|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import collections.abc |
|
from dataclasses import dataclass |
|
from typing import Callable, Optional, Union |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.cache_utils import Cache |
|
from transformers.generation import GenerationMixin |
|
from transformers.integrations import use_kernel_forward_from_hub |
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
from transformers.modeling_layers import GradientCheckpointingLayer |
|
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling |
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
from transformers.processing_utils import Unpack |
|
from transformers.utils import ( |
|
ModelOutput, |
|
auto_docstring, |
|
can_return_tuple, |
|
is_torchdynamo_compiling, |
|
torch_int, |
|
) |
|
from transformers import AutoModel |
|
from .configuration_interns1 import InternS1Config, InternS1VisionConfig |
|
|
|
|
|
@use_kernel_forward_from_hub("RMSNorm") |
|
class InternS1VisionRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
""" |
|
InternS1VisionRMSNorm is equivalent to T5LayerNorm |
|
""" |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
def extra_repr(self): |
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
def eager_attention_forward( |
|
module: nn.Module, |
|
query: torch.Tensor, |
|
key: torch.Tensor, |
|
value: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor], |
|
scaling: float, |
|
dropout: float = 0.0, |
|
**kwargs, |
|
): |
|
key_states = key |
|
value_states = value |
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
if attention_mask is not None: |
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1) |
|
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) |
|
attn_output = torch.matmul(attn_weights, value_states) |
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
class InternS1VisionAttention(nn.Module): |
|
"""Attention Class for InternS1 Vision Encoder""" |
|
|
|
def __init__(self, config: InternS1VisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.head_dim = self.embed_dim // self.num_heads |
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
self.scale = self.head_dim ** -0.5 |
|
self.attention_dropout = config.attention_dropout |
|
proj_dropout = config.projection_dropout |
|
qk_norm = config.use_qk_norm |
|
|
|
|
|
self.is_causal = False |
|
|
|
self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=config.attention_bias) |
|
self.k_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=config.attention_bias) |
|
self.v_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=config.attention_bias) |
|
self.projection_layer = nn.Linear(self.embed_dim, self.embed_dim) |
|
self.projection_dropout = nn.Dropout(proj_dropout) if proj_dropout > 0 else nn.Identity() |
|
|
|
self.q_norm = InternS1VisionRMSNorm(self.embed_dim) if qk_norm else nn.Identity() |
|
self.k_norm = InternS1VisionRMSNorm(self.embed_dim) if qk_norm else nn.Identity() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[torch.Tensor] = None, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
): |
|
batch_size, seq_len, _ = hidden_states.size() |
|
|
|
query_states = self.q_proj(hidden_states) |
|
key_states = self.k_proj(hidden_states) |
|
value_states = self.v_proj(hidden_states) |
|
|
|
query_states = self.q_norm(query_states) |
|
key_states = self.k_norm(key_states) |
|
|
|
query_states = query_states.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
key_states = key_states.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
value_states = value_states.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2) |
|
|
|
attention_interface: Callable = eager_attention_forward |
|
if self.config._attn_implementation != "eager": |
|
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] |
|
|
|
attn_output, attn_weights = attention_interface( |
|
self, |
|
query_states, |
|
key_states, |
|
value_states, |
|
attention_mask, |
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
scaling=self.scale, |
|
is_causal=False, |
|
**kwargs, |
|
) |
|
attn_output = attn_output.reshape(batch_size, seq_len, self.embed_dim) |
|
|
|
output = self.projection_layer(attn_output) |
|
output = self.projection_dropout(output) |
|
|
|
outputs = (output, attn_weights) if output_attentions else (output, None) |
|
return outputs |
|
|
|
|
|
@auto_docstring |
|
class InternS1VisionPreTrainedModel(PreTrainedModel): |
|
config_class = InternS1VisionConfig |
|
base_model_prefix = "interns1_vision" |
|
main_input_name = "pixel_values" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["InternS1VisionLayer"] |
|
_supports_sdpa = True |
|
_supports_flash_attn = True |
|
_supports_flex_attn = True |
|
_supports_attention_backend = True |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)): |
|
|
|
|
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
elif isinstance(module, InternS1VisionEmbeddings): |
|
module.cls_token.data.zero_() |
|
if module.mask_token is not None: |
|
module.mask_token.data.zero_() |
|
if module.position_embeddings is not None: |
|
module.position_embeddings.data.zero_() |
|
elif isinstance(module, InternS1VisionLayer): |
|
module.lambda_1.data.fill_(self.config.layer_scale_init_value) |
|
module.lambda_2.data.fill_(self.config.layer_scale_init_value) |
|
|
|
|
|
@dataclass |
|
@auto_docstring( |
|
custom_intro=""" |
|
Class for outputs of [`InternS1VisionModel`]. |
|
""" |
|
) |
|
class InternS1VisionModelOutputWithPooling(BaseModelOutputWithPooling): |
|
r""" |
|
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): |
|
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if |
|
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token |
|
will be returned. |
|
""" |
|
|
|
|
|
class InternS1VisionPatchEmbeddings(nn.Module): |
|
""" |
|
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial |
|
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a |
|
Transformer. |
|
""" |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
image_size, patch_size = config.image_size, config.patch_size |
|
num_channels, hidden_size = config.num_channels, config.hidden_size |
|
|
|
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) |
|
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1]) |
|
self.image_size = image_size |
|
self.patch_size = patch_size |
|
self.num_channels = num_channels |
|
self.num_patches = num_patches |
|
self.patch_shape = patch_shape |
|
|
|
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size) |
|
|
|
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: |
|
batch_size, num_channels, height, width = pixel_values.shape |
|
if num_channels != self.num_channels: |
|
raise ValueError( |
|
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." |
|
) |
|
|
|
embeddings = self.projection(pixel_values.to(self.projection.weight.dtype)) |
|
patch_height, patch_width = embeddings.shape[2], embeddings.shape[3] |
|
embeddings = embeddings.flatten(2).transpose(1, 2) |
|
|
|
return embeddings, (patch_height, patch_width) |
|
|
|
|
|
|
|
|
|
class InternS1VisionEmbeddings(nn.Module): |
|
""" |
|
Construct the CLS token, position and patch embeddings. Optionally, also the mask token. |
|
|
|
""" |
|
|
|
def __init__(self, config: InternS1VisionConfig) -> None: |
|
super().__init__() |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) |
|
if config.use_mask_token: |
|
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size)) |
|
else: |
|
self.mask_token = None |
|
self.patch_embeddings = InternS1VisionPatchEmbeddings(config) |
|
self.patch_size = config.patch_size |
|
self.image_size = ( |
|
config.image_size |
|
if isinstance(config.image_size, collections.abc.Iterable) |
|
else (config.image_size, config.image_size) |
|
) |
|
num_patches = self.patch_embeddings.num_patches |
|
if config.use_absolute_position_embeddings: |
|
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size)) |
|
else: |
|
self.position_embeddings = None |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: |
|
""" |
|
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution |
|
images. This method is also adapted to support torch.jit tracing. |
|
|
|
Adapted from: |
|
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and |
|
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 |
|
""" |
|
|
|
num_patches = embeddings.shape[1] - 1 |
|
num_positions = self.position_embeddings.shape[1] - 1 |
|
|
|
|
|
if not torch.jit.is_tracing() and num_patches == num_positions and height == width: |
|
return self.position_embeddings |
|
|
|
class_pos_embed = self.position_embeddings[:, :1] |
|
patch_pos_embed = self.position_embeddings[:, 1:] |
|
|
|
dim = embeddings.shape[-1] |
|
|
|
new_height = height // self.patch_size[0] |
|
new_width = width // self.patch_size[1] |
|
|
|
sqrt_num_positions = torch_int(num_positions ** 0.5) |
|
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) |
|
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) |
|
|
|
patch_pos_embed = nn.functional.interpolate( |
|
patch_pos_embed, |
|
size=(new_height, new_width), |
|
mode="bicubic", |
|
align_corners=False, |
|
) |
|
|
|
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) |
|
|
|
return torch.cat((class_pos_embed, patch_pos_embed), dim=1) |
|
|
|
def forward( |
|
self, |
|
pixel_values: torch.Tensor, |
|
bool_masked_pos: Optional[torch.BoolTensor] = None, |
|
) -> torch.Tensor: |
|
_, _, height, width = pixel_values.shape |
|
embeddings, (patch_height, patch_width) = self.patch_embeddings(pixel_values) |
|
batch_size, seq_len, _ = embeddings.size() |
|
|
|
if bool_masked_pos is not None: |
|
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1) |
|
|
|
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) |
|
embeddings = embeddings * (1 - w) + mask_tokens * w |
|
|
|
cls_tokens = self.cls_token.expand(batch_size, -1, -1) |
|
embeddings = torch.cat((cls_tokens, embeddings), dim=1) |
|
|
|
if self.position_embeddings is not None: |
|
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) |
|
|
|
embeddings = self.dropout(embeddings) |
|
|
|
return embeddings, (patch_height, patch_width) |
|
|
|
|
|
class InternS1VisionMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.activation_fn = ACT2FN[config.hidden_act] |
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) |
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.fc1(hidden_states) |
|
hidden_states = self.activation_fn(hidden_states) |
|
hidden_states = self.fc2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
NORM2FN = {"layer_norm": nn.LayerNorm, "rms_norm": InternS1VisionRMSNorm} |
|
|
|
|
|
class InternS1VisionLayer(GradientCheckpointingLayer): |
|
"""This corresponds to the Block class in the timm implementation.""" |
|
|
|
def __init__(self, config: InternS1VisionConfig, drop_path_rate=0.0) -> None: |
|
super().__init__() |
|
self.chunk_size_feed_forward = config.chunk_size_feed_forward |
|
self.seq_len_dim = 1 |
|
self.attention = InternS1VisionAttention(config) |
|
self.mlp = InternS1VisionMLP(config) |
|
|
|
self.layernorm_before = NORM2FN[config.norm_type](config.hidden_size, eps=config.layer_norm_eps) |
|
self.layernorm_after = NORM2FN[config.norm_type](config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
init_values = config.layer_scale_init_value |
|
self.lambda_1 = nn.Parameter(init_values * torch.ones(config.hidden_size), requires_grad=True) |
|
self.lambda_2 = nn.Parameter(init_values * torch.ones(config.hidden_size), requires_grad=True) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
|
|
if drop_path_rate > 0.0: |
|
try: |
|
from timm.layers import DropPath |
|
except ImportError: |
|
raise ImportError("timm is not installed, please install it to use DropPath by 'pip install timm'. ") |
|
self.drop_path1 = DropPath(drop_path_rate) |
|
self.drop_path2 = DropPath(drop_path_rate) |
|
else: |
|
self.drop_path1 = nn.Identity() |
|
self.drop_path2 = nn.Identity() |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
output_attentions: bool = False, |
|
) -> Union[tuple[torch.Tensor], tuple[torch.Tensor, torch.Tensor]]: |
|
attention_output, attention_weights = self.attention( |
|
self.layernorm_before(hidden_states), |
|
output_attentions=output_attentions, |
|
) |
|
|
|
attention_output = self.lambda_1 * attention_output |
|
|
|
|
|
hidden_states = self.drop_path1(attention_output) + hidden_states |
|
|
|
|
|
layer_output = self.layernorm_after(hidden_states) |
|
|
|
layer_output = self.mlp(layer_output) |
|
layer_output = self.dropout(layer_output) |
|
|
|
if self.lambda_2 is not None: |
|
layer_output = self.lambda_2 * layer_output |
|
|
|
|
|
layer_output = self.drop_path2(layer_output) + hidden_states |
|
|
|
return layer_output, attention_weights |
|
|
|
|
|
class InternS1VisionEncoder(nn.Module): |
|
def __init__(self, config: InternS1VisionConfig) -> None: |
|
super().__init__() |
|
self.config = config |
|
dpr = np.linspace(0.0, float(config.drop_path_rate), int(config.num_hidden_layers)) |
|
self.layer = nn.ModuleList([InternS1VisionLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)]) |
|
|
|
@can_return_tuple |
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
output_attentions: bool = False, |
|
output_hidden_states: bool = False, |
|
) -> Union[tuple, BaseModelOutput]: |
|
all_hidden_states = () if output_hidden_states else None |
|
all_self_attentions = () if output_attentions else None |
|
|
|
for i, layer_module in enumerate(self.layer): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
layer_outputs = layer_module(hidden_states, output_attentions) |
|
|
|
hidden_states = layer_outputs[0] |
|
|
|
if output_attentions: |
|
all_self_attentions = all_self_attentions + (layer_outputs[1],) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, |
|
hidden_states=all_hidden_states, |
|
attentions=all_self_attentions, |
|
) |
|
|
|
|
|
@auto_docstring |
|
class InternS1VisionModel(InternS1VisionPreTrainedModel): |
|
def __init__(self, config: InternS1VisionConfig) -> None: |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = InternS1VisionEmbeddings(config) |
|
self.encoder = InternS1VisionEncoder(config) |
|
|
|
self.layernorm = ( |
|
nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) |
|
) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings.patch_embeddings |
|
|
|
@can_return_tuple |
|
@auto_docstring |
|
def forward( |
|
self, |
|
pixel_values: torch.Tensor, |
|
bool_masked_pos: Optional[torch.BoolTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
) -> Union[tuple, InternS1VisionModelOutputWithPooling]: |
|
r""" |
|
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*): |
|
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
embedding_output, _ = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos) |
|
|
|
encoder_outputs = self.encoder( |
|
embedding_output, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
) |
|
sequence_output = encoder_outputs[0] |
|
sequence_output = self.layernorm(sequence_output) |
|
|
|
return InternS1VisionModelOutputWithPooling( |
|
last_hidden_state=sequence_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|
|
|
|
@auto_docstring |
|
class InternS1PreTrainedModel(PreTrainedModel): |
|
config_class = InternS1Config |
|
base_model_prefix = "" |
|
supports_gradient_checkpointing = True |
|
_skip_keys_device_placement = "past_key_values" |
|
|
|
_supports_flash_attn = True |
|
_supports_sdpa = True |
|
|
|
_supports_static_cache = True |
|
_supports_flex_attn = True |
|
_supports_attention_backend = True |
|
|
|
def _init_weights(self, module): |
|
std = getattr(self.config, "initializer_range", self.config.get_text_config().initializer_range) |
|
|
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=std) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
|
|
class InternS1MultiModalProjector(nn.Module): |
|
def __init__(self, config: InternS1Config): |
|
super().__init__() |
|
self.layer_norm = nn.LayerNorm(config.vision_config.hidden_size * int(1 / config.downsample_ratio) ** 2) |
|
self.linear_1 = nn.Linear( |
|
config.vision_config.hidden_size * int(1 / config.downsample_ratio) ** 2, config.text_config.hidden_size |
|
) |
|
self.act = ACT2FN[config.projector_hidden_act] |
|
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size) |
|
|
|
def forward(self, image_features): |
|
hidden_states = self.layer_norm(image_features) |
|
hidden_states = self.linear_1(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.linear_2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
@dataclass |
|
@auto_docstring( |
|
custom_intro=""" |
|
Base class for InternS1 outputs, with hidden states and attentions. |
|
""" |
|
) |
|
class InternS1ModelOutputWithPast(ModelOutput): |
|
""" |
|
Base class for model's outputs, with potential hidden states and attentions. |
|
|
|
Args: |
|
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Sequence of hidden-states at the output of the last layer of the model. |
|
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if |
|
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values` |
|
input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_probs=True` and `config.add_router_probs=True` is passed or when `config.output_router_probs=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`. |
|
|
|
Raw router logtis (post-softmax) that are computed by MoE routers, these terms are used to compute the auxiliary |
|
loss for Mixture of Experts models. |
|
image_hidden_states (`torch.FloatTensor`, *optional*): |
|
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. |
|
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. |
|
""" |
|
|
|
last_hidden_state: Optional[torch.FloatTensor] = None |
|
past_key_values: Optional[Cache] = None |
|
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None |
|
attentions: Optional[tuple[torch.FloatTensor, ...]] = None |
|
router_logits: Optional[tuple[torch.FloatTensor]] = None |
|
image_hidden_states: Optional[torch.FloatTensor] = None |
|
|
|
|
|
@auto_docstring( |
|
custom_intro=""" |
|
The InternS1 model which consists of a vision backbone and a language model, without a language modeling head. |
|
""" |
|
) |
|
class InternS1Model(InternS1PreTrainedModel): |
|
config_class = InternS1Config |
|
|
|
def __init__(self, config: InternS1Config): |
|
super().__init__(config) |
|
self.vision_tower = InternS1VisionModel._from_config(config.vision_config) |
|
|
|
self.multi_modal_projector = InternS1MultiModalProjector(config) |
|
self.language_model = AutoModel.from_config(config.text_config) |
|
|
|
self.is_moe_model = False |
|
if hasattr(config.text_config, 'output_router_logits'): |
|
self.is_moe_model = True |
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.language_model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.language_model.set_input_embeddings(value) |
|
|
|
def set_decoder(self, decoder): |
|
self.language_model = decoder |
|
|
|
def get_decoder(self): |
|
return self.language_model |
|
|
|
def get_image_features( |
|
self, |
|
pixel_values: torch.FloatTensor, |
|
vision_feature_layer: Optional[Union[int, list[int]]] = None, |
|
vision_feature_select_strategy: Optional[str] = None, |
|
**kwargs, |
|
): |
|
""" |
|
Obtains image last hidden states from the vision tower and apply multimodal projection. |
|
|
|
Args: |
|
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`) |
|
The tensors corresponding to the input images. |
|
vision_feature_layer (`int` or `list[int]`): |
|
Layer index or list of layer indices to extract features from. |
|
Returns: |
|
vision_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`. |
|
""" |
|
vision_feature_layer = ( |
|
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer |
|
) |
|
vision_feature_select_strategy = ( |
|
vision_feature_select_strategy |
|
if vision_feature_select_strategy is not None |
|
else self.config.vision_feature_select_strategy |
|
) |
|
|
|
downsample_ratio = self.config.downsample_ratio |
|
if vision_feature_layer == -1: |
|
vision_features = self.vision_tower(pixel_values=pixel_values).last_hidden_state |
|
else: |
|
vision_features = self.vision_model(pixel_values=pixel_values).hidden_states[vision_feature_layer] |
|
if vision_feature_select_strategy == "default": |
|
vision_features = vision_features[:, 1:, :] |
|
|
|
|
|
channels = vision_features.shape[1] |
|
feature_size = int(channels ** 0.5) |
|
batch_size = vision_features.shape[0] |
|
|
|
|
|
vision_features = vision_features.reshape(batch_size, feature_size, feature_size, -1) |
|
|
|
|
|
vision_features = self.pixel_shuffle(vision_features, scale_factor=downsample_ratio) |
|
|
|
|
|
vision_features = vision_features.reshape(batch_size, -1, vision_features.shape[-1]) |
|
|
|
|
|
vision_features = self.multi_modal_projector(vision_features) |
|
return vision_features |
|
|
|
@can_return_tuple |
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
pixel_values: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
vision_feature_layer: Optional[Union[int, list[int]]] = None, |
|
vision_feature_select_strategy: Optional[str] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
) -> InternS1ModelOutputWithPast: |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
if self.is_moe_model: |
|
output_router_logits = ( |
|
output_router_logits if output_router_logits is not None else self.config.text_config.output_router_logits |
|
) |
|
kwargs['output_router_logits'] = output_router_logits |
|
|
|
vision_feature_layer = ( |
|
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer |
|
) |
|
vision_feature_select_strategy = ( |
|
vision_feature_select_strategy |
|
if vision_feature_select_strategy is not None |
|
else self.config.vision_feature_select_strategy |
|
) |
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
raise ValueError("You must specify exactly one of input_ids or inputs_embeds") |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.get_input_embeddings()(input_ids) |
|
|
|
if pixel_values is not None: |
|
image_features = self.get_image_features( |
|
pixel_values=pixel_values, |
|
vision_feature_layer=vision_feature_layer, |
|
vision_feature_select_strategy=vision_feature_select_strategy, |
|
) |
|
|
|
if input_ids is None: |
|
special_image_mask = inputs_embeds == self.get_input_embeddings()( |
|
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device) |
|
) |
|
special_image_mask = special_image_mask.all(-1) |
|
else: |
|
special_image_mask = input_ids == self.config.image_token_id |
|
|
|
n_image_tokens = (special_image_mask).sum() |
|
special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) |
|
|
|
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel(): |
|
n_image_features = image_features.shape[0] * image_features.shape[1] |
|
raise ValueError( |
|
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" |
|
) |
|
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) |
|
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) |
|
|
|
outputs = self.language_model( |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
cache_position=cache_position, |
|
**kwargs, |
|
) |
|
|
|
return InternS1ModelOutputWithPast( |
|
last_hidden_state=outputs.last_hidden_state, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
router_logits=outputs.router_logits if self.is_moe_model else None, |
|
image_hidden_states=image_features if pixel_values is not None else None, |
|
) |
|
|
|
def pixel_shuffle(self, vision_features: torch.Tensor, scale_factor: float = 0.5): |
|
"""Perform pixel shuffle downsampling on vision features. |
|
|
|
Args: |
|
vision_features (`torch.Tensor`): |
|
Input tensor of shape (batch_size, width, height, channels). |
|
scale_factor (`float`, *optional*, defaults to `0.5`): |
|
Factor by which to downsample. Default is 0.5, which halves the dimensions. |
|
|
|
Returns: |
|
vision_features (`torch.Tensor`): |
|
Downsampled tensor of shape (batch_size, height*scale_factor, width*scale_factor, channels/(scale_factor^2)). |
|
""" |
|
batch_size, width, height, channels = vision_features.size() |
|
|
|
if height % scale_factor != 0 or width % scale_factor != 0: |
|
raise ValueError("Height and width must be divisible by scale_factor for proper downsampling.") |
|
|
|
|
|
vision_features = vision_features.view( |
|
batch_size, width, int(height * scale_factor), int(channels / scale_factor) |
|
) |
|
|
|
vision_features = vision_features.permute(0, 2, 1, 3).contiguous() |
|
|
|
|
|
vision_features = vision_features.view( |
|
batch_size, int(height * scale_factor), int(width * scale_factor), int(channels / (scale_factor ** 2)) |
|
) |
|
|
|
|
|
vision_features = vision_features.permute(0, 2, 1, 3).contiguous() |
|
|
|
return vision_features |
|
|
|
|
|
@dataclass |
|
@auto_docstring( |
|
custom_intro=""" |
|
Base class for InternS1 causal language model (or autoregressive) outputs. |
|
""" |
|
) |
|
class InternS1CausalLMOutputWithPast(ModelOutput): |
|
""" |
|
Base class for causal language model (or autoregressive) with mixture of experts outputs. |
|
|
|
Args: |
|
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): |
|
Language modeling loss (for next-token prediction). |
|
|
|
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): |
|
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). |
|
|
|
aux_loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided): |
|
aux_loss for the sparse modules. |
|
|
|
router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_probs=True` and `config.add_router_probs=True` is passed or when `config.output_router_probs=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`. |
|
|
|
Raw router logtis (post-softmax) that are computed by MoE routers, these terms are used to compute the auxiliary |
|
loss for Mixture of Experts models. |
|
|
|
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache). |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): |
|
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + |
|
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. |
|
|
|
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. |
|
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): |
|
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, |
|
sequence_length)`. |
|
|
|
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention |
|
heads. |
|
image_hidden_states (`torch.FloatTensor`, *optional*): |
|
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`. |
|
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state. |
|
""" |
|
|
|
loss: Optional[torch.FloatTensor] = None |
|
aux_loss: Optional[torch.FloatTensor] = None |
|
logits: Optional[torch.FloatTensor] = None |
|
past_key_values: Optional[Cache] = None |
|
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None |
|
attentions: Optional[tuple[torch.FloatTensor, ...]] = None |
|
router_logits: Optional[tuple[torch.FloatTensor]] = None |
|
image_hidden_states: Optional[torch.FloatTensor] = None |
|
|
|
|
|
def load_balancing_loss_func( |
|
gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None], |
|
num_experts: Optional[int] = None, |
|
top_k=2, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
) -> Union[torch.Tensor, int]: |
|
r""" |
|
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch. |
|
|
|
See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss |
|
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between |
|
experts is too unbalanced. |
|
|
|
Args: |
|
gate_logits: |
|
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of |
|
shape [batch_size X sequence_length, num_experts]. |
|
num_experts: |
|
Number of experts |
|
top_k: |
|
The number of experts to route per-token, can be also interpreted as the `top-k` routing |
|
parameter. |
|
attention_mask (`torch.Tensor`, *optional*): |
|
The attention_mask used in forward function |
|
shape [batch_size X sequence_length] if not None. |
|
|
|
Returns: |
|
The auxiliary loss. |
|
""" |
|
if gate_logits is None or not isinstance(gate_logits, tuple): |
|
return 0 |
|
|
|
if isinstance(gate_logits, tuple): |
|
compute_device = gate_logits[0].device |
|
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0) |
|
|
|
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1) |
|
|
|
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1) |
|
|
|
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts) |
|
|
|
if attention_mask is None: |
|
|
|
tokens_per_expert = torch.mean(expert_mask.float(), dim=0) |
|
|
|
|
|
router_prob_per_expert = torch.mean(routing_weights, dim=0) |
|
else: |
|
batch_size, sequence_length = attention_mask.shape |
|
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length) |
|
|
|
|
|
expert_attention_mask = ( |
|
attention_mask[None, :, :, None, None] |
|
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts)) |
|
.reshape(-1, top_k, num_experts) |
|
.to(compute_device) |
|
) |
|
|
|
|
|
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum( |
|
expert_attention_mask, dim=0 |
|
) |
|
|
|
|
|
router_per_expert_attention_mask = ( |
|
attention_mask[None, :, :, None] |
|
.expand((num_hidden_layers, batch_size, sequence_length, num_experts)) |
|
.reshape(-1, num_experts) |
|
.to(compute_device) |
|
) |
|
|
|
|
|
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum( |
|
router_per_expert_attention_mask, dim=0 |
|
) |
|
|
|
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0)) |
|
return overall_loss * num_experts |
|
|
|
|
|
@auto_docstring( |
|
custom_intro=""" |
|
The INTERNS1 model which consists of a vision backbone and a language model. |
|
""" |
|
) |
|
class InternS1ForConditionalGeneration(InternS1PreTrainedModel, GenerationMixin): |
|
config_class = InternS1Config |
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
|
def __init__(self, config: InternS1Config): |
|
super().__init__(config) |
|
self.model = InternS1Model(config) |
|
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False) |
|
|
|
self.is_moe_model = False |
|
if hasattr(config.text_config, 'output_router_logits'): |
|
self.is_moe_model = True |
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.model.get_input_embeddings() |
|
|
|
def set_input_embeddings(self, value): |
|
self.model.set_input_embeddings(value) |
|
|
|
def get_output_embeddings(self) -> nn.Module: |
|
return self.lm_head |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.lm_head = new_embeddings |
|
|
|
def set_decoder(self, decoder): |
|
self.model.set_decoder(decoder) |
|
|
|
def get_decoder(self): |
|
return self.model.get_decoder |
|
|
|
def get_image_features( |
|
self, |
|
pixel_values: torch.FloatTensor, |
|
vision_feature_layer: Optional[Union[int, list[int]]] = None, |
|
vision_feature_select_strategy: Optional[str] = None, |
|
**kwargs, |
|
): |
|
return self.model.get_image_features( |
|
pixel_values=pixel_values, |
|
vision_feature_layer=vision_feature_layer, |
|
vision_feature_select_strategy=vision_feature_select_strategy, |
|
**kwargs, |
|
) |
|
|
|
|
|
@property |
|
def language_model(self): |
|
return self.model.language_model |
|
|
|
@property |
|
def vision_tower(self): |
|
return self.model.vision_tower |
|
|
|
@property |
|
def multi_modal_projector(self): |
|
return self.model.multi_modal_projector |
|
|
|
@can_return_tuple |
|
@auto_docstring |
|
def forward( |
|
self, |
|
input_ids: torch.LongTensor = None, |
|
pixel_values: torch.FloatTensor = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Cache] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
vision_feature_layer: Optional[Union[int, list[int]]] = None, |
|
vision_feature_select_strategy: Optional[str] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_router_logits: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
cache_position: Optional[torch.LongTensor] = None, |
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
image_sizes: Optional[torch.Tensor] = None, |
|
**kwargs, |
|
) -> Union[tuple, InternS1CausalLMOutputWithPast]: |
|
r""" |
|
Example: |
|
|
|
```python |
|
>>> import torch |
|
>>> from transformers import AutoProcessor, AutoModelForImageTextToText |
|
|
|
>>> torch_device = "cuda" |
|
>>> processor = AutoProcessor.from_pretrained("InternLM/InternS1") # todo |
|
>>> model = AutoModelForImageTextToText.from_pretrained( |
|
... "InternLM/InternS1", torch_dtype=torch.bfloat16, device_map=torch_device |
|
... ) |
|
|
|
>>> messages = [ |
|
... { |
|
... "role": "user", |
|
... "content": [ |
|
... { |
|
... "type": "image", |
|
... "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg", |
|
... }, |
|
... { |
|
... "type": "image", |
|
... "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg", |
|
... }, |
|
... {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"}, |
|
... ], |
|
... }, |
|
... ] |
|
|
|
>>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(torch_device) |
|
>>> generate_ids = model.generate(**inputs, max_new_tokens=200) |
|
>>> print(processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True)) |
|
The images depict the Statue of Liberty and the Golden Gate Bridge. |
|
```""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
|
|
if self.is_moe_model: |
|
output_router_logits = ( |
|
output_router_logits if output_router_logits is not None else self.config.text_config.output_router_logits |
|
) |
|
kwargs['output_router_logits'] = output_router_logits |
|
|
|
vision_feature_layer = ( |
|
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer |
|
) |
|
vision_feature_select_strategy = ( |
|
vision_feature_select_strategy |
|
if vision_feature_select_strategy is not None |
|
else self.config.vision_feature_select_strategy |
|
) |
|
|
|
outputs = self.model( |
|
input_ids=input_ids, |
|
pixel_values=pixel_values, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
vision_feature_layer=vision_feature_layer, |
|
vision_feature_select_strategy=vision_feature_select_strategy, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
cache_position=cache_position, |
|
image_sizes=image_sizes, |
|
**kwargs, |
|
) |
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep |
|
logits = self.lm_head(hidden_states[:, slice_indices, :]) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss = self.loss_function( |
|
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs |
|
) |
|
|
|
aux_loss = None |
|
if self.is_moe_model and output_router_logits and labels is not None: |
|
aux_loss = load_balancing_loss_func( |
|
outputs.router_logits, |
|
self.config.text_config.num_experts, |
|
self.config.text_config.num_experts_per_tok, |
|
attention_mask, |
|
) |
|
loss += self.config.text_config.router_aux_loss_coef * aux_loss.to(loss.device) |
|
|
|
return InternS1CausalLMOutputWithPast( |
|
loss=loss, |
|
aux_loss=aux_loss, |
|
logits=logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
router_logits=outputs.router_logits if self.is_moe_model else None, |
|
image_hidden_states=outputs.image_hidden_states, |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, |
|
input_ids, |
|
past_key_values=None, |
|
inputs_embeds=None, |
|
pixel_values=None, |
|
attention_mask=None, |
|
cache_position=None, |
|
logits_to_keep=None, |
|
**kwargs, |
|
): |
|
|
|
|
|
model_inputs = super().prepare_inputs_for_generation( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
inputs_embeds=inputs_embeds, |
|
attention_mask=attention_mask, |
|
cache_position=cache_position, |
|
logits_to_keep=logits_to_keep, |
|
**kwargs, |
|
) |
|
|
|
if cache_position[0] == 0: |
|
|
|
|
|
model_inputs["pixel_values"] = pixel_values |
|
|
|
return model_inputs |
|
|
|
|
|
__all__ = [ |
|
"InternS1VisionPreTrainedModel", |
|
"InternS1VisionModel", |
|
"InternS1PreTrainedModel", |
|
"InternS1Model", |
|
"InternS1ForConditionalGeneration", |
|
] |
|
|