File size: 16,315 Bytes
61e94ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# coding=utf-8
# Copyright 2025 HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Optional, Union

import numpy as np

from transformers.image_processing_utils import BatchFeature
from transformers.image_utils import ImageInput, concatenate_list, make_flat_list_of_images
from transformers.processing_utils import ImagesKwargs, MultiModalData, ProcessingKwargs, ProcessorMixin, Unpack
from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
from transformers.video_utils import VideoInput, make_batched_videos


class InternS1ImagesKwargs(ImagesKwargs, total=False):
    crop_to_patches: Optional[bool]
    min_patches: Optional[int]
    max_patches: Optional[int]


class InternS1ProcessorKwargs(ProcessingKwargs, total=False):
    images_kwargs: InternS1ImagesKwargs
    _defaults = {
        "text_kwargs": {
            "padding_side": "left",
            "return_mm_token_type_ids": False,
        },
        "images_kwargs": {
            "crop_to_patches": True,
        },
        "videos_kwargs": {},
    }


class InternS1Processor(ProcessorMixin):
    r"""
    Constructs a InternS1 processor which wraps a [`AutoImageProcessor`] and
    [`PretrainedTokenizerFast`] tokenizer into a single processor that inherits both the image processor and
    tokenizer functionalities. See the [`~InternS1Processor.__call__`] and [`~InternS1Processor.decode`] for more information.
    Args:
        image_processor ([`AutoImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`PreTrainedTokenizer`, `PreTrainedTokenizerFast`], *optional*):
            The tokenizer is a required input.
        video_processor ([`AutoVideoProcessor`], *optional*):
            The video processor is a required input.
        image_seq_length (`int`, *optional*, defaults to 256):
            The number of image token to use per image patch. it should be set so that:
            image_seq_length = (config.image_size // config.patch_size) ** 2 * (config.scale_factor**2)
        chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
            in a chat into a tokenizable string.
    """

    attributes = ["image_processor", "tokenizer", "video_processor"]
    image_processor_class = "AutoImageProcessor"
    video_processor_class = "AutoVideoProcessor"
    tokenizer_class = "AutoTokenizer"

    def __init__(
        self,
        image_processor=None,
        tokenizer=None,
        video_processor=None,
        image_seq_length: int = 256,
        chat_template=None,
        **kwargs,
    ):
        self.image_seq_length = image_seq_length
        self.start_image_token = tokenizer.start_image_token
        self.end_image_token = tokenizer.end_image_token
        self.start_image_token_id = tokenizer.start_image_token_id
        self.end_image_token_id = tokenizer.end_image_token_id
        self.image_token = tokenizer.context_image_token
        self.video_token = tokenizer.video_token
        self.image_token_id = tokenizer.context_image_token_id
        self.image_ids = [self.image_token_id, self.start_image_token_id, self.end_image_token_id]

        super().__init__(image_processor, tokenizer, video_processor, chat_template=chat_template, **kwargs)

    def _insert_media_placeholders(
        self,
        text: list[str],
        image_pixel_values,
        video_pixel_values,
        image_num_patches: list[int],
        video_num_patches: list[int],
        image_num_patches_indices: np.ndarray,
        video_num_patches_indices: np.ndarray,
        video_patch_indices: np.ndarray,
    ):
        """
        Processes interleaved text with <image> and <video> placeholders, replacing them with appropriate
        image and video tokens while keeping track of the patches used.
        """
        image_index = 0
        video_index = 0
        processed_text = []
        image_video_patches = []
        replace_strings = []
        # Support interleaved image and video in prompts:
        # Processed patches of images and videos are inserted in `image_video_patches` in the order they appear in the prompts
        for prompt in text:
            new_prompt = prompt
            while self.image_token in new_prompt or self.video_token in new_prompt:
                if self.image_token in new_prompt and (
                    self.video_token not in new_prompt
                    or new_prompt.index(self.image_token) < new_prompt.index(self.video_token)
                ):
                    # Get the slice of patches corresponding to the current image
                    start_index = image_num_patches_indices[image_index - 1] if image_index > 0 else 0
                    end_index = image_num_patches_indices[image_index]
                    image_video_patches.append(image_pixel_values[start_index:end_index])
                    # Replace the corresponding image placeholder with the correct number of image tokens
                    new_prompt = new_prompt.replace(self.image_token, "<placeholder>", 1)
                    replace_strings.append(
                        f"{self.start_image_token}{self.image_token * self.image_seq_length * image_num_patches[image_index]}{self.end_image_token}"
                    )
                    image_index += 1
                else:
                    # Get the slice of patches corresponding to the current video
                    # Here we need to account for both the multiple video frames and the potential multiple patches per frame
                    # As of now, InternS1 only supports one patch per frame, but we keep the code flexible for future updates
                    current_patch_index = video_patch_indices[video_index - 1] if video_index > 0 else 0
                    end_patch_index = video_patch_indices[video_index]
                    start_index = video_num_patches_indices[current_patch_index] if video_index > 0 else 0
                    end_index = video_num_patches_indices[end_patch_index - 1]
                    image_video_patches.append(video_pixel_values[start_index:end_index])
                    # Get the number of patches per frame and replace the video placeholder with the correct number of image tokens
                    num_patches = list(video_num_patches[current_patch_index:end_patch_index])
                    video_prompt = "\n".join(
                        f"Frame{i + 1}: {self.start_image_token}{self.image_token * self.image_seq_length * num_patches[i]}{self.end_image_token}"
                        for i in range(len(num_patches))
                    )
                    replace_strings.append(video_prompt)
                    new_prompt = new_prompt.replace(self.video_token, "<placeholder>", 1)
                    video_index += 1
            while "<placeholder>" in new_prompt:
                replace_str = replace_strings.pop(0)
                new_prompt = new_prompt.replace("<placeholder>", replace_str, 1)
            processed_text.append(new_prompt)

        return processed_text, image_video_patches, image_index, video_index

    def __call__(
        self,
        images: Optional[ImageInput] = None,
        text: Optional[Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]]] = None,
        audio=None,
        videos: Optional[VideoInput] = None,
        **kwargs: Unpack[InternS1ProcessorKwargs],
    ) -> BatchFeature:
        """
        Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
        and `kwargs` arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizerFast.__call__`] to encode the text if `text`
        is not `None`, otherwise encode default OCR queries which depends on the `format`, `box`, `color`, `multi_page` and
        `crop_to_patches` arguments. To prepare the vision inputs, this method forwards the `images` and `kwrags` arguments to
        GotOcr2ImageProcessor's [`~GotOcr2ImageProcessor.__call__`] if `images` is not `None`.

        Args:
            images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`):
                The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
                tensor. Both channels-first and channels-last formats are supported.
            text (`str`, `list[str]`, `list[list[str]]`):
                The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
                (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
                `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
            videos (`np.ndarray`, `torch.Tensor`, `list[np.ndarray]`, `list[torch.Tensor]`):
                The image or batch of videos to be prepared. Each video can be a 4D NumPy array or PyTorch
            return_tensors (`str` or [`~utils.TensorType`], *optional*):
                If set, will return tensors of a particular framework. Acceptable values are:
                - `'tf'`: Return TensorFlow `tf.constant` objects.
                - `'pt'`: Return PyTorch `torch.Tensor` objects.
                - `'np'`: Return NumPy `np.ndarray` objects.
                - `'jax'`: Return JAX `jnp.ndarray` objects.

        Returns:
            [`BatchFeature`]: A [`BatchFeature`] with the following fields:

            - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
            - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
              `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
              `None`).
            - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
        """
        if text is None:
            raise ValueError("You have to specify text.")

        output_kwargs = self._merge_kwargs(
            InternS1ProcessorKwargs,
            tokenizer_init_kwargs=self.tokenizer.init_kwargs,
            **kwargs,
        )

        if not isinstance(text, (list, tuple)):
            text = [text]

        # Process images and videos separately, as videos don't support crop_to_patches
        image_num_patches = []
        video_num_patches = []
        image_videos_inputs = {}
        image_pixel_values = None
        video_pixel_values = None
        image_num_patches_indices = np.array([0])
        video_patch_indices = np.array([0])
        video_num_patches_indices = np.array([0])
        if images is not None:
            images = make_flat_list_of_images(images)
            image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"])
            image_num_patches = image_inputs.pop("num_patches")
            image_pixel_values = image_inputs.pop("pixel_values")
            image_num_patches_indices = np.cumsum(image_num_patches)
        if videos is not None:
            videos = make_batched_videos(videos)
            video_inputs = self.video_processor(videos=videos, **output_kwargs["videos_kwargs"])
            video_pixel_values = video_inputs.pop("pixel_values_videos")

            # Obtain per frame information first and then flatten to (BS * T, ...)
            num_frames_per_video = [len(video) for video in video_pixel_values]
            video_num_patches = [1 for frames in num_frames_per_video for _ in range(frames)]
            video_patch_indices = np.cumsum(num_frames_per_video)
            video_num_patches_indices = np.cumsum(video_num_patches)
            video_pixel_values = video_pixel_values.flatten(0, 1)

        if images is not None or videos is not None:
            text, image_video_patches, image_index, video_index = self._insert_media_placeholders(
                text,
                image_pixel_values,
                video_pixel_values,
                image_num_patches,
                video_num_patches,
                image_num_patches_indices,
                video_num_patches_indices,
                video_patch_indices,
            )
            if images is not None and image_index != len(images):
                raise ValueError("Number of image placeholders in the prompt does not match the number of images.")
            if videos is not None and video_index != len(videos):
                raise ValueError("Number of video placeholders in the prompt does not match the number of videos.")

            # Concatenate the interleaved image and video patches (function agnostic to the patches type (list, numpy array, torch tensor))
            image_videos_inputs = {"pixel_values": concatenate_list(image_video_patches)}

        return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
        return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", None)
        text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
        self._check_special_mm_tokens(text, text_inputs, modalities=["image"])

        if return_mm_token_type_ids:
            array_ids = np.array(text_inputs["input_ids"])
            mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
            mm_token_type_ids[np.isin(array_ids, self.image_ids)] = 1
            text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()

        return BatchFeature(data={**text_inputs, **image_videos_inputs}, tensor_type=return_tensors)

    def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
        """
        Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.

        Args:
            image_sizes (`list[list[int]]`, *optional*):
                The input sizes formatted as (height, width) per each image.

        Returns:
            `MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
            input modalities, along with other useful data.
        """

        vision_data = {}
        if image_sizes is not None:
            images_kwargs = InternS1ProcessorKwargs._defaults.get("images_kwargs", {})
            images_kwargs.update(kwargs)

            num_image_patches = [
                self.image_processor.get_number_of_image_tokens(*image_size, images_kwargs)
                for image_size in image_sizes
            ]
            # Add 2 for BOI and EOI tokens
            num_image_tokens = [2 + (self.image_seq_length * num_patches) for num_patches in num_image_patches]
            vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches})

        return MultiModalData(**vision_data)

    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        return self.tokenizer.batch_decode(*args, **kwargs)

    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to PreTrainedTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        return self.tokenizer.decode(*args, **kwargs)

    @property
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(tokenizer_input_names) + list(image_processor_input_names)


__all__ = ["InternS1Processor"]