File size: 52,295 Bytes
22acd83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 |
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/interns1/modular_interns1.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_interns1.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections.abc
from dataclasses import dataclass
from typing import Callable, Optional, Union
import numpy as np
import torch
import torch.nn as nn
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache
from transformers.generation import GenerationMixin
from transformers.integrations import use_kernel_forward_from_hub
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import (
ModelOutput,
auto_docstring,
can_return_tuple,
is_torchdynamo_compiling,
torch_int,
)
from transformers import AutoModel
from .configuration_interns1 import InternS1Config, InternS1VisionConfig
@use_kernel_forward_from_hub("RMSNorm")
class InternS1VisionRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
InternS1VisionRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
key_states = key
value_states = value
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# No upcasting of the attention weights to float32 in this implementation
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class InternS1VisionAttention(nn.Module):
"""Attention Class for InternS1 Vision Encoder"""
def __init__(self, config: InternS1VisionConfig):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim ** -0.5
self.attention_dropout = config.attention_dropout
proj_dropout = config.projection_dropout
qk_norm = config.use_qk_norm
# Needed for flash attention
self.is_causal = False
self.q_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=config.attention_bias)
self.k_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=config.attention_bias)
self.v_proj = nn.Linear(self.embed_dim, self.num_heads * self.head_dim, bias=config.attention_bias)
self.projection_layer = nn.Linear(self.embed_dim, self.embed_dim)
self.projection_dropout = nn.Dropout(proj_dropout) if proj_dropout > 0 else nn.Identity()
self.q_norm = InternS1VisionRMSNorm(self.embed_dim) if qk_norm else nn.Identity()
self.k_norm = InternS1VisionRMSNorm(self.embed_dim) if qk_norm else nn.Identity()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[torch.Tensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
):
batch_size, seq_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
query_states = self.q_norm(query_states)
key_states = self.k_norm(key_states)
query_states = query_states.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.reshape(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scale,
is_causal=False,
**kwargs,
)
attn_output = attn_output.reshape(batch_size, seq_len, self.embed_dim)
output = self.projection_layer(attn_output)
output = self.projection_dropout(output)
outputs = (output, attn_weights) if output_attentions else (output, None)
return outputs
@auto_docstring
class InternS1VisionPreTrainedModel(PreTrainedModel):
config_class = InternS1VisionConfig
base_model_prefix = "interns1_vision"
main_input_name = "pixel_values"
supports_gradient_checkpointing = True
_no_split_modules = ["InternS1VisionLayer"]
_supports_sdpa = True
_supports_flash_attn = True
_supports_flex_attn = True
_supports_attention_backend = True
def _init_weights(self, module):
"""Initialize the weights"""
if isinstance(module, (nn.Linear, nn.Conv2d, nn.ConvTranspose2d)):
# Slightly different from the TF version which uses truncated_normal for initialization
# cf https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
elif isinstance(module, InternS1VisionEmbeddings):
module.cls_token.data.zero_()
if module.mask_token is not None:
module.mask_token.data.zero_()
if module.position_embeddings is not None:
module.position_embeddings.data.zero_()
elif isinstance(module, InternS1VisionLayer):
module.lambda_1.data.fill_(self.config.layer_scale_init_value)
module.lambda_2.data.fill_(self.config.layer_scale_init_value)
@dataclass
@auto_docstring(
custom_intro="""
Class for outputs of [`InternS1VisionModel`].
"""
)
class InternS1VisionModelOutputWithPooling(BaseModelOutputWithPooling):
r"""
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`):
Average of the last layer hidden states of the patch tokens (excluding the *[CLS]* token) if
*config.use_mean_pooling* is set to True. If set to False, then the final hidden state of the *[CLS]* token
will be returned.
"""
class InternS1VisionPatchEmbeddings(nn.Module):
"""
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
`hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a
Transformer.
"""
def __init__(self, config):
super().__init__()
image_size, patch_size = config.image_size, config.patch_size
num_channels, hidden_size = config.num_channels, config.hidden_size
num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
patch_shape = (image_size[0] // patch_size[0], image_size[1] // patch_size[1])
self.image_size = image_size
self.patch_size = patch_size
self.num_channels = num_channels
self.num_patches = num_patches
self.patch_shape = patch_shape
self.projection = nn.Conv2d(num_channels, hidden_size, kernel_size=patch_size, stride=patch_size)
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
batch_size, num_channels, height, width = pixel_values.shape
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
)
embeddings = self.projection(pixel_values.to(self.projection.weight.dtype))
patch_height, patch_width = embeddings.shape[2], embeddings.shape[3]
embeddings = embeddings.flatten(2).transpose(1, 2)
return embeddings, (patch_height, patch_width)
# Based on timm implementation, which can be found here:
# https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
class InternS1VisionEmbeddings(nn.Module):
"""
Construct the CLS token, position and patch embeddings. Optionally, also the mask token.
"""
def __init__(self, config: InternS1VisionConfig) -> None:
super().__init__()
self.cls_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
if config.use_mask_token:
self.mask_token = nn.Parameter(torch.zeros(1, 1, config.hidden_size))
else:
self.mask_token = None
self.patch_embeddings = InternS1VisionPatchEmbeddings(config)
self.patch_size = config.patch_size
self.image_size = (
config.image_size
if isinstance(config.image_size, collections.abc.Iterable)
else (config.image_size, config.image_size)
)
num_patches = self.patch_embeddings.num_patches
if config.use_absolute_position_embeddings:
self.position_embeddings = nn.Parameter(torch.zeros(1, num_patches + 1, config.hidden_size))
else:
self.position_embeddings = None
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
"""
This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution
images. This method is also adapted to support torch.jit tracing.
Adapted from:
- https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and
- https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211
"""
num_patches = embeddings.shape[1] - 1
num_positions = self.position_embeddings.shape[1] - 1
# always interpolate when tracing to ensure the exported model works for dynamic input shapes
if not torch.jit.is_tracing() and num_patches == num_positions and height == width:
return self.position_embeddings
class_pos_embed = self.position_embeddings[:, :1]
patch_pos_embed = self.position_embeddings[:, 1:]
dim = embeddings.shape[-1]
new_height = height // self.patch_size[0]
new_width = width // self.patch_size[1]
sqrt_num_positions = torch_int(num_positions ** 0.5)
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed,
size=(new_height, new_width),
mode="bicubic",
align_corners=False,
)
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed, patch_pos_embed), dim=1)
def forward(
self,
pixel_values: torch.Tensor,
bool_masked_pos: Optional[torch.BoolTensor] = None,
) -> torch.Tensor:
_, _, height, width = pixel_values.shape
embeddings, (patch_height, patch_width) = self.patch_embeddings(pixel_values)
batch_size, seq_len, _ = embeddings.size()
if bool_masked_pos is not None:
mask_tokens = self.mask_token.expand(batch_size, seq_len, -1)
# replace the masked visual tokens by mask_tokens
w = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens)
embeddings = embeddings * (1 - w) + mask_tokens * w
cls_tokens = self.cls_token.expand(batch_size, -1, -1)
embeddings = torch.cat((cls_tokens, embeddings), dim=1)
if self.position_embeddings is not None:
embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width)
embeddings = self.dropout(embeddings)
return embeddings, (patch_height, patch_width)
class InternS1VisionMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.activation_fn = ACT2FN[config.hidden_act]
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = self.fc1(hidden_states)
hidden_states = self.activation_fn(hidden_states)
hidden_states = self.fc2(hidden_states)
return hidden_states
NORM2FN = {"layer_norm": nn.LayerNorm, "rms_norm": InternS1VisionRMSNorm}
class InternS1VisionLayer(GradientCheckpointingLayer):
"""This corresponds to the Block class in the timm implementation."""
def __init__(self, config: InternS1VisionConfig, drop_path_rate=0.0) -> None:
super().__init__()
self.chunk_size_feed_forward = config.chunk_size_feed_forward
self.seq_len_dim = 1
self.attention = InternS1VisionAttention(config)
self.mlp = InternS1VisionMLP(config)
# InternS1 uses different layernorm implementations for different models
self.layernorm_before = NORM2FN[config.norm_type](config.hidden_size, eps=config.layer_norm_eps)
self.layernorm_after = NORM2FN[config.norm_type](config.hidden_size, eps=config.layer_norm_eps)
init_values = config.layer_scale_init_value
self.lambda_1 = nn.Parameter(init_values * torch.ones(config.hidden_size), requires_grad=True)
self.lambda_2 = nn.Parameter(init_values * torch.ones(config.hidden_size), requires_grad=True)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
if drop_path_rate > 0.0:
try:
from timm.layers import DropPath
except ImportError:
raise ImportError("timm is not installed, please install it to use DropPath by 'pip install timm'. ")
self.drop_path1 = DropPath(drop_path_rate)
self.drop_path2 = DropPath(drop_path_rate)
else:
self.drop_path1 = nn.Identity()
self.drop_path2 = nn.Identity()
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: bool = False,
) -> Union[tuple[torch.Tensor], tuple[torch.Tensor, torch.Tensor]]:
attention_output, attention_weights = self.attention(
self.layernorm_before(hidden_states), # in InternS1Vision, layernorm is applied before self-attention
output_attentions=output_attentions,
)
attention_output = self.lambda_1 * attention_output
# first residual connection
hidden_states = self.drop_path1(attention_output) + hidden_states
# in InternS1Vision, layernorm is also applied after self-attention
layer_output = self.layernorm_after(hidden_states)
layer_output = self.mlp(layer_output)
layer_output = self.dropout(layer_output)
if self.lambda_2 is not None:
layer_output = self.lambda_2 * layer_output
# second residual connection
layer_output = self.drop_path2(layer_output) + hidden_states
return layer_output, attention_weights
class InternS1VisionEncoder(nn.Module):
def __init__(self, config: InternS1VisionConfig) -> None:
super().__init__()
self.config = config
dpr = np.linspace(0.0, float(config.drop_path_rate), int(config.num_hidden_layers))
self.layer = nn.ModuleList([InternS1VisionLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
@can_return_tuple
def forward(
self,
hidden_states: torch.Tensor,
output_attentions: bool = False,
output_hidden_states: bool = False,
) -> Union[tuple, BaseModelOutput]:
all_hidden_states = () if output_hidden_states else None
all_self_attentions = () if output_attentions else None
for i, layer_module in enumerate(self.layer):
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
layer_outputs = layer_module(hidden_states, output_attentions)
hidden_states = layer_outputs[0]
if output_attentions:
all_self_attentions = all_self_attentions + (layer_outputs[1],)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=all_hidden_states,
attentions=all_self_attentions,
)
@auto_docstring
class InternS1VisionModel(InternS1VisionPreTrainedModel):
def __init__(self, config: InternS1VisionConfig) -> None:
super().__init__(config)
self.config = config
self.embeddings = InternS1VisionEmbeddings(config)
self.encoder = InternS1VisionEncoder(config)
self.layernorm = (
nn.Identity() if config.use_mean_pooling else nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
)
# Initialize weights and apply final processing
self.post_init()
def get_input_embeddings(self):
return self.embeddings.patch_embeddings
@can_return_tuple
@auto_docstring
def forward(
self,
pixel_values: torch.Tensor,
bool_masked_pos: Optional[torch.BoolTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> Union[tuple, InternS1VisionModelOutputWithPooling]:
r"""
bool_masked_pos (`torch.BoolTensor` of shape `(batch_size, num_patches)`, *optional*):
Boolean masked positions. Indicates which patches are masked (1) and which aren't (0).
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
embedding_output, _ = self.embeddings(pixel_values, bool_masked_pos=bool_masked_pos)
encoder_outputs = self.encoder(
embedding_output,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
sequence_output = encoder_outputs[0]
sequence_output = self.layernorm(sequence_output)
return InternS1VisionModelOutputWithPooling(
last_hidden_state=sequence_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@auto_docstring
class InternS1PreTrainedModel(PreTrainedModel):
config_class = InternS1Config
base_model_prefix = ""
supports_gradient_checkpointing = True
_skip_keys_device_placement = "past_key_values"
_supports_flash_attn = True
_supports_sdpa = True
_supports_static_cache = True
_supports_flex_attn = True
_supports_attention_backend = True
def _init_weights(self, module):
std = getattr(self.config, "initializer_range", self.config.get_text_config().initializer_range)
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.LayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
class InternS1MultiModalProjector(nn.Module):
def __init__(self, config: InternS1Config):
super().__init__()
self.layer_norm = nn.LayerNorm(config.vision_config.hidden_size * int(1 / config.downsample_ratio) ** 2)
self.linear_1 = nn.Linear(
config.vision_config.hidden_size * int(1 / config.downsample_ratio) ** 2, config.text_config.hidden_size
)
self.act = ACT2FN[config.projector_hidden_act]
self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size)
def forward(self, image_features):
hidden_states = self.layer_norm(image_features)
hidden_states = self.linear_1(hidden_states)
hidden_states = self.act(hidden_states)
hidden_states = self.linear_2(hidden_states)
return hidden_states
@dataclass
@auto_docstring(
custom_intro="""
Base class for InternS1 outputs, with hidden states and attentions.
"""
)
class InternS1ModelOutputWithPast(ModelOutput):
"""
Base class for model's outputs, with potential hidden states and attentions.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
`config.is_encoder_decoder=True` in the cross-attention blocks) that can be used (see `past_key_values`
input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_probs=True` and `config.add_router_probs=True` is passed or when `config.output_router_probs=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
Raw router logtis (post-softmax) that are computed by MoE routers, these terms are used to compute the auxiliary
loss for Mixture of Experts models.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
past_key_values: Optional[Cache] = None
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
attentions: Optional[tuple[torch.FloatTensor, ...]] = None
router_logits: Optional[tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[torch.FloatTensor] = None
@auto_docstring(
custom_intro="""
The InternS1 model which consists of a vision backbone and a language model, without a language modeling head.
"""
)
class InternS1Model(InternS1PreTrainedModel):
config_class = InternS1Config
def __init__(self, config: InternS1Config):
super().__init__(config)
self.vision_tower = InternS1VisionModel._from_config(config.vision_config)
self.multi_modal_projector = InternS1MultiModalProjector(config)
self.language_model = AutoModel.from_config(config.text_config)
self.is_moe_model = False
if hasattr(config.text_config, 'output_router_logits'):
self.is_moe_model = True
self.post_init()
def get_input_embeddings(self):
return self.language_model.get_input_embeddings()
def set_input_embeddings(self, value):
self.language_model.set_input_embeddings(value)
def set_decoder(self, decoder):
self.language_model = decoder
def get_decoder(self):
return self.language_model
def get_image_features(
self,
pixel_values: torch.FloatTensor,
vision_feature_layer: Optional[Union[int, list[int]]] = None,
vision_feature_select_strategy: Optional[str] = None,
**kwargs,
):
"""
Obtains image last hidden states from the vision tower and apply multimodal projection.
Args:
pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`)
The tensors corresponding to the input images.
vision_feature_layer (`int` or `list[int]`):
Layer index or list of layer indices to extract features from.
Returns:
vision_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`.
"""
vision_feature_layer = (
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
)
vision_feature_select_strategy = (
vision_feature_select_strategy
if vision_feature_select_strategy is not None
else self.config.vision_feature_select_strategy
)
downsample_ratio = self.config.downsample_ratio
if vision_feature_layer == -1:
vision_features = self.vision_tower(pixel_values=pixel_values).last_hidden_state
else:
vision_features = self.vision_model(pixel_values=pixel_values).hidden_states[vision_feature_layer]
if vision_feature_select_strategy == "default":
vision_features = vision_features[:, 1:, :]
# Calculate dimensions based on vision features
channels = vision_features.shape[1]
feature_size = int(channels ** 0.5)
batch_size = vision_features.shape[0]
# Reshape tensor to spatial dimensions
vision_features = vision_features.reshape(batch_size, feature_size, feature_size, -1)
# Apply downsampling using pixel shuffle
vision_features = self.pixel_shuffle(vision_features, scale_factor=downsample_ratio)
# Reshape tensor to prepare for projection
vision_features = vision_features.reshape(batch_size, -1, vision_features.shape[-1])
# Project features through multi-modal projector
vision_features = self.multi_modal_projector(vision_features)
return vision_features
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
vision_feature_layer: Optional[Union[int, list[int]]] = None,
vision_feature_select_strategy: Optional[str] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> InternS1ModelOutputWithPast:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if self.is_moe_model:
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.text_config.output_router_logits
)
kwargs['output_router_logits'] = output_router_logits
vision_feature_layer = (
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
)
vision_feature_select_strategy = (
vision_feature_select_strategy
if vision_feature_select_strategy is not None
else self.config.vision_feature_select_strategy
)
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.get_input_embeddings()(input_ids)
if pixel_values is not None:
image_features = self.get_image_features(
pixel_values=pixel_values,
vision_feature_layer=vision_feature_layer,
vision_feature_select_strategy=vision_feature_select_strategy,
)
if input_ids is None:
special_image_mask = inputs_embeds == self.get_input_embeddings()(
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
)
special_image_mask = special_image_mask.all(-1)
else:
special_image_mask = input_ids == self.config.image_token_id
n_image_tokens = (special_image_mask).sum()
special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel():
n_image_features = image_features.shape[0] * image_features.shape[1]
raise ValueError(
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
)
image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype)
inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
outputs = self.language_model(
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
**kwargs,
)
return InternS1ModelOutputWithPast(
last_hidden_state=outputs.last_hidden_state,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits if self.is_moe_model else None,
image_hidden_states=image_features if pixel_values is not None else None,
)
def pixel_shuffle(self, vision_features: torch.Tensor, scale_factor: float = 0.5):
"""Perform pixel shuffle downsampling on vision features.
Args:
vision_features (`torch.Tensor`):
Input tensor of shape (batch_size, width, height, channels).
scale_factor (`float`, *optional*, defaults to `0.5`):
Factor by which to downsample. Default is 0.5, which halves the dimensions.
Returns:
vision_features (`torch.Tensor`):
Downsampled tensor of shape (batch_size, height*scale_factor, width*scale_factor, channels/(scale_factor^2)).
"""
batch_size, width, height, channels = vision_features.size()
if height % scale_factor != 0 or width % scale_factor != 0:
raise ValueError("Height and width must be divisible by scale_factor for proper downsampling.")
# Reshape to allow downsampling
vision_features = vision_features.view(
batch_size, width, int(height * scale_factor), int(channels / scale_factor)
)
# Permute dimensions to align downsampled axis correctly
vision_features = vision_features.permute(0, 2, 1, 3).contiguous()
# Reshape to achieve final downsampled dimensions
vision_features = vision_features.view(
batch_size, int(height * scale_factor), int(width * scale_factor), int(channels / (scale_factor ** 2))
)
# Swap height and width back for proper orientation
vision_features = vision_features.permute(0, 2, 1, 3).contiguous()
return vision_features
@dataclass
@auto_docstring(
custom_intro="""
Base class for InternS1 causal language model (or autoregressive) outputs.
"""
)
class InternS1CausalLMOutputWithPast(ModelOutput):
"""
Base class for causal language model (or autoregressive) with mixture of experts outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
aux_loss (`torch.FloatTensor`, *optional*, returned when `labels` is provided):
aux_loss for the sparse modules.
router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_probs=True` and `config.add_router_probs=True` is passed or when `config.output_router_probs=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
Raw router logtis (post-softmax) that are computed by MoE routers, these terms are used to compute the auxiliary
loss for Mixture of Experts models.
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
`past_key_values` input) to speed up sequential decoding.
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
sequence_length)`.
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
heads.
image_hidden_states (`torch.FloatTensor`, *optional*):
A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
image_hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
"""
loss: Optional[torch.FloatTensor] = None
aux_loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
past_key_values: Optional[Cache] = None
hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None
attentions: Optional[tuple[torch.FloatTensor, ...]] = None
router_logits: Optional[tuple[torch.FloatTensor]] = None
image_hidden_states: Optional[torch.FloatTensor] = None
def load_balancing_loss_func(
gate_logits: Union[torch.Tensor, tuple[torch.Tensor], None],
num_experts: Optional[int] = None,
top_k=2,
attention_mask: Optional[torch.Tensor] = None,
) -> Union[torch.Tensor, int]:
r"""
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
See Switch Transformer (https://huggingface.co/papers/2101.03961) for more details. This function implements the loss
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
experts is too unbalanced.
Args:
gate_logits:
Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
shape [batch_size X sequence_length, num_experts].
num_experts:
Number of experts
top_k:
The number of experts to route per-token, can be also interpreted as the `top-k` routing
parameter.
attention_mask (`torch.Tensor`, *optional*):
The attention_mask used in forward function
shape [batch_size X sequence_length] if not None.
Returns:
The auxiliary loss.
"""
if gate_logits is None or not isinstance(gate_logits, tuple):
return 0
if isinstance(gate_logits, tuple):
compute_device = gate_logits[0].device
concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
_, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
if attention_mask is None:
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.mean(routing_weights, dim=0)
else:
batch_size, sequence_length = attention_mask.shape
num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
# Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
expert_attention_mask = (
attention_mask[None, :, :, None, None]
.expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
.reshape(-1, top_k, num_experts)
.to(compute_device)
)
# Compute the percentage of tokens routed to each experts
tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
expert_attention_mask, dim=0
)
# Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
router_per_expert_attention_mask = (
attention_mask[None, :, :, None]
.expand((num_hidden_layers, batch_size, sequence_length, num_experts))
.reshape(-1, num_experts)
.to(compute_device)
)
# Compute the average probability of routing to these experts
router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
router_per_expert_attention_mask, dim=0
)
overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
return overall_loss * num_experts
@auto_docstring(
custom_intro="""
The INTERNS1 model which consists of a vision backbone and a language model.
"""
)
class InternS1ForConditionalGeneration(InternS1PreTrainedModel, GenerationMixin):
config_class = InternS1Config
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: InternS1Config):
super().__init__(config)
self.model = InternS1Model(config)
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False)
self.is_moe_model = False
if hasattr(config.text_config, 'output_router_logits'):
self.is_moe_model = True
self.post_init()
def get_input_embeddings(self):
return self.model.get_input_embeddings()
def set_input_embeddings(self, value):
self.model.set_input_embeddings(value)
def get_output_embeddings(self) -> nn.Module:
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings
def set_decoder(self, decoder):
self.model.set_decoder(decoder)
def get_decoder(self):
return self.model.get_decoder
def get_image_features(
self,
pixel_values: torch.FloatTensor,
vision_feature_layer: Optional[Union[int, list[int]]] = None,
vision_feature_select_strategy: Optional[str] = None,
**kwargs,
):
return self.model.get_image_features(
pixel_values=pixel_values,
vision_feature_layer=vision_feature_layer,
vision_feature_select_strategy=vision_feature_select_strategy,
**kwargs,
)
# Make modules available throught conditional class for BC
@property
def language_model(self):
return self.model.language_model
@property
def vision_tower(self):
return self.model.vision_tower
@property
def multi_modal_projector(self):
return self.model.multi_modal_projector
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: torch.LongTensor = None,
pixel_values: torch.FloatTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
vision_feature_layer: Optional[Union[int, list[int]]] = None,
vision_feature_select_strategy: Optional[str] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
output_router_logits: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
image_sizes: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[tuple, InternS1CausalLMOutputWithPast]:
r"""
Example:
```python
>>> import torch
>>> from transformers import AutoProcessor, AutoModelForImageTextToText
>>> torch_device = "cuda"
>>> processor = AutoProcessor.from_pretrained("InternLM/InternS1") # todo
>>> model = AutoModelForImageTextToText.from_pretrained(
... "InternLM/InternS1", torch_dtype=torch.bfloat16, device_map=torch_device
... )
>>> messages = [
... {
... "role": "user",
... "content": [
... {
... "type": "image",
... "url": "https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg",
... },
... {
... "type": "image",
... "url": "https://thumbs.dreamstime.com/b/golden-gate-bridge-san-francisco-purple-flowers-california-echium-candicans-36805947.jpg",
... },
... {"type": "text", "text": "These images depict two different landmarks. Can you identify them?"},
... ],
... },
... ]
>>> inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(torch_device)
>>> generate_ids = model.generate(**inputs, max_new_tokens=200)
>>> print(processor.decode(generate_ids[0, inputs["input_ids"].shape[1] :], skip_special_tokens=True))
The images depict the Statue of Liberty and the Golden Gate Bridge.
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
if self.is_moe_model:
output_router_logits = (
output_router_logits if output_router_logits is not None else self.config.text_config.output_router_logits
)
kwargs['output_router_logits'] = output_router_logits
vision_feature_layer = (
vision_feature_layer if vision_feature_layer is not None else self.config.vision_feature_layer
)
vision_feature_select_strategy = (
vision_feature_select_strategy
if vision_feature_select_strategy is not None
else self.config.vision_feature_select_strategy
)
outputs = self.model(
input_ids=input_ids,
pixel_values=pixel_values,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
vision_feature_layer=vision_feature_layer,
vision_feature_select_strategy=vision_feature_select_strategy,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
cache_position=cache_position,
image_sizes=image_sizes,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])
loss = None
if labels is not None:
loss = self.loss_function(
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs
)
aux_loss = None
if self.is_moe_model and output_router_logits and labels is not None:
aux_loss = load_balancing_loss_func(
outputs.router_logits,
self.config.text_config.num_experts,
self.config.text_config.num_experts_per_tok,
attention_mask,
)
loss += self.config.text_config.router_aux_loss_coef * aux_loss.to(loss.device)
return InternS1CausalLMOutputWithPast(
loss=loss,
aux_loss=aux_loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
router_logits=outputs.router_logits if self.is_moe_model else None,
image_hidden_states=outputs.image_hidden_states,
)
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
inputs_embeds=None,
pixel_values=None,
attention_mask=None,
cache_position=None,
logits_to_keep=None,
**kwargs,
):
# Overwritten -- in specific circumstances we don't want to forward image inputs to the model
model_inputs = super().prepare_inputs_for_generation(
input_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
logits_to_keep=logits_to_keep,
**kwargs,
)
if cache_position[0] == 0:
# If we're in cached decoding stage, pixel values should be None because input ids do not contain special image token anymore
# Otherwise we need pixel values to be passed to model
model_inputs["pixel_values"] = pixel_values
return model_inputs
__all__ = [
"InternS1VisionPreTrainedModel",
"InternS1VisionModel",
"InternS1PreTrainedModel",
"InternS1Model",
"InternS1ForConditionalGeneration",
]
|