 556 | 
            +
                            temp_image = []
         | 
| 557 | 
            +
                            for im in image:
         | 
| 558 | 
            +
                                if type(im) is list:
         | 
| 559 | 
            +
                                    image_nums.append(len(im))
         | 
| 560 | 
            +
                                    temp_image.extend(im)
         | 
| 561 | 
            +
                                else:
         | 
| 562 | 
            +
                                    image_nums.append(1)
         | 
| 563 | 
            +
                                    temp_image.append(im)
         | 
| 564 | 
            +
                            image = temp_image
         | 
| 565 | 
            +
             | 
| 566 | 
            +
                            assert type(image) is list and len(image_nums) * 2 == bs
         | 
| 567 | 
            +
             | 
| 568 | 
            +
                            input_ids_for_loss, to_regress_embeds, attention_mask, targets, im_mask = self.interleav_wrap(
         | 
| 569 | 
            +
                                image, text, image_nums)
         | 
| 570 | 
            +
                        else:
         | 
| 571 | 
            +
                            to_regress_tokens, targets = self.text2emb(
         | 
| 572 | 
            +
                                text, add_special_tokens=True)
         | 
| 573 | 
            +
                            to_regress_embeds = self.model.tok_embeddings(
         | 
| 574 | 
            +
                                to_regress_tokens.input_ids)
         | 
| 575 | 
            +
                            attention_mask = to_regress_tokens.attention_mask
         | 
| 576 | 
            +
                            im_mask = torch.zeros(to_regress_embeds.shape[:2]).cuda()
         | 
| 577 | 
            +
                            input_ids_for_loss = to_regress_tokens.input_ids
         | 
| 578 | 
            +
             | 
| 579 | 
            +
                        input_ids_for_loss = input_ids_for_loss[:, :self.max_length]
         | 
| 580 | 
            +
                        inputs_embeds = to_regress_embeds[:, :self.max_length]
         | 
| 581 | 
            +
                        attention_mask = attention_mask[:, :self.max_length]
         | 
| 582 | 
            +
                        targets = targets[:, :self.max_length]
         | 
| 583 | 
            +
                        im_mask = im_mask[:, :self.max_length].bool()
         | 
| 584 | 
            +
                        labels = targets
         | 
| 585 | 
            +
                    else:
         | 
| 586 | 
            +
                        im_mask = kwargs.get('im_mask', None)
         | 
| 587 | 
            +
                        infer_mode = kwargs.get('infer_mode', 'base')
         | 
| 588 | 
            +
                        if im_mask is None and inputs_embeds is not None:
         | 
| 589 | 
            +
                            im_mask = torch.zeros(inputs_embeds.shape[:2]).to(
         | 
| 590 | 
            +
                                inputs_embeds.device)
         | 
| 591 | 
            +
                            im_mask = im_mask.bool()
         | 
| 592 | 
            +
             | 
| 593 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 594 | 
            +
                    output_hidden_states = (
         | 
| 595 | 
            +
                        output_hidden_states if output_hidden_states is not None else
         | 
| 596 | 
            +
                        self.config.output_hidden_states)
         | 
| 597 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 598 | 
            +
             | 
| 599 | 
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         | 
| 600 | 
            +
                    transformer_outputs = self.model(
         | 
| 601 | 
            +
                        input_ids=input_ids,
         | 
| 602 | 
            +
                        attention_mask=attention_mask,
         | 
| 603 | 
            +
                        position_ids=position_ids,
         | 
| 604 | 
            +
                        past_key_values=past_key_values,
         | 
| 605 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 606 | 
            +
                        use_cache=use_cache,
         | 
| 607 | 
            +
                        output_attentions=output_attentions,
         | 
| 608 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 609 | 
            +
                        return_dict=return_dict,
         | 
| 610 | 
            +
                        im_mask=im_mask,
         | 
| 611 | 
            +
                        infer_mode=infer_mode,
         | 
| 612 | 
            +
                    )
         | 
| 613 | 
            +
             | 
| 614 | 
            +
                    hidden_states = transformer_outputs[0]
         | 
| 615 | 
            +
             | 
| 616 | 
            +
                    logits = self.score(hidden_states)
         | 
| 617 | 
            +
                    logits = logits.float()
         | 
| 618 | 
            +
             | 
| 619 | 
            +
                    if input_ids is not None:
         | 
| 620 | 
            +
                        batch_size = input_ids.shape[0]
         | 
| 621 | 
            +
                    else:
         | 
| 622 | 
            +
                        batch_size = inputs_embeds.shape[0]
         | 
| 623 | 
            +
             | 
| 624 | 
            +
                    ends = attention_mask.cumsum(dim=1).argmax(dim=1).view(-1,1)
         | 
| 625 | 
            +
                    pooled_logits = torch.gather(logits.squeeze(-1), 1, ends)
         | 
| 626 | 
            +
             | 
| 627 | 
            +
                    loss = None
         | 
| 628 | 
            +
                    if self.training:
         | 
| 629 | 
            +
                        chosen_idx = torch.arange(0, batch_size, 2)
         | 
| 630 | 
            +
                        rejected_idx = chosen_idx + 1
         | 
| 631 | 
            +
                        loss = -F.logsigmoid(pooled_logits[chosen_idx] - pooled_logits[rejected_idx]).mean()
         | 
| 632 | 
            +
             | 
| 633 | 
            +
                    if not return_dict:
         | 
| 634 | 
            +
                        output = (pooled_logits,) + transformer_outputs[1:]
         | 
| 635 | 
            +
                        return ((loss,) + output) if loss is not None else output
         | 
| 636 | 
            +
             | 
| 637 | 
            +
                    return SequenceClassifierOutputWithPast(
         | 
| 638 | 
            +
                        loss=loss,
         | 
| 639 | 
            +
                        logits=pooled_logits,
         | 
| 640 | 
            +
                        past_key_values=transformer_outputs.past_key_values,
         | 
| 641 | 
            +
                        hidden_states=transformer_outputs.hidden_states,
         | 
| 642 | 
            +
                        attentions=transformer_outputs.attentions,
         | 
| 643 | 
            +
                    )
         | 
| 644 | 
            +
                        
         | 
| 645 | 
            +
             | 
| 646 | 
            +
                def prepare_inputs_for_generation(self,
         | 
| 647 | 
            +
                                                  input_ids,
         | 
| 648 | 
            +
                                                  past_key_values=None,
         | 
| 649 | 
            +
                                                  attention_mask=None,
         | 
| 650 | 
            +
                                                  inputs_embeds=None,
         | 
| 651 | 
            +
                                                  im_mask=None,
         | 
| 652 | 
            +
                                                  infer_mode='base',
         | 
| 653 | 
            +
                                                  **kwargs):
         | 
| 654 | 
            +
                    if past_key_values is not None:
         | 
| 655 | 
            +
                        past_length = past_key_values[0][0].shape[2]
         | 
| 656 | 
            +
             | 
| 657 | 
            +
                        # Some generation methods already pass only the last input ID
         | 
| 658 | 
            +
                        if input_ids.shape[1] > past_length:
         | 
| 659 | 
            +
                            remove_prefix_length = past_length
         | 
| 660 | 
            +
                        else:
         | 
| 661 | 
            +
                            # Default to old behavior: keep only final ID
         | 
| 662 | 
            +
                            remove_prefix_length = input_ids.shape[1] - 1
         | 
| 663 | 
            +
             | 
| 664 | 
            +
                        input_ids = input_ids[:, remove_prefix_length:]
         | 
| 665 | 
            +
             | 
| 666 | 
            +
                    position_ids = kwargs.get('position_ids', None)
         | 
| 667 | 
            +
                    if attention_mask is not None and position_ids is None:
         | 
| 668 | 
            +
                        # create position_ids on the fly for batch generation
         | 
| 669 | 
            +
                        position_ids = attention_mask.long().cumsum(-1) - 1
         | 
| 670 | 
            +
                        position_ids.masked_fill_(attention_mask == 0, 1)
         | 
| 671 | 
            +
                        if past_key_values:
         | 
| 672 | 
            +
                            position_ids = position_ids[:, -input_ids.shape[1]:]
         | 
| 673 | 
            +
             | 
| 674 | 
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         | 
| 675 | 
            +
                    if inputs_embeds is not None and past_key_values is None:
         | 
| 676 | 
            +
                        model_inputs = {'inputs_embeds': inputs_embeds}
         | 
| 677 | 
            +
                    else:
         | 
| 678 | 
            +
                        model_inputs = {'input_ids': input_ids}
         | 
| 679 | 
            +
             | 
| 680 | 
            +
                    im_mask = im_mask
         | 
| 681 | 
            +
             | 
| 682 | 
            +
                    model_inputs.update({
         | 
| 683 | 
            +
                        'position_ids': position_ids,
         | 
| 684 | 
            +
                        'past_key_values': past_key_values,
         | 
| 685 | 
            +
                        'use_cache': kwargs.get('use_cache'),
         | 
| 686 | 
            +
                        'attention_mask': attention_mask,
         | 
| 687 | 
            +
                        'im_mask': im_mask,
         | 
| 688 | 
            +
                        'infer_mode': infer_mode, 
         | 
| 689 | 
            +
                    })
         | 
| 690 | 
            +
                    return model_inputs
         | 
| 691 | 
            +
             | 
| 692 | 
            +
                @staticmethod
         | 
| 693 | 
            +
                def _reorder_cache(past_key_values, beam_idx):
         | 
| 694 | 
            +
                    reordered_past = ()
         | 
| 695 | 
            +
                    for layer_past in past_key_values:
         | 
| 696 | 
            +
                        reordered_past += (tuple(
         | 
| 697 | 
            +
                            past_state.index_select(0, beam_idx.to(past_state.device))
         | 
| 698 | 
            +
                            for past_state in layer_past), )
         | 
| 699 | 
            +
                    return reordered_past
         | 
| 700 | 
            +
             | 
| 701 | 
            +
                def build_inputs(self,
         | 
| 702 | 
            +
                                 tokenizer,
         | 
| 703 | 
            +
                                 query: str,
         | 
| 704 | 
            +
                                 history: List[Tuple[str, str]] = [],
         | 
| 705 | 
            +
                                 meta_instruction=''):
         | 
| 706 | 
            +
                    prompt = ''
         | 
| 707 | 
            +
                    if meta_instruction:
         | 
| 708 | 
            +
                        prompt += f"""<s>[UNUSED_TOKEN_146]system\n{meta_instruction}[UNUSED_TOKEN_145]\n"""
         | 
| 709 | 
            +
                    else:
         | 
| 710 | 
            +
                        prompt += '<s>'
         | 
| 711 | 
            +
                    for record in history:
         | 
| 712 | 
            +
                        prompt += f"""[UNUSED_TOKEN_146]user\n{record[0]}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n{record[1]}[UNUSED_TOKEN_145]\n"""
         | 
| 713 | 
            +
                    prompt += f"""[UNUSED_TOKEN_146]user\n{query}[UNUSED_TOKEN_145]\n[UNUSED_TOKEN_146]assistant\n"""
         | 
| 714 | 
            +
                    return tokenizer([prompt], return_tensors='pt')
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,38 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "additional_special_tokens": [
         | 
| 3 | 
            +
                "<|im_start|>",
         | 
| 4 | 
            +
                "<|im_end|>",
         | 
| 5 | 
            +
                "<|action_start|>",
         | 
| 6 | 
            +
                "<|action_end|>",
         | 
| 7 | 
            +
                "<|interpreter|>",
         | 
| 8 | 
            +
                "<|plugin|>"
         | 
| 9 | 
            +
              ],
         | 
| 10 | 
            +
              "bos_token": {
         | 
| 11 | 
            +
                "content": "<s>",
         | 
| 12 | 
            +
                "lstrip": false,
         | 
| 13 | 
            +
                "normalized": false,
         | 
| 14 | 
            +
                "rstrip": false,
         | 
| 15 | 
            +
                "single_word": false
         | 
| 16 | 
            +
              },
         | 
| 17 | 
            +
              "eos_token": {
         | 
| 18 | 
            +
                "content": "</s>",
         | 
| 19 | 
            +
                "lstrip": false,
         | 
| 20 | 
            +
                "normalized": false,
         | 
| 21 | 
            +
                "rstrip": false,
         | 
| 22 | 
            +
                "single_word": false
         | 
| 23 | 
            +
              },
         | 
| 24 | 
            +
              "pad_token": {
         | 
| 25 | 
            +
                "content": "</s>",
         | 
| 26 | 
            +
                "lstrip": false,
         | 
| 27 | 
            +
                "normalized": false,
         | 
| 28 | 
            +
                "rstrip": false,
         | 
| 29 | 
            +
                "single_word": false
         | 
| 30 | 
            +
              },
         | 
| 31 | 
            +
              "unk_token": {
         | 
| 32 | 
            +
                "content": "<unk>",
         | 
| 33 | 
            +
                "lstrip": false,
         | 
| 34 | 
            +
                "normalized": false,
         | 
| 35 | 
            +
                "rstrip": false,
         | 
| 36 | 
            +
                "single_word": false
         | 
| 37 | 
            +
              }
         | 
| 38 | 
            +
            }
         | 
    	
        tokenization_internlm2.py
    ADDED
    
    | @@ -0,0 +1,236 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright (c) The InternLM team and The HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            #
         | 
| 4 | 
            +
            # This code is based on transformers/src/transformers/models/llama/tokenization_llama.py
         | 
| 5 | 
            +
            #
         | 
| 6 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 7 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 8 | 
            +
            # You may obtain a copy of the License at
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 11 | 
            +
            #
         | 
| 12 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 13 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 14 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 15 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 16 | 
            +
            # limitations under the License.
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            """Tokenization classes for InternLM."""
         | 
| 19 | 
            +
            import os
         | 
| 20 | 
            +
            from shutil import copyfile
         | 
| 21 | 
            +
            from typing import Any, Dict, List, Optional, Tuple
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import sentencepiece as spm
         | 
| 24 | 
            +
            from transformers.tokenization_utils import PreTrainedTokenizer
         | 
| 25 | 
            +
            from transformers.utils import logging
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 28 | 
            +
             | 
| 29 | 
            +
            VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"}
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            PRETRAINED_VOCAB_FILES_MAP = {}
         | 
| 32 | 
            +
             | 
| 33 | 
            +
             | 
| 34 | 
            +
            # Modified from transformers.model.llama.tokenization_llama.LlamaTokenizer
         | 
| 35 | 
            +
            class InternLM2Tokenizer(PreTrainedTokenizer):
         | 
| 36 | 
            +
                """
         | 
| 37 | 
            +
                Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding.
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                Args:
         | 
| 40 | 
            +
                    vocab_file (`str`):
         | 
| 41 | 
            +
                        Path to the vocabulary file.
         | 
| 42 | 
            +
                """
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                vocab_files_names = VOCAB_FILES_NAMES
         | 
| 45 | 
            +
                pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
         | 
| 46 | 
            +
                model_input_names = ["input_ids", "attention_mask"]
         | 
| 47 | 
            +
                _auto_class = "AutoTokenizer"
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                def __init__(
         | 
| 50 | 
            +
                    self,
         | 
| 51 | 
            +
                    vocab_file,
         | 
| 52 | 
            +
                    unk_token="<unk>",
         | 
| 53 | 
            +
                    bos_token="<s>",
         | 
| 54 | 
            +
                    eos_token="</s>",
         | 
| 55 | 
            +
                    pad_token="</s>",
         | 
| 56 | 
            +
                    sp_model_kwargs: Optional[Dict[str, Any]] = None,
         | 
| 57 | 
            +
                    add_bos_token=True,
         | 
| 58 | 
            +
                    add_eos_token=False,
         | 
| 59 | 
            +
                    decode_with_prefix_space=False,
         | 
| 60 | 
            +
                    clean_up_tokenization_spaces=False,
         | 
| 61 | 
            +
                    **kwargs,
         | 
| 62 | 
            +
                ):
         | 
| 63 | 
            +
                    self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
         | 
| 64 | 
            +
                    self.vocab_file = vocab_file
         | 
| 65 | 
            +
                    self.add_bos_token = add_bos_token
         | 
| 66 | 
            +
                    self.add_eos_token = add_eos_token
         | 
| 67 | 
            +
                    self.decode_with_prefix_space = decode_with_prefix_space
         | 
| 68 | 
            +
                    self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
         | 
| 69 | 
            +
                    self.sp_model.Load(vocab_file)
         | 
| 70 | 
            +
                    self._no_prefix_space_tokens = None
         | 
| 71 | 
            +
                    super().__init__(
         | 
| 72 | 
            +
                        bos_token=bos_token,
         | 
| 73 | 
            +
                        eos_token=eos_token,
         | 
| 74 | 
            +
                        unk_token=unk_token,
         | 
| 75 | 
            +
                        pad_token=pad_token,
         | 
| 76 | 
            +
                        clean_up_tokenization_spaces=clean_up_tokenization_spaces,
         | 
| 77 | 
            +
                        **kwargs,
         | 
| 78 | 
            +
                    )
         | 
| 79 | 
            +
             | 
| 80 | 
            +
                @property
         | 
| 81 | 
            +
                def no_prefix_space_tokens(self):
         | 
| 82 | 
            +
                    if self._no_prefix_space_tokens is None:
         | 
| 83 | 
            +
                        vocab = self.convert_ids_to_tokens(list(range(self.vocab_size)))
         | 
| 84 | 
            +
                        self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")}
         | 
| 85 | 
            +
                    return self._no_prefix_space_tokens
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                @property
         | 
| 88 | 
            +
                def vocab_size(self):
         | 
| 89 | 
            +
                    """Returns vocab size"""
         | 
| 90 | 
            +
                    return self.sp_model.get_piece_size()
         | 
| 91 | 
            +
             | 
| 92 | 
            +
                @property
         | 
| 93 | 
            +
                def bos_token_id(self) -> Optional[int]:
         | 
| 94 | 
            +
                    return self.sp_model.bos_id()
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                @property
         | 
| 97 | 
            +
                def eos_token_id(self) -> Optional[int]:
         | 
| 98 | 
            +
                    return self.sp_model.eos_id()
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                def get_vocab(self):
         | 
| 101 | 
            +
                    """Returns vocab as a dict"""
         | 
| 102 | 
            +
                    vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
         | 
| 103 | 
            +
                    vocab.update(self.added_tokens_encoder)
         | 
| 104 | 
            +
                    return vocab
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                def _tokenize(self, text):
         | 
| 107 | 
            +
                    """Returns a tokenized string."""
         | 
| 108 | 
            +
                    return self.sp_model.encode(text, out_type=str)
         | 
| 109 | 
            +
             | 
| 110 | 
            +
                def _convert_token_to_id(self, token):
         | 
| 111 | 
            +
                    """Converts a token (str) in an id using the vocab."""
         | 
| 112 | 
            +
                    return self.sp_model.piece_to_id(token)
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                def _convert_id_to_token(self, index):
         | 
| 115 | 
            +
                    """Converts an index (integer) in a token (str) using the vocab."""
         | 
| 116 | 
            +
                    token = self.sp_model.IdToPiece(index)
         | 
| 117 | 
            +
                    return token
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                def _maybe_add_prefix_space(self, tokens, decoded):
         | 
| 120 | 
            +
                    if tokens and tokens[0] not in self.no_prefix_space_tokens:
         | 
| 121 | 
            +
                        return " " + decoded
         | 
| 122 | 
            +
                    else:
         | 
| 123 | 
            +
                        return decoded
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                def convert_tokens_to_string(self, tokens):
         | 
| 126 | 
            +
                    """Converts a sequence of tokens (string) in a single string."""
         | 
| 127 | 
            +
                    current_sub_tokens = []
         | 
| 128 | 
            +
                    out_string = ""
         | 
| 129 | 
            +
                    prev_is_special = False
         | 
| 130 | 
            +
                    for token in tokens:
         | 
| 131 | 
            +
                        # make sure that special tokens are not decoded using sentencepiece model
         | 
| 132 | 
            +
                        if token in self.all_special_tokens:
         | 
| 133 | 
            +
                            if not prev_is_special:
         | 
| 134 | 
            +
                                out_string += " "
         | 
| 135 | 
            +
                            out_string += self.sp_model.decode(current_sub_tokens) + token
         | 
| 136 | 
            +
                            prev_is_special = True
         | 
| 137 | 
            +
                            current_sub_tokens = []
         | 
| 138 | 
            +
                        else:
         | 
| 139 | 
            +
                            current_sub_tokens.append(token)
         | 
| 140 | 
            +
                            prev_is_special = False
         | 
| 141 | 
            +
                    out_string += self.sp_model.decode(current_sub_tokens)
         | 
| 142 | 
            +
                    out_string = self.clean_up_tokenization(out_string)
         | 
| 143 | 
            +
                    out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string)
         | 
| 144 | 
            +
                    return out_string[1:]
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]:
         | 
| 147 | 
            +
                    """
         | 
| 148 | 
            +
                    Save the vocabulary and special tokens file to a directory.
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                    Args:
         | 
| 151 | 
            +
                        save_directory (`str`):
         | 
| 152 | 
            +
                            The directory in which to save the vocabulary.
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                    Returns:
         | 
| 155 | 
            +
                        `Tuple(str)`: Paths to the files saved.
         | 
| 156 | 
            +
                    """
         | 
| 157 | 
            +
                    if not os.path.isdir(save_directory):
         | 
| 158 | 
            +
                        logger.error(f"Vocabulary path ({save_directory}) should be a directory")
         | 
| 159 | 
            +
                        return
         | 
| 160 | 
            +
                    out_vocab_file = os.path.join(
         | 
| 161 | 
            +
                        save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
         | 
| 162 | 
            +
                    )
         | 
| 163 | 
            +
             | 
| 164 | 
            +
                    if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
         | 
| 165 | 
            +
                        copyfile(self.vocab_file, out_vocab_file)
         | 
| 166 | 
            +
                    elif not os.path.isfile(self.vocab_file):
         | 
| 167 | 
            +
                        with open(out_vocab_file, "wb") as fi:
         | 
| 168 | 
            +
                            content_spiece_model = self.sp_model.serialized_model_proto()
         | 
| 169 | 
            +
                            fi.write(content_spiece_model)
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                    return (out_vocab_file,)
         | 
| 172 | 
            +
             | 
| 173 | 
            +
                def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
         | 
| 174 | 
            +
                    if self.add_bos_token:
         | 
| 175 | 
            +
                        bos_token_ids = [self.bos_token_id]
         | 
| 176 | 
            +
                    else:
         | 
| 177 | 
            +
                        bos_token_ids = []
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                    output = bos_token_ids + token_ids_0
         | 
| 180 | 
            +
             | 
| 181 | 
            +
                    if token_ids_1 is not None:
         | 
| 182 | 
            +
                        output = output + token_ids_1
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                    if self.add_eos_token:
         | 
| 185 | 
            +
                        output = output + [self.eos_token_id]
         | 
| 186 | 
            +
             | 
| 187 | 
            +
                    return output
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                def get_special_tokens_mask(
         | 
| 190 | 
            +
                    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
         | 
| 191 | 
            +
                ) -> List[int]:
         | 
| 192 | 
            +
                    """
         | 
| 193 | 
            +
                    Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
         | 
| 194 | 
            +
                    special tokens using the tokenizer `prepare_for_model` method.
         | 
| 195 | 
            +
             | 
| 196 | 
            +
                    Args:
         | 
| 197 | 
            +
                        token_ids_0 (`List[int]`):
         | 
| 198 | 
            +
                            List of IDs.
         | 
| 199 | 
            +
                        token_ids_1 (`List[int]`, *optional*):
         | 
| 200 | 
            +
                            Optional second list of IDs for sequence pairs.
         | 
| 201 | 
            +
                        already_has_special_tokens (`bool`, *optional*, defaults to `False`):
         | 
| 202 | 
            +
                            Whether or not the token list is already formatted with special tokens for the model.
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                    Returns:
         | 
| 205 | 
            +
                        `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
         | 
| 206 | 
            +
                    """
         | 
| 207 | 
            +
                    if already_has_special_tokens:
         | 
| 208 | 
            +
                        return super().get_special_tokens_mask(
         | 
| 209 | 
            +
                            token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
         | 
| 210 | 
            +
                        )
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                    if token_ids_1 is None:
         | 
| 213 | 
            +
                        return [1] + ([0] * len(token_ids_0)) + [1]
         | 
| 214 | 
            +
                    return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
         | 
| 215 | 
            +
             | 
| 216 | 
            +
                def create_token_type_ids_from_sequences(
         | 
| 217 | 
            +
                    self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
         | 
| 218 | 
            +
                ) -> List[int]:
         | 
| 219 | 
            +
                    """
         | 
| 220 | 
            +
                    Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make
         | 
| 221 | 
            +
                    use of token type ids, therefore a list of zeros is returned.
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                    Args:
         | 
| 224 | 
            +
                        token_ids_0 (`List[int]`):
         | 
| 225 | 
            +
                            List of IDs.
         | 
| 226 | 
            +
                        token_ids_1 (`List[int]`, *optional*):
         | 
| 227 | 
            +
                            Optional second list of IDs for sequence pairs.
         | 
| 228 | 
            +
             | 
| 229 | 
            +
                    Returns:
         | 
| 230 | 
            +
                        `List[int]`: List of zeros.
         | 
| 231 | 
            +
                    """
         | 
| 232 | 
            +
                    eos = [self.eos_token_id]
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                    if token_ids_1 is None:
         | 
| 235 | 
            +
                        return len(token_ids_0 + eos) * [0]
         | 
| 236 | 
            +
                    return len(token_ids_0 + eos + token_ids_1 + eos) * [0]
         | 
    	
        tokenizer.model
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:f868398fc4e05ee1e8aeba95ddf18ddcc45b8bce55d5093bead5bbf80429b48b
         | 
| 3 | 
            +
            size 1477754
         | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,99 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "added_tokens_decoder": {
         | 
| 3 | 
            +
                "0": {
         | 
| 4 | 
            +
                  "content": "<unk>",
         | 
| 5 | 
            +
                  "lstrip": false,
         | 
| 6 | 
            +
                  "normalized": false,
         | 
| 7 | 
            +
                  "rstrip": false,
         | 
| 8 | 
            +
                  "single_word": false,
         | 
| 9 | 
            +
                  "special": true
         | 
| 10 | 
            +
                },
         | 
| 11 | 
            +
                "1": {
         | 
| 12 | 
            +
                  "content": "<s>",
         | 
| 13 | 
            +
                  "lstrip": false,
         | 
| 14 | 
            +
                  "normalized": false,
         | 
| 15 | 
            +
                  "rstrip": false,
         | 
| 16 | 
            +
                  "single_word": false,
         | 
| 17 | 
            +
                  "special": true
         | 
| 18 | 
            +
                },
         | 
| 19 | 
            +
                "2": {
         | 
| 20 | 
            +
                  "content": "</s>",
         | 
| 21 | 
            +
                  "lstrip": false,
         | 
| 22 | 
            +
                  "normalized": false,
         | 
| 23 | 
            +
                  "rstrip": false,
         | 
| 24 | 
            +
                  "single_word": false,
         | 
| 25 | 
            +
                  "special": true
         | 
| 26 | 
            +
                },
         | 
| 27 | 
            +
                "92538": {
         | 
| 28 | 
            +
                  "content": "<|plugin|>",
         | 
| 29 | 
            +
                  "lstrip": false,
         | 
| 30 | 
            +
                  "normalized": false,
         | 
| 31 | 
            +
                  "rstrip": false,
         | 
| 32 | 
            +
                  "single_word": false,
         | 
| 33 | 
            +
                  "special": true
         | 
| 34 | 
            +
                },
         | 
| 35 | 
            +
                "92539": {
         | 
| 36 | 
            +
                  "content": "<|interpreter|>",
         | 
| 37 | 
            +
                  "lstrip": false,
         | 
| 38 | 
            +
                  "normalized": false,
         | 
| 39 | 
            +
                  "rstrip": false,
         | 
| 40 | 
            +
                  "single_word": false,
         | 
| 41 | 
            +
                  "special": true
         | 
| 42 | 
            +
                },
         | 
| 43 | 
            +
                "92540": {
         | 
| 44 | 
            +
                  "content": "<|action_end|>",
         | 
| 45 | 
            +
                  "lstrip": false,
         | 
| 46 | 
            +
                  "normalized": false,
         | 
| 47 | 
            +
                  "rstrip": false,
         | 
| 48 | 
            +
                  "single_word": false,
         | 
| 49 | 
            +
                  "special": true
         | 
| 50 | 
            +
                },
         | 
| 51 | 
            +
                "92541": {
         | 
| 52 | 
            +
                  "content": "<|action_start|>",
         | 
| 53 | 
            +
                  "lstrip": false,
         | 
| 54 | 
            +
                  "normalized": false,
         | 
| 55 | 
            +
                  "rstrip": false,
         | 
| 56 | 
            +
                  "single_word": false,
         | 
| 57 | 
            +
                  "special": true
         | 
| 58 | 
            +
                },
         | 
| 59 | 
            +
                "92542": {
         | 
| 60 | 
            +
                  "content": "<|im_end|>",
         | 
| 61 | 
            +
                  "lstrip": false,
         | 
| 62 | 
            +
                  "normalized": false,
         | 
| 63 | 
            +
                  "rstrip": false,
         | 
| 64 | 
            +
                  "single_word": false,
         | 
| 65 | 
            +
                  "special": true
         | 
| 66 | 
            +
                },
         | 
| 67 | 
            +
                "92543": {
         | 
| 68 | 
            +
                  "content": "<|im_start|>",
         | 
| 69 | 
            +
                  "lstrip": false,
         | 
| 70 | 
            +
                  "normalized": false,
         | 
| 71 | 
            +
                  "rstrip": false,
         | 
| 72 | 
            +
                  "single_word": false,
         | 
| 73 | 
            +
                  "special": true
         | 
| 74 | 
            +
                }
         | 
| 75 | 
            +
              },
         | 
| 76 | 
            +
              "additional_special_tokens": [
         | 
| 77 | 
            +
                "<|im_start|>",
         | 
| 78 | 
            +
                "<|im_end|>",
         | 
| 79 | 
            +
                "<|action_start|>",
         | 
| 80 | 
            +
                "<|action_end|>",
         | 
| 81 | 
            +
                "<|interpreter|>",
         | 
| 82 | 
            +
                "<|plugin|>"
         | 
| 83 | 
            +
              ],
         | 
| 84 | 
            +
              "auto_map": {
         | 
| 85 | 
            +
                "AutoTokenizer": [
         | 
| 86 | 
            +
                  "tokenization_internlm2.InternLM2Tokenizer",
         | 
| 87 | 
            +
                  null
         | 
| 88 | 
            +
                ]
         | 
| 89 | 
            +
              },
         | 
| 90 | 
            +
              "bos_token": "<s>",
         | 
| 91 | 
            +
              "chat_template": "{{ bos_token }}{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
         | 
| 92 | 
            +
              "clean_up_tokenization_spaces": false,
         | 
| 93 | 
            +
              "eos_token": "</s>",
         | 
| 94 | 
            +
              "model_max_length": 1000000000000000019884624838656,
         | 
| 95 | 
            +
              "pad_token": "</s>",
         | 
| 96 | 
            +
              "padding_side": "right",
         | 
| 97 | 
            +
              "tokenizer_class": "InternLM2Tokenizer",
         | 
| 98 | 
            +
              "unk_token": "<unk>"
         | 
| 99 | 
            +
            }
         | 
