File size: 20,566 Bytes
2a79595 ff0c7fd 0d87486 ff0c7fd 0d87486 2a79595 f59431a 2a79595 0d87486 2a79595 8aa545a ff0c7fd 488dce9 ff0c7fd 2a79595 bb817c8 2a79595 3418427 2a79595 365c1ce 2a79595 ff0c7fd b29f2c8 ff0c7fd edeb08e ff0c7fd 293e42b ff0c7fd edeb08e ff0c7fd 293e42b ff0c7fd edeb08e ff0c7fd edeb08e ff0c7fd 2a79595 edeb08e 2a79595 ff0c7fd 2a79595 ff0c7fd 2a79595 ff0c7fd 2a79595 ff0c7fd 2a79595 ff0c7fd 58a3e6b ff0c7fd 2a79595 a3ded57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
---
license: apache-2.0
pipeline_tag: image-text-to-text
---
## Intern-S1
<div align="center">
<img src="https://cdn-uploads.huggingface.co/production/uploads/642695e5274e7ad464c8a5ba/E43cgEXBRWjVJlU_-hdh6.png" />
<div> </div>
[💻Github Repo](https://github.com/InternLM/Intern-S1) • [🤗Model Collections](https://huggingface.co/collections/internlm/intern-s1-6882e325e8ac1c58ba108aa5) • [📜Technical Report](https://arxiv.org/abs/2508.15763) • [💬Online Chat](https://chat.intern-ai.org.cn/)
</div>
<p align="center">
👋 join us on <a href="https://discord.gg/xa29JuW87d" target="_blank">Discord</a> and <a href="https://cdn.vansin.top/intern-s1.jpg" target="_blank">WeChat</a>
</p>
## Introduction
We introduce **Intern-S1**, our **most advanced open-source multimodal reasoning model** to date. Intern-S1 combines **strong general-task capabilities with state-of-the-art performance on a wide range of scientific tasks**, rivaling leading closed-source commercial models.
Built upon a 235B MoE language model (Qwen3) and a 6B Vision encoder (InternViT), Intern-S1 has been further pretrained on **5 trillion tokens** of multimodal data, including over **2.5 trillion scientific-domain tokens**. This enables the model to retain strong general capabilities while excelling in specialized scientific domains such as **interpreting chemical structures, understanding protein sequences, and planning compound synthesis routes**, making Intern-S1 to be a capable research assistant for real-world scientific applications.
Features
- Strong performance across language and vision reasoning benchmarks, especially scientific tasks.
- Continuously pretrained on a massive 5T token dataset, with over 50% specialized scientific data, embedding deep domain expertise.
- Dynamic tokenizer enables native understanding of molecular formulas, protein sequences, and seismic signals.
## Performance
We evaluate the Intern-S1 on various benchmarks including general datasets and scientifc datasets. We report the performance comparsion with the recent VLMs and LLMs below.
<table>
<thead>
<tr>
<th rowspan="2">Benchmarks</th>
<th colspan="2">Intern-S1</th>
<th>InternVL3-78B</th>
<th>Qwen2.5-VL-72B</th>
<th>DS-R1-0528</th>
<th>Qwen3-235B-A22B</th>
<th>Kimi-K2-Instruct</th>
<th>Gemini-2.5 Pro</th>
<th>o3</th>
<th>Grok-4</th>
</tr>
</thead>
<tbody>
<tr><td>MMLU-Pro</td><td colspan="2">83.5 ✅</td><td>73.0</td><td>72.1</td><td>83.4</td><td>82.2</td><td>82.7</td><td>86.0</td><td>85.0</td><td>85.9</td></tr>
<tr><td>MMMU</td><td colspan="2">77.7 ✅</td><td>72.2</td><td>70.2</td><td>-</td><td>-</td><td>-</td><td>81.9</td><td>80.8</td><td>77.9</td></tr>
<tr><td>GPQA</td><td colspan="2">77.3</td><td>49.9</td><td>49.0</td><td>80.6</td><td>71.1</td><td>77.8</td><td>83.8</td><td>83.3</td><td>87.5</td></tr>
<tr><td>MMStar</td><td colspan="2">74.9 ✅</td><td>72.5</td><td>70.8</td><td>-</td><td>-</td><td>-</td><td>79.3</td><td>75.1</td><td>69.6</td></tr>
<tr><td>MathVista</td><td colspan="2">81.5 👑</td><td>79.0</td><td>74.8</td><td>-</td><td>-</td><td>-</td><td>80.3</td><td>77.5</td><td>72.5</td></tr>
<tr><td>AIME2025</td><td colspan="2">86.0</td><td>10.7</td><td>10.9</td><td>87.5</td><td>81.5</td><td>51.4</td><td>83.0</td><td>88.9</td><td>91.7</td></tr>
<tr><td>MathVision</td><td colspan="2">62.5 ✅</td><td>43.1</td><td>38.1</td><td>-</td><td>-</td><td>-</td><td>73.0</td><td>67.7</td><td>67.3</td></tr>
<tr><td>IFEval</td><td colspan="2">86.7</td><td>75.6</td><td>83.9</td><td>79.7</td><td>85.0</td><td>90.2</td><td>91.5</td><td>92.2</td><td>92.8</td></tr>
<tr><td>SFE</td><td colspan="2">44.3 👑</td><td>36.2</td><td>30.5</td><td>-</td><td>-</td><td>-</td><td>43.0</td><td>37.7</td><td>31.2</td></tr>
<tr><td>Physics</td><td colspan="2">44.0 ✅</td><td>23.1</td><td>15.7</td><td>-</td><td>-</td><td>-</td><td>40.0</td><td>47.9</td><td>42.8</td></tr>
<tr><td>SmolInstruct</td><td colspan="2">51.0 👑</td><td>19.4</td><td>21.0</td><td>30.7</td><td>28.7</td><td>48.1</td><td>40.4</td><td>43.9</td><td>47.3</td></tr>
<tr><td>ChemBench</td><td colspan="2">83.4 👑</td><td>61.3</td><td>61.6</td><td>75.6</td><td>75.8</td><td>75.3</td><td>82.8</td><td>81.6</td><td>83.3</td></tr>
<tr><td>MatBench</td><td colspan="2">75.0 👑</td><td>49.3</td><td>51.5</td><td>57.7</td><td>52.1</td><td>61.7</td><td>61.7</td><td>61.6</td><td>67.9</td></tr>
<tr><td>MicroVQA</td><td colspan="2">63.9 👑</td><td>59.1</td><td>53.0</td><td>-</td><td>-</td><td>-</td><td>63.1</td><td>58.3</td><td>59.5</td></tr>
<tr><td>ProteinLMBench</td><td colspan="2">63.1</td><td>61.6</td><td>61.0</td><td>61.4</td><td>59.8</td><td>66.7</td><td>62.9</td><td>67.7</td><td>66.2</td></tr>
<tr><td>MSEarthMCQ</td><td colspan="2">65.7 👑</td><td>57.2</td><td>37.6</td><td>-</td><td>-</td><td>-</td><td>59.9</td><td>61.0</td><td>58.0</td></tr>
<tr><td>XLRS-Bench</td><td colspan="2">55.0 👑</td><td>49.3</td><td>50.9</td><td>-</td><td>-</td><td>-</td><td>45.2</td><td>43.6</td><td>45.4</td></tr>
</tbody>
</table>
> **Note**: ✅ means the best performance among open-sourced models, 👑 indicates the best performance among all models.
We use the [OpenCompass](https://github.com/open-compass/OpenCompass/) and [VLMEvalkit](https://github.com/open-compass/vlmevalkit) to evaluate all models.
## Quick Start
### Sampling Parameters
We recommend using the following hyperparameters to ensure better results
```python
top_p = 1.0
top_k = 50
min_p = 0.0
temperature = 0.7
```
### Transformers
The following provides demo code illustrating how to generate based on text and multimodal inputs.
> **Please use transformers>=4.53.0 to ensure the model works normally.**
#### Text input
```python
from transformers import AutoProcessor, AutoModelForCausalLM
import torch
model_name = "internlm/Intern-S1"
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "tell me about an interesting physical phenomenon."},
],
}
]
inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
```
#### Image input
```python
from transformers import AutoProcessor, AutoModelForCausalLM
import torch
model_name = "internlm/Intern-S1"
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
messages = [
{
"role": "user",
"content": [
{"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
{"type": "text", "text": "Please describe the image explicitly."},
],
}
]
inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(model.device, dtype=torch.bfloat16)
generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
```
#### Video input
Please ensure that the decord video decoding library is installed via `pip install decord`.
```python
from transformers import AutoProcessor, AutoModelForCausalLM
import torch
model_name = "internlm/Intern-S1"
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="auto", trust_remote_code=True)
messages = [
{
"role": "user",
"content": [
{
"type": "video",
"url": "https://huggingface.co/datasets/hf-internal-testing/fixtures_videos/resolve/main/tennis.mp4",
},
{"type": "text", "text": "What type of shot is the man performing?"},
],
}
]
inputs = processor.apply_chat_template(
messages,
return_tensors="pt",
add_generation_prompt=True,
video_load_backend="decord",
tokenize=True,
return_dict=True,
).to(model.device, dtype=torch.float16)
generate_ids = model.generate(**inputs, max_new_tokens=32768)
decoded_output = processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)
print(decoded_output)
```
### Serving
The minimum hardware requirements for deploying Intern-S1 series models are:
| Model | A100(GPUs) | H800(GPUs) | H100(GPUs) | H200(GPUs) |
| :---------------------------------------------------------------------: | :--------: | :--------: | :--------: | :--------: |
| [internlm/Intern-S1](https://huggingface.co/internlm/Intern-S1) | 8 | 8 | 8 | 4 |
| [internlm/Intern-S1-FP8](https://huggingface.co/internlm/Intern-S1-FP8) | - | 4 | 4 | 2 |
You can utilize one of the following LLM inference frameworks to create an OpenAI compatible server:
#### [lmdeploy (>=0.9.2)](https://github.com/InternLM/lmdeploy)
```bash
lmdeploy serve api_server internlm/Intern-S1 --reasoning-parser intern-s1 --tool-call-parser intern-s1 --tp 8
```
#### [vllm (>=0.10.1)](https://github.com/vllm-project/vllm)
```bash
vllm serve internlm/Intern-S1 --tensor-parallel-size 8 --trust-remote-code
```
#### [sglang](https://github.com/sgl-project/sglang)
```bash
python3 -m sglang.launch_server \
--model-path internlm/Intern-S1 \
--trust-remote-code \
--tp 8 \
--grammar-backend none
```
#### ollama for local deployment:
```bash
# install ollama
curl -fsSL https://ollama.com/install.sh | sh
# fetch model
ollama pull internlm/interns1
# run model
ollama run internlm/interns1
# then use openai client to call on http://localhost:11434/v1
```
## Advanced Usage
### Tool Calling
Many Large Language Models (LLMs) now feature **Tool Calling**, a powerful capability that allows them to extend their functionality by interacting with external tools and APIs. This enables models to perform tasks like fetching up-to-the-minute information, running code, or calling functions within other applications.
A key advantage for developers is that a growing number of open-source LLMs are designed to be compatible with the OpenAI API. This means you can leverage the same familiar syntax and structure from the OpenAI library to implement tool calling with these open-source models. As a result, the code demonstrated in this tutorial is versatile—it works not just with OpenAI models, but with any model that follows the same interface standard.
To illustrate how this works, let's dive into a practical code example that uses tool calling to get the latest weather forecast (based on lmdeploy api server).
```python
from openai import OpenAI
import json
def get_current_temperature(location: str, unit: str = "celsius"):
"""Get current temperature at a location.
Args:
location: The location to get the temperature for, in the format "City, State, Country".
unit: The unit to return the temperature in. Defaults to "celsius". (choices: ["celsius", "fahrenheit"])
Returns:
the temperature, the location, and the unit in a dict
"""
return {
"temperature": 26.1,
"location": location,
"unit": unit,
}
def get_temperature_date(location: str, date: str, unit: str = "celsius"):
"""Get temperature at a location and date.
Args:
location: The location to get the temperature for, in the format "City, State, Country".
date: The date to get the temperature for, in the format "Year-Month-Day".
unit: The unit to return the temperature in. Defaults to "celsius". (choices: ["celsius", "fahrenheit"])
Returns:
the temperature, the location, the date and the unit in a dict
"""
return {
"temperature": 25.9,
"location": location,
"date": date,
"unit": unit,
}
def get_function_by_name(name):
if name == "get_current_temperature":
return get_current_temperature
if name == "get_temperature_date":
return get_temperature_date
tools = [{
'type': 'function',
'function': {
'name': 'get_current_temperature',
'description': 'Get current temperature at a location.',
'parameters': {
'type': 'object',
'properties': {
'location': {
'type': 'string',
'description': 'The location to get the temperature for, in the format \'City, State, Country\'.'
},
'unit': {
'type': 'string',
'enum': [
'celsius',
'fahrenheit'
],
'description': 'The unit to return the temperature in. Defaults to \'celsius\'.'
}
},
'required': [
'location'
]
}
}
}, {
'type': 'function',
'function': {
'name': 'get_temperature_date',
'description': 'Get temperature at a location and date.',
'parameters': {
'type': 'object',
'properties': {
'location': {
'type': 'string',
'description': 'The location to get the temperature for, in the format \'City, State, Country\'.'
},
'date': {
'type': 'string',
'description': 'The date to get the temperature for, in the format \'Year-Month-Day\'.'
},
'unit': {
'type': 'string',
'enum': [
'celsius',
'fahrenheit'
],
'description': 'The unit to return the temperature in. Defaults to \'celsius\'.'
}
},
'required': [
'location',
'date'
]
}
}
}]
messages = [
{'role': 'user', 'content': 'Today is 2024-11-14, What\'s the temperature in San Francisco now? How about tomorrow?'}
]
openai_api_key = "EMPTY"
openai_api_base = "http://0.0.0.0:23333/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
model=model_name,
messages=messages,
max_tokens=32768,
temperature=0.8,
top_p=0.8,
stream=False,
extra_body=dict(spaces_between_special_tokens=False, enable_thinking=False),
tools=tools)
print(response.choices[0].message)
messages.append(response.choices[0].message)
for tool_call in response.choices[0].message.tool_calls:
tool_call_args = json.loads(tool_call.function.arguments)
tool_call_result = get_function_by_name(tool_call.function.name)(**tool_call_args)
tool_call_result = json.dumps(tool_call_result, ensure_ascii=False)
messages.append({
'role': 'tool',
'name': tool_call.function.name,
'content': tool_call_result,
'tool_call_id': tool_call.id
})
response = client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.8,
top_p=0.8,
stream=False,
extra_body=dict(spaces_between_special_tokens=False, enable_thinking=False),
tools=tools)
print(response.choices[0].message.content)
```
### Switching Between Thinking and Non-Thinking Modes
Intern-S1 enables thinking mode by default, enhancing the model's reasoning capabilities to generate higher-quality responses. This feature can be disabled by setting `enable_thinking=False` in `tokenizer.apply_chat_template`
```python
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False # think mode indicator
)
```
With LMDeploy serving Intern-S1 models, you can dynamically control the thinking mode by adjusting the `enable_thinking` parameter in your requests.
```python
from openai import OpenAI
import json
messages = [
{
'role': 'user',
'content': 'who are you'
}, {
'role': 'assistant',
'content': 'I am an AI'
}, {
'role': 'user',
'content': 'AGI is?'
}]
openai_api_key = "EMPTY"
openai_api_base = "http://0.0.0.0:23333/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
model=model_name,
messages=messages,
temperature=0.7,
top_p=0.8,
max_tokens=2048,
extra_body={
"enable_thinking": False,
}
)
print(json.dumps(response.model_dump(), indent=2, ensure_ascii=False))
```
For vllm and sglang users, configure this through,
```python
extra_body={
"chat_template_kwargs": {"enable_thinking": False}
}
```
## Citation
If you find this work useful, feel free to give us a cite.
```
@misc{bai2025interns1scientificmultimodalfoundation,
title={Intern-S1: A Scientific Multimodal Foundation Model},
author={Lei Bai and Zhongrui Cai and Maosong Cao and Weihan Cao and Chiyu Chen and Haojiong Chen and Kai Chen and Pengcheng Chen and Ying Chen and Yongkang Chen and Yu Cheng and Yu Cheng and Pei Chu and Tao Chu and Erfei Cui and Ganqu Cui and Long Cui and Ziyun Cui and Nianchen Deng and Ning Ding and Nanqin Dong and Peijie Dong and Shihan Dou and Sinan Du and Haodong Duan and Caihua Fan and Ben Gao and Changjiang Gao and Jianfei Gao and Songyang Gao and Yang Gao and Zhangwei Gao and Jiaye Ge and Qiming Ge and Lixin Gu and Yuzhe Gu and Aijia Guo and Qipeng Guo and Xu Guo and Conghui He and Junjun He and Yili Hong and Siyuan Hou and Caiyu Hu and Hanglei Hu and Jucheng Hu and Ming Hu and Zhouqi Hua and Haian Huang and Junhao Huang and Xu Huang and Zixian Huang and Zhe Jiang and Lingkai Kong and Linyang Li and Peiji Li and Pengze Li and Shuaibin Li and Tianbin Li and Wei Li and Yuqiang Li and Dahua Lin and Junyao Lin and Tianyi Lin and Zhishan Lin and Hongwei Liu and Jiangning Liu and Jiyao Liu and Junnan Liu and Kai Liu and Kaiwen Liu and Kuikun Liu and Shichun Liu and Shudong Liu and Wei Liu and Xinyao Liu and Yuhong Liu and Zhan Liu and Yinquan Lu and Haijun Lv and Hongxia Lv and Huijie Lv and Qidang Lv and Ying Lv and Chengqi Lyu and Chenglong Ma and Jianpeng Ma and Ren Ma and Runmin Ma and Runyuan Ma and Xinzhu Ma and Yichuan Ma and Zihan Ma and Sixuan Mi and Junzhi Ning and Wenchang Ning and Xinle Pang and Jiahui Peng and Runyu Peng and Yu Qiao and Jiantao Qiu and Xiaoye Qu and Yuan Qu and Yuchen Ren and Fukai Shang and Wenqi Shao and Junhao Shen and Shuaike Shen and Chunfeng Song and Demin Song and Diping Song and Chenlin Su and Weijie Su and Weigao Sun and Yu Sun and Qian Tan and Cheng Tang and Huanze Tang and Kexian Tang and Shixiang Tang and Jian Tong and Aoran Wang and Bin Wang and Dong Wang and Lintao Wang and Rui Wang and Weiyun Wang and Wenhai Wang and Yi Wang and Ziyi Wang and Ling-I Wu and Wen Wu and Yue Wu and Zijian Wu and Linchen Xiao and Shuhao Xing and Chao Xu and Huihui Xu and Jun Xu and Ruiliang Xu and Wanghan Xu and GanLin Yang and Yuming Yang and Haochen Ye and Jin Ye and Shenglong Ye and Jia Yu and Jiashuo Yu and Jing Yu and Fei Yuan and Bo Zhang and Chao Zhang and Chen Zhang and Hongjie Zhang and Jin Zhang and Qiaosheng Zhang and Qiuyinzhe Zhang and Songyang Zhang and Taolin Zhang and Wenlong Zhang and Wenwei Zhang and Yechen Zhang and Ziyang Zhang and Haiteng Zhao and Qian Zhao and Xiangyu Zhao and Xiangyu Zhao and Bowen Zhou and Dongzhan Zhou and Peiheng Zhou and Yuhao Zhou and Yunhua Zhou and Dongsheng Zhu and Lin Zhu and Yicheng Zou},
year={2025},
eprint={2508.15763},
archivePrefix={arXiv},
primaryClass={cs.LG},
url={https://arxiv.org/abs/2508.15763},
}
```
|