|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Fast Video processor class for InternS1.""" |
|
|
|
from typing import Optional, Union |
|
|
|
from transformers.image_processing_utils import BatchFeature |
|
from transformers.image_utils import ( |
|
OPENAI_CLIP_MEAN, |
|
OPENAI_CLIP_STD, |
|
SizeDict, |
|
) |
|
from transformers.processing_utils import Unpack, VideosKwargs |
|
from transformers.utils import ( |
|
TensorType, |
|
is_torch_available, |
|
is_torchvision_available, |
|
is_torchvision_v2_available, |
|
is_vision_available, |
|
) |
|
from transformers.utils.import_utils import requires |
|
from transformers.video_processing_utils import BaseVideoProcessor |
|
from transformers.video_utils import VideoMetadata, group_videos_by_shape, reorder_videos |
|
|
|
|
|
if is_torchvision_available(): |
|
if is_torchvision_v2_available(): |
|
from torchvision.transforms.v2 import functional as F |
|
else: |
|
from torchvision.transforms import functional as F |
|
|
|
|
|
if is_torch_available(): |
|
import torch |
|
|
|
if is_vision_available(): |
|
from transformers.image_utils import PILImageResampling |
|
|
|
|
|
class InternS1VideoProcessorInitKwargs(VideosKwargs): |
|
initial_shift: Union[bool, float, int] |
|
|
|
|
|
@requires(backends=("torchvision",)) |
|
class InternS1VideoProcessor(BaseVideoProcessor): |
|
resample = PILImageResampling.BICUBIC |
|
image_mean = OPENAI_CLIP_MEAN |
|
image_std = OPENAI_CLIP_STD |
|
size = {"height": 384, "width": 384} |
|
do_resize = True |
|
do_rescale = True |
|
do_normalize = True |
|
do_convert_rgb = True |
|
initial_shift = True |
|
do_sample_frames = False |
|
valid_kwargs = InternS1VideoProcessorInitKwargs |
|
model_input_names = ["pixel_values_videos"] |
|
|
|
def __init__(self, **kwargs: Unpack[InternS1VideoProcessorInitKwargs]): |
|
super().__init__(**kwargs) |
|
|
|
def sample_frames( |
|
self, |
|
video: "torch.Tensor", |
|
metadata: Optional[Union[VideoMetadata, dict]] = None, |
|
num_frames: Optional[int] = None, |
|
fps: Optional[Union[int, float]] = None, |
|
initial_shift: Optional[Union[bool, float, int]] = None, |
|
): |
|
""" |
|
Default sampling function which uniformly samples the desired number of frames between 0 and total number of frames. |
|
If `fps` is passed along with metadata, `fps` frames per second are sampled uniformty. Arguments `num_frames` |
|
and `fps` are mutually exclusive. |
|
|
|
Args: |
|
video (`torch.Tensor`): |
|
Video that need to be sampled. |
|
metadata (`VideoMetadata`, *optional*): |
|
Metadata of the video containing information about total duration, fps and total number of frames. |
|
num_frames (`int`, *optional*): |
|
Maximum number of frames to sample. Defaults to `self.num_frames`. |
|
fps (`int` or `float`, *optional*): |
|
Target frames to sample per second. Defaults to `self.fps`. |
|
initial_shift (`bool`, `float` or `int`, defaults to `self.initial_shift`): |
|
The initial shift to apply when sampling frames. If `True`, the shift is set so that frames are sampled from the middle of the video. |
|
|
|
Returns: |
|
torch.Tensor: |
|
Sampled video frames. |
|
""" |
|
num_frames = num_frames if num_frames is not None else self.num_frames |
|
initial_shift = initial_shift if initial_shift is not None else self.initial_shift |
|
total_num_frames = video.shape[0] |
|
|
|
|
|
if num_frames is None and fps is not None: |
|
if metadata is None: |
|
raise ValueError( |
|
"Asked to sample `fps` frames per second but no video metadata was provided which is required when sampling with `fps`. " |
|
"Please pass in `VideoMetadata` object or use a fixed `num_frames` per input video" |
|
) |
|
num_frames = int(total_num_frames / metadata["fps"] * fps) |
|
|
|
if initial_shift is True: |
|
initial_shift = total_num_frames / num_frames / 2 |
|
|
|
if num_frames > total_num_frames: |
|
raise ValueError( |
|
f"Video can't be sampled. The `num_frames={num_frames}` exceeds `total_num_frames={total_num_frames}`. " |
|
) |
|
|
|
indices = torch.arange(initial_shift, total_num_frames, total_num_frames / num_frames).int() |
|
video = video[indices].contiguous() |
|
return video |
|
|
|
def _preprocess( |
|
self, |
|
videos: list["torch.Tensor"], |
|
video_metadata: Union[list[VideoMetadata], list[dict]], |
|
do_convert_rgb: bool, |
|
do_resize: bool, |
|
size: SizeDict, |
|
size_divisor: Optional[int], |
|
interpolation: Optional["F.InterpolationMode"], |
|
do_center_crop: bool, |
|
crop_size: SizeDict, |
|
do_rescale: bool, |
|
do_pad: bool, |
|
rescale_factor: float, |
|
do_normalize: bool, |
|
image_mean: Optional[Union[float, list[float]]], |
|
image_std: Optional[Union[float, list[float]]], |
|
do_sample_frames: Optional[bool] = None, |
|
fps: Optional[Union[int, float]] = None, |
|
num_frames: Optional[int] = None, |
|
initial_shift: Optional[Union[bool, float, int]] = None, |
|
return_tensors: Optional[Union[str, TensorType]] = None, |
|
device: Optional["torch.Tensor"] = None, |
|
) -> BatchFeature: |
|
if do_sample_frames: |
|
|
|
videos = [ |
|
self.sample_frames(video, metadata, fps=fps, num_frames=num_frames, initial_shift=initial_shift) |
|
for video, metadata in zip(videos, video_metadata) |
|
] |
|
|
|
|
|
|
|
if device is not None: |
|
videos = [video.to(device) for video in videos] |
|
|
|
|
|
grouped_videos, grouped_videos_index = group_videos_by_shape(videos) |
|
resized_videos_grouped = {} |
|
for shape, stacked_videos in grouped_videos.items(): |
|
if do_convert_rgb: |
|
stacked_videos = self.convert_to_rgb(stacked_videos) |
|
if do_resize: |
|
stacked_videos = self.resize( |
|
stacked_videos, size=size, size_divisor=size_divisor, interpolation=interpolation |
|
) |
|
resized_videos_grouped[shape] = stacked_videos |
|
resized_videos = reorder_videos(resized_videos_grouped, grouped_videos_index) |
|
|
|
|
|
|
|
grouped_videos, grouped_videos_index = group_videos_by_shape(resized_videos) |
|
processed_videos_grouped = {} |
|
for shape, stacked_videos in grouped_videos.items(): |
|
if do_center_crop: |
|
stacked_videos = self.center_crop(stacked_videos, crop_size) |
|
|
|
stacked_videos = self.rescale_and_normalize( |
|
stacked_videos, do_rescale, rescale_factor, do_normalize, image_mean, image_std |
|
) |
|
processed_videos_grouped[shape] = stacked_videos |
|
|
|
processed_videos = reorder_videos(processed_videos_grouped, grouped_videos_index) |
|
processed_videos = torch.stack(processed_videos, dim=0) if return_tensors else processed_videos |
|
|
|
return BatchFeature(data={"pixel_values_videos": processed_videos}, tensor_type=return_tensors) |
|
|
|
|
|
__all__ = ["InternS1VideoProcessor"] |
|
|